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TEMCA-Net: A Texture-Enhanced Deep Learning
Network for Automatic Solar Panel Extraction in

High Groundwater Table Mining Areas
Min Tan , Weiqiang Luo , Jingjing Li , and Ming Hao

Abstract—Long-term coal mining has led to a series of ecological
problems, constraining society’s sustainable development. Ecolog-
ical restoration is a crucial component of achieving sustainability,
and with the continuous advancement of photovoltaic technology,
the comprehensive utilization of photovoltaics has become one of
the important restoration methods in mining areas. The area and
location of solar panels, as key indicators for assessing the ecological
restoration approach, require precise extraction and positioning.
This article proposes a texture-enhanced multicontext attention
network (TEMCA-Net). In the encoding part, the network utilizes
residual connections in conjunction with the convolutional block
attention module to preliminarily extract contextual information.
Then, low-level features were input into the statistical texture learn-
ing (STL) texture enhancement module and high-level features into
the horizontal atrous spatial pyramid pooling (H-ASPP) module. In
the decoding part, the high-level features processed by the H-ASPP
were combined module with the texture-enhanced features from
the STL module. Experiments were conducted in the Peibei mining
region located in Xuzhou City, Jiangsu Province. We established the
solar panels of Peibei mining region (SPPMR) dataset. The experi-
mental results on the SPPMR dataset demonstrate TEMCA-Net’s
outstanding performance in solar panel extraction, with precision
at 90.24%, recall at 93.07%, an F1-score of 91.63%, and a mean
intersection over union of 92.21%. It significantly outperforms
three classic deep learning networks: Deeplabv3+, U-net, and
PSPnet. In summary, this study provides an efficient and feasible
solution for the extraction of solar panels in mining areas with high
water tables.

Index Terms—Semantic segmentation, solar panel extraction,
texture enhancement.

I. INTRODUCTION

COAL, as a crucial energy resource, plays an irreplaceable
role in meeting global energy demands. However, with its

long-term and excessive extraction, environmental issues arising
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from coal mining, such as surface subsidence and surface water
accumulation, have become increasingly severe [1]. In the early
stages, ecological restoration in coal mining subsidence areas
primarily involved methods, such as farmland reclamation, af-
forestation, and the reclamation of wetlands for aquaculture [2].
In recent years, facing the dual challenges of climate change and
energy transition, new restoration methods, such as agricultural
and photovoltaic complementarity, photovoltaic wetlands, and
aquaculture–photovoltaic integration, have been widely applied
[3]. Photovoltaic power generation, as an efficient means of
obtaining clean energy [4], when introduced into mining eco-
logical restoration, not only provides a sustainable solution for
energy supply but also opens up new prospects for environmen-
tal protection and ecological restoration, making it a forward-
looking initiative worth exploring. When assessing the effective-
ness of agricultural–photovoltaic complementarity, photovoltaic
wetlands, and aquaculture–photovoltaic integration restoration
models, information on the total area of efficiently obtained
solar panels, geographical locations, and distribution is crucial
for energy output evaluation and geographical spatial analy-
sis. Satellite remote sensing images offer several advantages,
including extensive coverage, rapid data acquisition, frequent
updates, and independence from ground conditions [5]. Solar
panels exhibit distinct features, such as texture, geometry, and
spectral characteristics, in remote sensing images. Therefore,
proposing a targeted method for extracting solar panels based
on these features is of significant importance.

In recent years, researchers have used methods involving man-
ual annotation and remote sensing visualization interpretation
to create maps of photovoltaic power stations within regions
[6]. However, manual visual interpretation is time-consuming,
inefficient, and not suitable for large-scale classification tasks.
Machine learning, as an empirical model for nonlinear sys-
tem regression, has been widely applied to remote sensing
classification tasks [7], [8], [9]. Traditional machine learning
methods, such as random forest (RF) and support vector ma-
chines (SVMs), have been applied to various scales of re-
mote sensing imagery to identify photovoltaic panels or solar
power stations [10], [11], [12], [13], [14]. Automatic detection
of solar photovoltaic arrays in high-resolution aerial imagery.
Wang et al. [10] combined object-based image analysis with
template matching techniques, achieving the precise extraction
of photovoltaic panels from high-resolution aerial images and
overcoming shape defects resulting from image segmentation.
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Muhammed et al. [11] utilized SVM and Bayesian machine
learning algorithms to accurately detect solar panels on rooftops
from satellite images, successfully estimating the photovoltaic
potential in Egypt’s Madinaty City. Zhang et al. [12], in their
research, significantly improved the accuracy of the RF model in
identifying photovoltaic power stations in Landsat-8 images by
combining multiple input variables, including texture features
calculated from gray-level co-occurrence matrix (GLCM), re-
flectance data, thermal spectral features, and image-normalized
vegetation index. Chen et al. [13] selected Golmud, China, as
their study area, establishing a photovoltaic power station recog-
nition model based on original spectral features, photovoltaic
extraction indicators, and terrain features. In their experiments,
they compared the performance of different algorithms, such
as XGBoost, RF, and SVM, confirming the effectiveness of
combining original spectral features, photovoltaic extraction
indicators, and terrain features for photovoltaic power station
recognition. However, traditional machine learning algorithms
involve relatively complex computation processes and lower
model efficiency, making them less suitable for large-scale
photovoltaic power station extraction tasks.

As an important branch of the machine learning field, deep
learning has garnered widespread attention and application in
recent years due to its efficiency, exceptional accuracy, and
strong adaptability on large-scale data models [14], [15], [16],
[17], [18], [19]. Classic deep learning models, such as U-Net,
DeepLabv3+, PSPNet, SegNet, and others, have been exten-
sively utilized for the task of extracting solar panels from remote
sensing images. Yuan et al. [20] introduced the ConvNet method
and successfully applied it to extract solar panels from aerial
imagery covering 200 km2 across two cities. Kouyama et al.
[21] employed Landsat-8 imagery from the Kanto region for
photovoltaic power station extraction, achieving favorable ex-
perimental results by combining convolutional neural networks
(CNNs) with channel attention module (CAM) and demonstrat-
ing the effectiveness of this method. Arnaudo et al. [22] proposed
a robust and efficient postprocessing polygon algorithm tailored
for photovoltaic panels, converting coarse grid predictions into
clearer and more accurate polygons. They tested this algorithm
in the Piedmont region of Italy and compared it with methods,
such as U-Net, showcasing its superior performance. Su et al.
[23] introduced the filter-embedded network, embedding high-
pass and low-pass filters as well as polarized self-attention into
the high-resolution network to enhance its noise resistance and
adaptive feature extraction capabilities, ultimately improving the
extraction ability of photovoltaic power stations. da Costa et al.
[24] utilized a semantic segmentation and large image classifica-
tion stitching approach to identify photovoltaic power stations in
Brazil. They compared the performance differences among four
different architectures, U-Net, DeepLabv3+, pyramid scene
parsing network, and feature pyramid network, in photovoltaic
power station recognition. Ge et al. [25] proposed a hierarchical
information extraction method, including localization informa-
tion and shape information, for mapping the distribution of
photovoltaic panels. In their experiments, they first employed
the EfficientNet-B5 model for preliminary localization and then
used U2-net for precise segmentation. Through comparative
experiments with DeepLabv3+, U-Net, SegNet, and FCN8s, the

superiority of the hierarchical information extraction method in
terms of accuracy and efficiency was verified. Wang et al. [26]
introduced a novel semantic segmentation model called PVNet,
consisting of a coarse prediction module and a fine optimization
module. This research was tested in four different scenarios,
providing a feasible solution for obtaining high-quality geo-
graphic spatial databases of large-scale photovoltaic systems.
Castello et al. [27] employed a deep learning approach to extract
rooftop solar panels. By adjusting data augmentation techniques
and network parameters, they maximized model performance,
contributing to the advancement of solar panel extraction efforts
across Switzerland.

At present, researchers have made various attempts in the
field of solar panel extraction, and different extraction methods
have shown feasibility. However, traditional machine learning
approaches are not suitable for large-scale solar panel extrac-
tion. Furthermore, in deep learning, there is still room for
improvement in utilizing texture features from shallow-level
characteristics, and there is a lack of specificity in network
design. To address these issues, this article proposes a deep
learning model called texture-enhanced multicontext attention
network (TEMCA-Net) based on an encoder–decoder frame-
work. Given the distinct texture features of photovoltaic power
stations in images, the TEMCA-Net incorporates a statistical
texture learning (STL) module in the network to enhance texture
details within shallow-level features. In addition, to improve the
network’s horizontal perception, modifications are made to the
atrous spatial pyramid pooling (ASPP) module to adapt it to the
horizontal orientation of solar panels in images. Furthermore,
residual networks (RNs) and convolutional block attention mod-
ule (CBAM) modules are introduced into the network to achieve
fine-grained extraction of solar panels. In summary, this article’s
primary contributions are given as follows.

1) Based on the texture and horizontal features of solar panels
in remote sensing images, we designed a deep learning
network, TEMCA-Net, to achieve finer extraction of solar
panels. By introducing modules, such as horizontal atrous
spatial pyramid pooling (H-ASPP) and STL, the perfor-
mance of the TEMCA-Net network has been significantly
improved.

2) Utilizing remote sensing images of solar panels in the
Peibei mining area, we constructed a deep learning dataset,
solar panels of Peibei mining region (SPPMR), providing
support for the research and application of deep learn-
ing techniques in the monitoring of solar panels in high
groundwater-level mining areas.

3) The trained TEMCA-Net model was applied to extract
solar panels in the southern part of Peibei mining area.
The extraction results were used to create a distribution
map of solar panels in the southern part of Peibei mining
area.

II. MATERIALS

A. Study Area

This experiment selected Peibei mining region as the study
area, as shown in Fig. 1(a). Peibei mining region is a typical high
water table mining area located in the northwest part of Jiangsu
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Fig. 1. Illustrates the geographical location and environment of the study area,
with (a) indicating the position of Pei County. Regions b–g represent the primary
distribution areas of solar panels in Pei County. Subfigures (b), (c), and (d)
showcase some of the solar panels in these areas.

Province, approximately 90 km from the center of Xuzhou City.
The terrain in this area is flat, with elevations ranging from 31.5
to 41 m. Peibei mining region hosts the main industrial and coal
mining activities of Pei County, including five administrative
towns: Longgu, Yangtun, Anguo, Lulou, and Zhuzhai, as well
as four subdistricts: Datun, Peicheng, Hanyuan, and Hanxing,
covering a total area of 744.3476 km2. Prolonged mining ac-
tivities have led to damage to the topography, landscape, and
land resources in this region, resulting in ecological degrada-
tion. Geological hazards induced by mining activities in Peibei
mining region mainly include ground subsidence, collapses, and
ground fissures. The coal mining subsidence area is mainly
located in the northern part of Pei County (116°41′–117°09′E,
34°28′–34°59′N), extending east to the west dike of Weishan
Lake, west to the border with Fengxian County, south to Fengpei
Road (extending east to the west dike of Weishan Lake), and
north to the border with Longgu Town and Shandong Yutai
County. To address the challenges posed by different subsidence
depths, various restoration methods have been implemented
locally. Specifically, for areas with subsidence depths exceed-
ing 3 m, Pei County has utilized solar and aquatic resources,
constructing photovoltaic power stations on subsided water sur-
faces, thereby achieving the “agricultural–photovoltaic comple-
mentarity” and “aquaculture–photovoltaic integration” power
generation modes. This experiment aims to extract information
regarding the area and location of solar panels constructed under
this power generation model.

B. Dataset

1) The experiment utilized QuickBird satellite imagery
data, sourced from Google Earth. QuickBird is a high-
resolution commercial satellite operated by DigitalGlobe.
Since its launch in 2001, it has been in a sun-synchronous

TABLE I
QUICKBIRD SPECTRAL PARAMETERS

orbit, circling the Earth multiple times daily, thereby
offering comprehensive global coverage. QuickBird is
renowned for its 0.65-m Panchromatic band and 2.62-m
multispectral resolution, making it a standout choice
across various domains, including urban planning, land
management, agriculture, forestry, geological exploration,
and environmental monitoring. The satellite’s swift data
acquisition capabilities are particularly invaluable in sit-
uations requiring urgent responses. Within the high-
resolution remote sensing domain, QuickBird satellites
play a pivotal role by providing researchers and decision
makers with invaluable observational data. The QuickBird
data parameters are listed in Table I.

2) Process the acquired data through image processing. First,
perform radiometric correction and geometric correction
on the images, where radiometric correction involves ra-
diometric calibration and atmospheric correction. Next,
conduct orthorectification on the images. Finally, mosaic
and crop the processed images to obtain a remote sensing
image of the entire study area.
a) Atmospheric correction of the images—Remote sens-

ing images are influenced by factors, such as atmo-
spheric molecules and aerosols during the acquisi-
tion process. To ensure the spectral information of
the land features during the change detection process,
atmospheric correction is necessary for remote sensing
images. In this study, the ENVI atmospheric correction
module, specifically the fast line-of-sight atmospheric
analysis of spectral hypercubes was utilized for rapid
atmospheric correction.

b) Orthorectification of the images—Orthorectification
effectively addresses radiometric distortions caused by
terrain factors, ensuring the accuracy of the geometric
position of the images.

c) Image mosaicking and cropping—Mosaic the remote
sensing images to cover the entire study area, and
then utilize vector data of the study area to crop the
mosaicked remote sensing images, obtaining remote
sensing images within the study area.

3) The training set in SPPMR is constructed from three
areas at locations b, c, and d, as shown in Fig. 1. The
distribution of solar panels in these areas is illustrated in
Fig. 2, where in the b region, bar-shaped solar panels are
densely distributed on the ground. In both b and c regions,
there are both bar-shaped solar panels on the ground and
panel-shaped solar panels on the water surface.
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Fig. 2. (b), (c), and (d)—Schematic distribution of solar panels at three
locations.

Fig. 3. Partial original images and labels.

For the testing set in SPPMR, three areas at locations e, f,
and g in Fig. 1 are selected for construction. The types of solar
panels in these areas are also diverse, facilitating the reduction
of differentiation between the training and testing sets.

The selected region images are pixelwise annotated, with the
original images segmented into solar panel class and background
class. Background pixels are represented as (0, 0, 0), while solar
panel pixels are represented as (255, 255, 255). Using a sliding
window with a stride of 300 pixels, the original images and
annotated images are segmented into 512×512-sized images,
as depicted in Fig. 3.

The entire training set consists of images from regions b, c,
and d, comprising a total of 13 246 samples. The testing set
is composed of images from regions e, f, and g, totaling 5326
samples. Overall, the SPPMR dataset includes 18 572 samples,
with a training-to-testing set ratio of approximately 7:3.

Fig. 4. Presents the overall framework of the TEMCA-Net network.

III. METHODS

This study proposes the TEMCA-Net network based on an
encoder–decoder framework with the aim of achieving high-
precision semantic segmentation of solar panels. The complete
structure of the network is depicted in Fig. 4. In the encoding
section, the residual edge connection technique [28] is employed
along with the collaborative CBAM mixed attention mechanism
module to extract features of solar panels from shallow to deep
layers. The initially generated shallow features are input into
the decoder, and simultaneously, high semantic features pass-
ing through multiple residual blocks are fed into the H-ASPP
module for horizontal enhancement.

In the decoding section, the shallow features from the encoder
are input into the STL [29] texture enhancement module (TEM)
to improve the network’s perception of the texture of solar
panels. The texture features processed by STL are combined
with the high-level features from the H-ASPP module, and
the final solar panel extraction results are generated through
usampling.

A. Encoder Featuring RNs, CBAM Attention, and H-ASPP

1) RNs: Given the dense distribution of solar panels in the
Pei Bei mining area, they are susceptible to strong noise
interference from factors, such as sunlight and shadows.
Therefore, it is imperative to employ deep CNNs for ex-
tracting multiscale and high-level features of solar panels
to facilitate their recognition. In the realm of deep learning,
the quality of feature extraction is intricately linked to
the network’s depth, with deeper network layers capable
of generating more complex and abstract features com-
pared with shallower layers. However, as network depth
increases, there is a risk of encountering the problem of
network degradation, which can degrade the performance
of deep networks. To mitigate the challenges associated
with increased network depth, we have adopted an RN [30]
approach, merging the outputs of shallow network layers
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Fig. 5. Schematic diagram of CBAM.

with those of deeper layers. This strategy ensures that the
performance of the deep network is, at the very least, on
par with that of the shallow network, and possibly even
superior. In consideration of the aforementioned factors,
we have incorporated RNs into TEMCA-Net to extract
various contextual information.

2) CBAM: The perception of features by a network is largely
dependent on the size of its receptive field. However,
the feature maps obtained through RN are insufficient to
comprehensively capture rich global features and contex-
tual information. Therefore, we introduce the lightweight
attention module CBAM [31] from the features extracted
by DRN. As shown in Fig. 5, the CBAM module comprises
two components: the spatial attention module and the
CAM.
The computation process of the CBAM module can gen-
erally be divided into two stages. First, the intermediate
feature map F is taken as input and subjected to global
max-pooling and average-pooling operations. The one-
dimensional (1-D) vectors generated by these two pooling
operations are passed through a multilayer perceptron
(MLP) for computation, and their results are added to-
gether. After applying an activation function to the input,
a 1-D channel attention weight Mc is generated and mul-
tiplied with the input elements to adjust channel attention,
resulting in the feature map F ′.
Second, a global max-pooling and average-pooling oper-
ation is applied to F ′, and the two 2-D vectors generated
by pooling are concatenated. Through a convolution op-
eration, a 2-D spatial attention weight Ms is generated.
This obtained Ms is then multiplied with the feature map
F ′ to obtain a feature map enhanced by mixed attention.
The introduction of the CBAM module primarily ad-
dresses the limitation of feature representation within
the receptive field of a CNN. When embedded into RN,
it further enhances the model’s perceptual capability of
features during the encoding phase, enabling the model to
capture richer semantic information.

3) Improved H-ASPP: The orientation of solar panels is influ-
enced by the solar altitude angle. In the Peibei mining area,
the majority of solar panels are positioned horizontally
in the imagery. In the context of semantic segmentation
tasks, the salient features of solar panels predominantly lie
in the horizontal direction. Therefore, this study introduces
an enhancement to dilated convolutions, where dilation
convolution is performed exclusively in the horizontal
direction. This means that dilated convolutions are applied
along the width dimension of the feature layer, enabling
the more concentrated capture of contextual information in

Fig. 6. Improved H-ASPP.

the horizontal direction. Simultaneously, this modification
significantly reduces the computational workload in this
stage.

The improved ASPP [32] maps feature into five parallel
branches for processing. These branches consist of a 1 × 1
convolution branch, three 1 × 3 horizontal dilated convolution
layers with dilation rates of 12, 24, and 36 in the horizontal
direction, and a final branch comprising pooling layers and a
1 × 1 convolution layer. While the 1 × 3 convolution op-
eration enhances the network’s receptive field, it diminishes
the network’s ability to capture context information across the
entire image. To ensure the network’s performance, we introduce
global average pooling to assist in capturing global information.
Simultaneously, we incorporate batch normalization layers and
ReLU activation functions into each branch following convolu-
tion, effectively mitigating gradient vanishing issues and accel-
erating model convergence. These measures not only maintain
network stability but also enhance training efficiency. Upon
completion of the H-ASPP module, we connect and resample the
feature maps generated at multiple scales, fully leveraging global
contextual information. This empowers TEMCA-Net to achieve
highly accurate and efficient classification across a variety of
spatial scales. The improved spatial pyramid H-ASPP structure
is shown in Fig. 6.

B. Decoder Enhanced by STL Texture

Texture features are a highly significant aspect of visual char-
acteristics used for describing the texture and structure within an
image [33]. These features aid in the network’s understanding of
homogeneity in the image, specifically the presence of similar
textures. By analyzing factors, such as the distribution of pixel
values, texture frequencies, and orientations, we can extract both
local and global information about the image. In remote sensing
imagery, solar panel textures are distinctive and can be readily
differentiated from other features. Consequently, in this study,
we incorporate the STL enhancement module into the decoding
section. This module takes low-level features obtained from the
RN and applies texture enhancement to improve the network’s
perception of texture.
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Fig. 7. Structure of 1D-QCO.

1) STL module: The STL module introduces statistical tex-
ture information for semantic segmentation to fully utilize
texture features. Traditional CNNs are primarily designed
for extracting local texture features and local shape fea-
tures, such as edges, smoothness, and roughness. Although
convolutional kernels excel as feature extraction tools
in image processing, shallow-level features inherently
contain local texture information. However, there is no
explicit mechanism for extracting and utilizing texture in-
formation for semantic segmentation [34]. Relying solely
on convolutional operations for information and feature
extraction is insufficient. On the other hand, statistical
information within texture features, such as grayscale
histograms, holds significant value and finds extensive
application in traditional image processing algorithms.
Low-level features are crucial for enhancing semantic
segmentation performance. On the other hand, statistical
information within texture features, such as grayscale
histograms, holds significant value and finds extensive
application in traditional image processing algorithms
[35], [36]. Low-level features are crucial for enhancing
semantic segmentation performance.
To effectively capture statistical texture within deep neu-
ral networks, the STL module introduces a novel fea-
ture encoding approach known as the quantization and
counting operator (QCO). The QCO operator resembles
convolution kernels in CNNs and comprises three critical
components: quantization, counting, and average feature
encoding. Furthermore, there are two types of QCO,
namely 1D-QCO and 2D-QCO, utilized in constructing
the TEM and the pyramid texture feature extraction mod-
ule (PTFEM) texture feature extraction module. These
innovative designs facilitate a better understanding and
utilization of statistical texture information within deep
neural networks, ultimately enhancing the performance
and efficiency of semantic segmentation tasks.

2) 1D-QCO module: The structure of 1D-QCO is illustrated
in Fig. 7. First, the input feature map A, with dimensions
C×H×W, undergoes quantization. The feature map A is
first processed through global average pooling to obtain
the global mean feature g, which has dimensions C×1×1.
Then, the cosine similarity between each spatial position
Aij(i ∈ [1,W ], j ∈ [1, H ]) in the feature map A and g is
calculated, resulting in cosine similarity features S, with
dimensions 1×H×W. Subsequently, the feature map is

transformed into a 1-D vector S with dimensions H×W,
from which Lx is calculated by dividing the difference be-
tween the maximum and minimum values in the 1-D vec-
tor S by N. Starting from the minimum value min (S) in S,
each layer of information Lx is cumulatively accumulated
to obtain Ln. Finally, Ei is computed from Si,Ln using
the formula provided in (1). This quantization encoding
approach ensures smoother quantization and mitigates the
issue of gradient vanishing during the backpropagation
process. In the second step, statistics are performed on
the encoding matrix obtained through the quantization
process, leading to the computation of C. Here, the first di-
mension represents each quantization level, and the second
dimension represents the corresponding normalized count
value. The second step involves conducting further statis-
tical analysis on the quantized results obtained from the
encoding matrix E, resulting in the generation of a count
matrix C. In this matrix, the first dimension represents
different quantization levels, while the second dimension
represents their corresponding normalized count values

Ei,n =

{
1− |Ln − Si| if − 0.5

N ≤ Ln − Si <
0.5
N

O else.
(1)

3) 2D-QCO module: 1D-QCO output reflects the feature
distribution at various spatial positions. However, in 1D-
QCO, it does not include information about the spatial
relationships between pixels, and spatial relationships play
a crucial role in describing texture features.
2D-QCO aims to compute the spatial relationships be-
tween pixels within the feature map, extending upon the
foundation of 1D-QCO. The specific process is as follows:
the input feature A undergoes 1D-QCO, resulting in quan-
tization encoding E and quantization level L. Then, E is
transformed into an R×N×H×W tensor, and the product
of every pair of adjacent pixels Eij is calculated to obtain
Ê, using Ê to represent the quantized values of adjacent
pixel relationships.
Ê is statistically analyzed to generate a 3-D mapping C,
where the first two dimensions represent each possible
quantized relationship, and the third dimension signifies
the corresponding normalized count value. Finally, mean
feature encoding is performed, and the mean feature within
the processing region is denoted as g. It is upsampled,
resulting in the input for 2D-QCO.

4) TEM module: In situations where image contrast is low, the
low-level features extracted from the backbone network
may suffer from reduced quality. The extracted low-level
features might struggle to capture the fine texture details of
the image clearly, posing challenges for subsequent tasks
[37]. Hence, as depicted in Fig. 8, we introduce the TEM
specifically for enhancing the fine texture details within
the low-level features. The primary objective of TEM is
to enhance the quality of these low-level features, making
them more adept at capturing crucial information related
to image textures.
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Fig. 8. Structure of TEM.

Fig. 9. Structure of PTFEM.

The inspiration for the texture enhancement method is
derived from the classical image quality enhancement
technique called histogram equalization, where the hor-
izontal and vertical axes of a histogram represent each
grayscale level and its count, respectively. TEM primarily
utilizes the quantization encoding E and statistical features
D obtained through 1D-QCO calculations. It defines a sta-
tistical feature for each quantization level, employing an
improved approach over the traditional histogram equal-
ization algorithm by extending it into a learning matrix.
The softmax function is used to normalize the calculation
along the first dimension of the statistical feature D, result-
ing in the reconstructed quantization levelsD′. Finally, the
reconstructed quantization levels D′ are multiplied with
the quantization encoding E to obtain the ultimate output
R.

5) PTFEM module: As shown in Fig. 9, the PTFEM aims to
extract texture-related information from multiscale feature
maps. Since texture features are highly correlated with
the statistical information of spatial relationships between
pixels, the method for extracting texture information in
PTFEM draws inspiration from GLCM. In GLCM, a
co-occurrence matrix is first generated, and then statis-
tical descriptors, such as contrast and uniformity, which
are manually designed, are used to represent the texture
information of the region. In 2D-QCO, a similar principle
to GLCM is employed to extract co-occurrence statistical
features. However, unlike the manually designed statis-
tical descriptors used in GLCM, 2D-QCO automatically

Fig. 10. Solar panel extraction results of different methods on the SPPMR
dataset. From left to right: Original image, ground truth labels, PSPNet [38],
U-Net [39], DeepLabv3+ [40], and TEMCA-Net.

Fig. 11. Distribution of solar panels in three locations within the Peibei mining
area.

learns effective statistical representations from samples
through deep learning. Subsequently, an MLP is employed
to further extract texture features.

Furthermore, to comprehensively consider texture informa-
tion at different scales, PTFEM adopts a pyramid structure. It op-
erates on multiple scale levels, performing the same operations
to generate feature maps at multiple scales, and then combines
them for subsequent processing. This multiscale processing con-
tributes to improving the performance of semantic segmentation
models, allowing them to better capture object details at different
scales, thereby enhancing the model’s adaptability to various
scenes.
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Fig. 12. Extraction results of TEMCA-Net in scenes e, f, and g. e1, e2, …, g2,
etc., represent different regions within areas e, f, and g.

IV. EXPERIMENT

A. Experimental Environment and Evaluation Measures

1) In this experiment, we employed the PyTorch 1.11.7
framework to construct the TEMCA-Net network. All
tasks were executed on a workstation equipped with a
CPU (13th Gen Intel(R) Core (TM) i7-13700KF) and GPU
(NVIDIA GeForce RTX 4090). The training epochs were
set to 100, with a batch size of 10 and an initial learning
rate of 7e-3. The loss function used was cross-entropy
loss. For optimizing the network parameters, we chose the
stochastic gradient descent optimizer with a momentum
parameter of 0.8, alongside the application of weight de-
cay at a rate of 1e-5. To ensure the rigor of this experiment,
we maintained consistency across all methods by using
the same hyperparameters for training, including learning
rate, batch size, and regularization parameters.

2) For the evaluation of solar panel extraction results, metrics,
such as precision (Pr), recall (Re), F1-score (F1), and mean
intersection over union (mIoU), are employed for a fair
assessment. These metrics are defined as follows:

Pr =
TP

TP + FP
(2)

Re =
TP

TP + FN
(3)

TABLE II
CONFUSION MATRIX

TABLE III
ON THE SPPMR DATASET, WE COMPARE THE SEMANTIC SEGMENTATION

ACCURACY AND TIME BETWEEN TEMCA-NET AND OTHER METHODS

TABLE IV
FLOPS AND PARAMETER QUANTITIES ARE COMPUTED FOR DIFFERENT

MODELS, AND THE RESULTS ARE SUMMARIZED IN THE TABLE

F1 =
(2× Re× Pr)

Re + Pr
(4)

MIoU =
1

2

(
TP

TP + FP + FN
+

TP
TP + FN+ FP

)
.

(5)

In which, TP, FP, FN, and TN represent the true positives,
false positives, false negatives, and true negatives, as il-
lustrated in the confusion matrix in Table II.

We introduced the F1-score, which is the harmonic mean of
precision and recall, as it provides a comprehensive evaluation
of model performance. When a model achieves high precision
and high recall simultaneously, the F1-score value is higher,
indicating a more balanced performance in the task. In addi-
tion, we used mIoU to evaluate the similarity between ground
truth solar panel pixels and predicted solar panel pixels. A
higher mIoU value signifies a closer resemblance between
the model’s segmentation results and the ground truth.

1) We employed data augmentation to increase both the
quantity and quality of training samples in each iteration.
The implementation of three different types of data aug-
mentation is given as follows:
a) randomly flipping the original image along both the

horizontal and vertical axes;
b) performing random cropping on the original image,

followed by resizing to match the original image’s
dimensions;
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TABLE V
PRESENTS THE ABLATION EXPERIMENTS OF THE TEMCA-NET NETWORK ON SPPMR

c) randomly varying the brightness and contrast of the
image, with the variation intensity being around 30%
of the original values.

B. Results of the Experiment

To demonstrate the performance of TEMCA-Net, we con-
ducted comparative experiments in a selected testing area, eval-
uating TEMCA-Net alongside three commonly used semantic
segmentation models: U-Net, DeepLabv3+, and PSPNet. The
comparative experimental results are presented in Fig. 10.

From the comparative experimental results, as shown in
Fig. 10, the following observations can be made regarding solar
panel extraction.

1) When it comes to solar panel extraction, U-Net and PSP-
net exhibit higher rates of both false negatives (missed
detections) and false positives (incorrect detections). In
addition, their edge quality in the extracted solar panels is
poor, making them susceptible to interference from other
objects. In the case of strip-shaped solar panel extraction,
the low segmentation accuracy often results in overlapping
panels

2) In contrast, DeepLabv3+ shows a significant reduction in
false negatives and false positives compared with U-Net
and PSPnet. However, the quality of the extracted solar
panel edges remains somewhat rough, and some instances
of overlap are still observed.

3) TEMCA-Net, on the other hand, exhibits lower rates of
false positives, particularly when the TEM is incorporated.
This leads to significantly improved accuracy in extracting
rectangular solar panels and superior performance in seg-
menting the edges of strip-shaped solar panels compared
with the other three methods. Furthermore, TEMCA-Net
demonstrates less susceptibility to panel overlap.

In Table III, the evaluation metrics on the SPPMR dataset
are presented. TEMCA-Net achieves accuracy levels close to
the DeepLabv3+ model but boasts a recall rate of 93.07%,
an F1-score of 91.63%, and an mIoU of 92.21%, all of which
outperform the other methods by a considerable margin. Simul-
taneously, we compared the training times of each model. From
the statistical perspective, our proposed method demonstrates
relatively higher efficiency while ensuring accuracy. Finally, the
statistical analysis of model parameters in Table IV indicates that
the proposed method in this article has a relatively low model
complexity.

C. Solar Panel Extraction Results in the Peibei Mining Area

To assess the performance of TEMCA-Net in real-world
large-scale scenarios, we selected three locations within the
Peibei mining area, as shown in Fig. 11. These three locations
are denoted as e, f, and g, constituting the test set. These scenes
are representative and showcase different texture characteristics.
In locations e and f, the solar panels are distributed in a planar
fashion.

Fig. 12 displays partial extraction results from these three
scenes, indicating that TEMCA-Net can adapt to a variety of
different scenarios. It can accurately extract solar panels in
different environments, demonstrating a low false-negative rate
and precise delineation of solar panel edges.

D. Ablation Study

When evaluating the effectiveness of TEMCA-Net with the
incorporation of RN, CBAM, H-ASPP, and STL modules, we
can draw some key observations from the results in Table IV.
First, in the first row, we used a basic CNN to extract features and
then directly performed upsampling operations to generate the
feature extraction results. Starting from this baseline, we gradu-
ally introduced the RN, CBAM, H-ASPP, and STL modules. To
ensure the fairness of the ablation experiments, when conducting
ablation experiments on each module, we replaced them with
convolutional layers with approximately equal parameter sizes.
In the results, as shown in Table V, when a module is unchecked,
it indicates that it has been replaced with a convolutional layer
of roughly the same parameters.

In observing the performance improvements after the in-
troduction of different modules, although precision and recall
metrics may show slight fluctuations in some cases, the overall
trend indicates a gradual enhancement of the F1 and mIoU
metrics with the introduction of each module. In the ablation
experiments, we replaced modules with convolutional layers
having approximately equal parameters. Through the compari-
son of various metric data, it is evident that merely increasing the
parameter count does not enhance the network’s performance. In
the ablation experiments involving the STL module, increasing
the parameter count actually led to a decline in network perfor-
mance. This indicates that the introduction of these modules
is highly effective for improving the performance of image
segmentation tasks.
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Specifically, the last row displays the metrics for MFPA-Net,
and compared with the first row, all metrics show significant
improvements. Precision increased by 11%, recall increased by
19.7%, F1 improved by 15.2%, and mIoU increased by 19.8%.
These numbers reflect that by introducing the RN, CBAM, H-
ASPP, and STL modules, the model’s performance in image
segmentation tasks has been successfully enhanced, particularly
in terms of precision and recall. The combined effects of these
modules enable our model to more accurately identify objects
and perform pixel-level segmentation, thereby improving the
overall performance level.

V. CONCLUSION

To accurately extract and locate solar panels in the Peibei min-
ing area, this study proposes an efficient deep learning network
called TEMCA-Net based on an encoder–decoder structure. The
network incorporates RN, CBAM, H-ASPP, and STL modules,
enabling automatic and precise extraction and localization of
solar panels in the images of the Peibei mining area. In order
to effectively extract solar panels, this article constructs the
SPPMR dataset using QuickBird imagery. The experimental
results on SPPMR using various methods show that adding
the STL module to the TEMCA-Net significantly reduces false
positives and false negatives. In addition, the inclusion of the
horizontal H-ASPP enhances the network’s ability to perceive
details, effectively eliminating the issue of overlapping patterns
of solar panels due to insufficient segmentation accuracy. Fi-
nally, ablation experiments demonstrate that the use of RN,
CBAM, H-ASPP, and STL modules can significantly improve
the performance of TEMCA-Net.

This research enhances the efficiency and accuracy of so-
lar panel extraction, providing key information on the lo-
cation and area of solar panels. This information is cru-
cial for evaluating ecological restoration models, such as
agricultural–photovoltaic complementarity, photovoltaic wet-
lands, and fishery–photovoltaic complementarity. It holds sig-
nificant practical value for ecological model assessment.

In future studies, we intend to extract solar panels in high
groundwater areas of Jiangsu Province using the method pro-
posed in this article. By analyzing the trend of solar panel
installation areas in recent years, we aim to investigate the impact
of solar panels on the agricultural–photovoltaic complementary
restoration mode in these areas.
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