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An Improved Deep Neural Network for Small-Ship
Detection in SAR Imagery

Boyi Hu and Hongxia Miao

Abstract—Ship detection by using remote-sensing images based
on a synthetic aperture radar (SAR) plays an important role
in managing water transportation and marine safety. However,
complex background, a small-ship size, and low focus on small
ships results in difficulties in feature extraction and low detection
accuracy. This study proposes a new small SAR ship-detection net-
work. First, a transformer-based dynamic sparse attention module
is used to improve the focus and extraction of small-ship features.
Second, the feature maps are fused with deep layers, and small
target-friendly detection heads are used to improve the processing
of global information in the network. Third, a more suitable fused
loss function is used for small ships to ensure the multiscale detec-
tion capability. Experimental results on publicly available datasets,
LS-SSDD_v1.0 and AIR-SARShip-1.0, show that the proposed
method effectively improves the detection accuracy of small ships
on SAR images without computational burden boost. Compared
with other methods based on the convolutional neural network,
the proposed method demonstrates the better multiscale detection
performance.

Index Terms—Convolutional neural network (CNN), ship
detection, synthetic aperture radar (SAR), transformer.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) plays an important role
in real-time object detection because of its unique high-

resolution imaging technology and its near-independence from
the factors of weather and time. SAR-image-based ship detection
provides timely warning and facilitates in rescue operations
during emergencies at sea. This is critical for the maintenance
of marine security and the reduction of accidents.

The development of the SAR allowed for the obtaining of
many excellent high-resolution images for research. Studies
have also proposed several SAR-based methods for ship de-
tection. For example, the constant false alarm rate (CFAR) is
a widely used conventional detection method. Liu et al. [1]
proposed the optimization of CFAR for ship detection in po-
larimetric SAR (PolSAR) by using a quadratic programming
approach with good accuracy and robustness. Then, scholars [2]
proposed to simultaneously diagonalize two symmetric matrices
by using a combination of eigenvalue decomposition and matrix
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iteration techniques to further improve the performance of CFAR
for detecting PolSAR ships. However, most of the conventional
detection methods are aimed at first eliminating regions that are
unlikely to contain targets, selecting regions-of-interest (ROIs)
that may contain targets, and then performing subsequent steps
of identification and classification. The selected ROI usually
contains a large amount of cluttered background, causing missed
detections and a high false-alarm rate [3]. These algorithms
are dependent on manual feature annotation and have poor
robustness.

In recent years, with advancements in faster processors, sev-
eral deep-learning-based detection methods have been devel-
oped. Deep-learning methods have made breakthroughs in many
fields owing to their excellent model structure and rich parame-
ters. A convolutional neural network (CNN) is a classical deep
neural network. Guan et al. [4] proposed a new deep learning
model that effectively extracts image features and enhances the
representation of key features by utilizing residual networks and
attention mechanisms after image preprocessing. In addition,
studies have proposed and applied many excellent CNN-based
detectors, capable of maintaining robustness in more complex
scenarios [5], [6], [7], [8], [9] with mostly satisfactory results.
These detectors integrate feature extraction and classification
into a framework that uses existing data for feature extraction
and learning, and finally new data can be detected and identified
based on the learned features. Although the training process
is time-consuming, the trained model can detect new data in
a short time and adapt to large-scale datasets. Furthermore, it
meets the requirements of real-time detection and demonstrates
stronger robustness than conventional detection methods [10].
The detectors can be broadly classified into the following two
types: single- and two-stage detectors. The single-stage de-
tectors comprise the single-shot multibox detector (SSD) [11]
and you only look once (YOLO) series detectors [12], which
display satisfactory performance and a rapid detection speed.
Chen et al. [13] proposed an attention-combined single-stage
detection network for target localization in complex scenarios.
Representative two-stage detectors include faster Region-CNN
(R-CNN) [14] and Cascade R-CNN [15], which have the ad-
vantage of a more accurate prediction of the location of a
bounding box. Zhao et al. [16] proposed an attention perception
pyramid network to enhance the relationship between nonlocal
features and thus improve the multiscale detection capability.
Gao et al. [17] proposed cross-modal domain transfer learning
to improve the generalization of SAR target-recognition models
on real data by performing feature alignment and knowledge
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migration between synthetic and real data. In [18], a dual
prototype structure was proposed and a lightweight adaptive
task attention module was introduced to adaptively enhance
the ability to focus on key features. However, convolutional
attention tends to filter out small target features, making the
detection of small SAR ships less effective.

Other deep learning networks have been proposed. In 2017,
Vaswani et al. [19] proposed a revolutionary network archi-
tecture that uses attention mechanism to connect encoders and
decoders, namely a transformer. The excellent performance of
the transformer has attracted considerable research attention,
and it has been recently introduced into object detection tasks.
Dosovitskiy et al. [20] used image patch sequences directly as
input to the transformer, terming it a vision transformer (ViT).
The self-attention mechanism enables the transformer module to
better capture global information. Liu et al. [21] proposed a new
ViT, called swin transformer (or SwTR in this article) that can be
used as a backbone network in vision tasks. The SwTR is a break-
through that uses a form of shifted window to calculate the atten-
tion between pixels and preserves the interaction between neigh-
boring windows of ViT, allowing the transformer to better learn
global information and improve multiscale feature detection.
Compared to ViT, the nonpower exponent in SwTR makes it sig-
nificantly less complex to compute [21]. The corresponding sam-
pling process uses different sampling multipliers, significantly
improving its detection performance in small target datasets
than that in Vit. Some scholars have introduced SwTR into
deep learning networks and achieved good experimental results,
further verifying the effectiveness of its structure [22], [23].

In an image, small targets usually occupy fewer pixels. In
addition, distinguishing the size of a target solely based on its
pixel size is not entirely reasonable. In detection tasks, the size of
targets is relative and should not be distinguished simply by the
size of the pixel value but also in relation to the resolution of the
image in which it is located. In the detection network, “small”
targets should refer to those that occupy a small proportion of
image pixels, resulting in insufficient target information and
difficultly in object detection owing to larger amount of inter-
ference information than target information. The term “small
target” does not simply refer to a target with “few pixels.” In
addition, in a multiscale environment, a “small target” can be
a target with relatively fewer pixels. Therefore, in this article,
the term “small ship” refers to a ship that is “relatively small.”
Owing to the special SAR imaging mechanism, the smaller size
of a ship implies weaker scattering intensity, and the imaged
target not only carries less characteristic information but is also
easily disturbed by background clutter. Therefore, small-ship
detection remains a major issue in SAR-based image detection.
Jiao et al. [24] proposed a multiscale dense connection based on
a Faster R-CNN, which can solve the problem of the detection
of small ships. Yang et al. [25] proposed a detection network
with an increased receptive field and the introduction of a coor-
dinate attention module to enhance the multiscale detection of
large-scale images. In general, these algorithms have two main
problems in detecting small SAR ships. First, the detection layer
with a large receptive field tends to ignore the features of small
ships when extracting feature information. Second, when the

background is more complex, the clutter further interferes with
the detection of small ships, resulting in a high rate of missed
or false alarms. Several improved methods have been proposed
to alleviate these problems. For example, Li et al. [26] proposed
a YOLOSR-IST network by adding SwTR blocks as detection
heads to YOLO, thus reducing the false-detection rate and false
alarms. Cui et al. [27] proposed a spatial shuffle-group enhanced
attention module based on CenterNet, which reduces the missed
detection of small ships. Gong et al. [28] proposed an improved
feature pyramid and sample enhancement to effectively extract
image features and increased the number of training samples to
improve the detection performance of small ships. Sun et al. [29]
combined feature fusion and cross-layer connection techniques
to improve the response speed and localization accuracy of
small targets by effectively integrating image features and es-
tablishing cross-layer connections. Zhou et al. [30] proposed
the sidelobe-aware mechanism to reduce the effects of strong
scattering points, while improving the neck structure and loss
function to enhance the accuracy of small-ship detection.

To further reduce the false alarms and missing targets, this
study proposes an improved network, which includes a dynamic
sparse attention module, an improved feature extraction neck
structure, and a fused loss function. Specifically, we introduce a
transformer-based attention module at the end of the backbone,
and it only contains GPU-friendly matrix multiplication. In
addition, the module fully exploits the feature information of
small ships without a large amount of computational load. Then,
the shallow feature map is fused with the deeper features, thus
enhancing the global feature information and reducing feature
loss from convolution and downsampling. The detection head
after multiple downsamplings easily ignores the small target
features. To alleviate this problem, we introduce the SwTR into
the detection head. Not only does SwTR not add significantly
to network complexity but it also improves the network’s ability
to process background images. Third, the normalized Gaussian
Wasserstein distance (NWD) [31] loss is fused with the inter-
section over union (IoU), thus reducing the sensitivity of IoU
and improving the network’s ability to regress on small ships.

In brief, the main contributions of this article are summarized
as follows.

1) To allow the model to better focus on the target ROI,
a transformer-based dynamic sparse attention module is
added between the backbone and neck of the model.

2) To enhance the global information of the target, improve
the detection capability of small ships, and adapt the model
to multiscale detection tasks, characteristic maps of the
superficial layers of the backbone are introduced into the
deeper layers of the neck, and SwTR is introduced in
the third detection head.

3) To better regress small ships and improve the multiscale
detection ability of the model, NWD is introduced into
the loss function, and a new calculation formula of the
loss function is obtained.

The rest of this article is organized as follows. Section II
specifies the proposed methodology. Section III validates and
analyzes the proposed method by proving a comparison of the
experimental results. Finally, Section IV concludes this article.
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Fig. 1. Overall structure of the proposed network. BRA represents the BRA module, BSTFF represents the improved neck, and represents the fused loss function.

II. METHODOLOGY

The network structure of the proposed model is illustrated in
Fig. 1. First, a dynamic sparse attention module, bilevel routing
attention (BRA), is added at the end of the backbone. Then, based
on the feature pyramid network (FPN) and path aggregation
network (PAN) structures, the C4 feature layer is introduced
into the neck and the third detection head is replaced with the
SwTR. In addition, a new fused loss function is introduced in
the final regression stage.

A. Dynamic Sparse Attention Mechanism

1) Attention Mechanism in a Transformer: The attention
mechanism can effectively capture long-range dependencies,
and significantly improve model performance. Convolution is
a local operator, whereas attention focuses on a global feel [19].
However, conventional attention tends to ignore small target
features, while the self-attention mechanism makes transformer
attention friendlier to small targets. The attention function trans-
forms each query into a weighted sum of values, and the calcula-
tion of the weights is termed as a normalized dot product between
the query and corresponding key.

Taking queries Q ∈ RNq×C , keys K ∈ RNk×C , and values
V ∈ RNv×C as input, the output of the attention function is
calculated as

Attention(Q,K,V) = softmax

(
QKT

√
C

)
V (1)

where C is the number of channels,
√
C is a scalar factor

that avoids gradient vanishing [19], softmax is a normalized
exponential function, the height and width of the feature map
are H and W , respectively, and Nk and Nv represent N of keys
and values, respectively, and N = H ×W .

Moreover, multiheaded self-attention (MHSA) was used in
the transformer. Self-attention implies that the values of Q, K,

and V demonstrate a linear projection from X ∈ RN×C . Here,
X is a spatially flattened feature map in ViT. The multiple head
infers to the fact that the output will be divided into h heads,
and the projection weights in different blocks are independent.
Formally

MHSA(X) = concat(head0,head1, . . .,headh)W
◦ (2)

headi = Attention(XWq
i ,XWk

i ,XWv
i ) (3)

where i = 0, 1, 2, . . ., h, headi ∈ RN×C
h is the output of the

ith attention head, concat is a function that concatenates feature
maps, and Wq

i ,W
k
i ,W

v
i ∈ RC×C

h are the corresponding input
projection weights. All the heads are combined by a linear
transformation with a weight matrix W◦ ∈ RC×C .

However, the MHSA requires a large computational burden.
The global view of perception inevitably comes with a corre-
sponding cost, i.e., the calculation of the affinity of pairs of
tokens at all spatial locations brings unavoidable complex com-
putations and burden computational resources. Thus, to alleviate
this problem, many researchers have tried to reduce the atten-
tional operations by restricting them within local windows, axial
stripes, or dilated windows [32], [33], [34]. However, different
semantic regions focus on significantly different key-value pairs,
and forcing all queries to focus on the same set of tokens is
suboptimal. In addition, as bilevel routing can be used to achieve
more flexible computational resource allocation, BRA has been
proposed earlier [35].

2) Bilevel Routing Attention: As shown from (2), in the
case of h queries, each query focuses on h key-value pairs.
Such a structure inevitably increases computational complexity
and introduces serious scalability issues in terms of the spatial
resolution of inputs.

In this study, we introduce a new sparse attention module,
namely BRA, the structure of which is shown in Fig. 2. This
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Fig. 2. Overall structure of BRA.

module causes each query to focus on a small set of seman-
tically most relevant key-value pairs. In this way, attention
becomes a dynamic and query-aware sparsity mechanism. To
efficiently locate valuable key-value pairs, an area-to-area rout-
ing method is used. The core of this approach is to filter out
irrelevant key-value pairs at the coarse-grained level to facilitate
the application of attention mechanisms in subsequent regions.
For convenience, the single input and single header cases are
discussed. Given a two-dimensional (2-D) input feature map
X ∈ RH×W×C , it is first divided into S × S nonoverlapping
regions, each containing HW/S2 feature vectors, and X is

reshaped into Xr ∈ RS2×HW
S2 ×C . Then, a linear projection is

used to derive Q,K,V ∈ RS2×HW
S2 ×C

Q = XrWq,K = XrWk,V = XrWv. (4)

In addition, a region-level affinity graph is constructed and
pruned, with each node retaining only the first k connections, so
that attending regions can be formed. Specifically, the required
Qr,Kr ∈ RS2×C must be obtained by applying the average of
each region. Then, Qr and Kr matrices are multiplied to obtain
the adjacency matrix of the region-to-region affinity graph,Ar ∈
RS2×S2

Ar = Qr(Kr)T . (5)

Then, retain only the top-k links of each region for pruning the
affinity graph. Specifically, a routing index matrix, Ir ∈ NS2×k

is derived as

Ir = topkIndex(Ar) (6)

where topkIndex represents the top-k links.
Then, to apply token-to-token attention. With a region-to-

region routing index, Ir, a fine-grained level of attention can be
performed. Modern GPUs can rapidly load dozens of contiguous
bytes simultaneously. The process of implementing a focus
on these routing regions, which are expected to be scattered
throughout the feature graph, is not very complicated. As such,
the tensor of key values is collected as follows:

Kg = gather(K, Ir),Vg = gather(V, Ir) (7)

where Kg,Vg ∈ RS2× kHW
S2 ×C denotes the key-value pair ten-

sor and gather is a function that collects values along the axis
specified by dim. Attention functions can be applied to these

key-value pairs as follows:

OBRA = Attention(Q,Kg,Vg) + LCE(V) (8)

where LCE denotes a local context enhancement term [36].
BRA involves only hardware-friendly dense matrix multi-

plication when collecting key-value tokens, enabling a good
performance, computational tradeoff by focusing on important
key-value pairs in each query in a content-aware manner.

B. Bidirectional and SwTR Feature Fusion Neck

The ship size differs in SAR images. Especially, in high-
resolution SAR images, networks cannot fully extract the ship
features of different sizes, and thus, the features of small ships
are easily lost in this process. Insufficient feature extraction of
small targets results in information loss, which adversely affects
the subsequent detection.

Based on the Bi-FPN structure [37], fully utilizing a feature
map for multiscale feature fusion can alleviate the information
loss in the backbone. As such, the feature map obtained by the
detection head has more useful features and stronger semantic
information. In addition, to avoid the heavy computational bur-
den caused by the increase in network complexity, we simply
performed a deep fusion for the C4 layer information, as shown
in Fig. 4. The neck is based on the backbone as the input features
and FPN-PAN as the structure. To enhance the target feature
information and fully retain the small-ship features, we concat
the C4 layer with the intermediate detection head to fuse the
detection with the multiscale semantic information.

The end of the network comprised the detection head de-
veloped by gathering all the features of the network. Next,
regression prediction is performed using the detection heads
based on the predefined size of the bounding box. However,
when detecting small targets, the detection heads can easily
ignore some feature relationships between small targets and the
background after multiple downsampling; this, is not conducive
to the network’s perception of all images. In some scenarios,
where the background is highly variable, this situation decreases
the robustness and increases the false detection rate of the model.
To improve the network’s understanding of the whole image
and allow it to better process images, we introduce SwTR.
A SwTR block is a basic computational unit composed of a
shift-window-based multihead self-attention (MSA) module,
as shown in Fig. 3. As shown, the window MSA (W-MSA)
and shifted W-MSA denote self-attention, based on division
configurations of regular and shift windows, respectively. In
addition, the entire structure contains multilayer perceptron
(MLP) modules and is preceded by a layer-norm layer for both
MSA and MLP modules. Each module is followed by a residual
connection. Two consecutive submodules form an SwTR block.

The blind introduction of SwTR could bring about a large
computational overhead, and the final detection results may
not be satisfactory. Because of the characteristics of the overall
network structure, the third detection head loses the most amount
of feature information after multiple downsampling. Therefore,
as shown in Fig. 4, we use the SwTR module instead of the
third C3 head with the C3-SwTR module. In summary, the new
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Fig. 3. Structure diagram of the SwTR block.

Fig. 4. Structure diagram of the proposed BSTFF.

neck structure first considers the rich semantic information in the
backbone to enable the detection head to fully perform feature
fusion. Then, the third detection head is replaced to improve
the ability to sense global features for multiscale information
detection.

C. Complete NWD Loss

1) IoU: The target detection process terminates with the
regression of the prediction frame, and the metrics used by many
advanced detectors are based on IoU, which is an important
evaluation metric for existing loss functions. In simple terms,
IoU is used to measure the degree of overlap between the
detection and target boxes

IoU(Ba, Bb) =
|Ba ∩Bb|
|Ba ∪Bb| (9)

where Ba and Bb represent the prediction and real boxes,
respectively. The loss function is defined as

LIoU = 1− IoU(Ba, Bb). (10)

However, the IoU demonstrates a satisfactory performance
only when the two boxes overlap. For some extreme cases, dis-
tance IoU (DIoU) [38] was proposed; it adds a penalty term that
represents the distance between the centroids of the prediction
and true boxes. The loss function is defined as

LDIoU = 1− IoU(Ba, Bb) +
ρ2(d, dgt)

c2
(11)

where d and dgt denote the centroids of the prediction and true
boxes, respectively, ρ(·) is the Euclidean distance, and c is the
diagonal length of the smallest box that contains both boxes.

Ships of different aspect ratios (width-to-height ratio) could
significantly impact the loss function. The complete IoU
(CIoU) [38] was proposed to add the factor of the aspect ratio
to the DIoU, and the loss function is denoted as

LCIoU = 1− IoU(Ba, Bb) +
ρ2(d, dgt)

c2
+ αυ (12)

where α is the loss tradeoff parameter and υ measures the
similarity of the aspect ratio

α =
υ

(1− IoU(Ba, Bb)) + v
(13)

υ =
4

π2

(
arctan

wgt

hgt
− arctan

w

h

)2

(14)

where w and h are the width and height of the bounding box,
respectively, and wgt and hgt are the width and height of the
ground-truth (GT) box, respectively.

The IoU is sensitive to the position deviation of the target [39].
Especially, for small targets, a deviation in pixel position, even a
small one, can result in a dramatic deterioration in the detection
performance for anchor-based detectors. Fig. 5 shows that the
sensitivity of IoU to targets of different scales varies greatly.
This difference could be attributed to the fact that the location
of the bounding box can only vary discretely. For small targets
(8 × 8 pixels), a small deviation in position causes a sharp drop
in the IoU metric (from 0.62 to 0.08), which further results in an
inaccurate label assignment strategy. However, for normal-sized
targets (40 × 40 pixels), changes in the IoU are not particularly
noticeable at the same deviation and will not fluctuate much
for the final detection results. The sensitivity of IoU on small
targets causes positional deviations that flip the anchor labels,
complicating network convergence.

2) NWD: Dynamic assignment strategies, such as adaptive
training sample selection, can form IoU thresholds to assign
pos/neg labels based on the statistical characteristics of the
target. However, the sensitivity of IoU is not conducive to this
process, making it difficult for the detector to possess high-
quality pos/neg samples for feature learning. To alleviate this
problem, a new metric, NWD [31] is proposed to replace the
IoU with the Wasserstein distance, and the similarity of the
bounding box is represented by this distance. The NWD does
not affect the measurement of the distribution similarity for a
small or no overlap. In addition, NWD is independent of the
scale of the target and has an advantage over IoU in terms of
the measurement of small targets. Owing to its computational
independence, NWD can be used not only for anchor-based
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Fig. 5. IoU sensitivity for small and normal-sized ships. Each grid represents one pixel, box B1 represents the real box, and B2 and B3 represent the predicted
boxes deviated by 1 and 4 pixels, respectively. (a) Small ships. (b) Normal ships.

single-stage detectors, but also as a good alternative to IoU in
multistage detectors.

The Wasserstein distance is calculated using the optimal
transport theory, in which for two 2-D Gaussian distributions,
μ1 = N (m1,Σ1) and μ2 = N (m2,Σ2), and the second-order
Wasserstein distance between μ1 and μ2 is defined as

W 2
2 (μ1, μ2) = ‖m1 −m2‖22

+Tr

(
Σ1 +Σ2 − 2

(
Σ

1
2
2 Σ1Σ

1
2
2

) 1
2

)
. (15)

This can be simplified as

W 2
2 (μ1, μ2) = ‖m1 −m2‖22 +

∥∥∥Σ 1
2
1 −Σ

1
2
2

∥∥∥2
F

(16)

where ‖ · ‖F is the Frobenius norm.
For Gaussian distributions Na and Nb, the models are di-

vided from bounding boxes, Ba = (cxa, cya, wa, ha) and Bb =
(cxb, cyb, wb, hb), respectively. Equation (16) can be further
simplified as

W 2
2 (Na,Nb)

=

∥∥∥∥∥
([

cxa, cya,
wa

2
,
ha

2

]T
,

[
cxb, cyb,

wb

2
,
hb

2

]T)∥∥∥∥∥
2

2

.

(17)

However, W 2
2 (Na,Nb) is a distance metric that must be

normalized using an exponential form to obtain a new metric,
namely NWD

NWD (Na,Nb) = exp

(
−
√
W 2

2 (Na,Nb)

D

)
(18)

where D is a constant that is closely related to the dataset. Based
on the results obtained from several experiments, D can be set
to the average absolute size of the dataset to obtain the best
performance. In addition, D is robust within a certain range.

NWD performs well in detecting small targets, such as scale-
invariant insensitivity to position deviation, and can measure the
similarity between bounding boxes when they do not overlap. In

addition, NWD can be integrated into any anchor-based detector
to replace the IoU.

IoU-Loss is not suitable for small targets detectors, because
it cannot provide gradients for the optimized network when
there is no overlap between the predicted bounding box, Bp,
and the GT box, Bgt, i.e., (|Bp ∩Bgt| = 0) or when box Bp

completely contains box Bgt or vice versa, i.e., (|Bp ∩Bgt| =
Bp or Bgt) [31]. Both of these are very common scenarios in
small target detection. Although CIoU and DIoU can be used to
manage these two cases, their essence is still based on IoU. CIoU
and DIoU still encounter the problem of positional deviation
sensitivity. To deal with this problem, a new NWD loss function
is proposed

LNWD = 1− NWD (Np,Ngt) (19)

where Np is the Gaussian distribution model of box Bp and
Ngt is the model of box Bgt. The NWD-based loss function
can still provide gradients normally, while avoiding gradient
vanishing even in the cases of |Bp ∩Bgt| = 0 and |Bp ∩Bgt| =
Bp or Bgt.

To improve the performance of small-ship detection while
retaining the robustness of normal-scale ship detection, the
NWD and IoU are combined in some ratio to form a new loss
function [40], which fully preserves the multiscale detection
capability. The experimental results show an improvement in
the detector performance after the addition of the NWD.

3) CIoU and NWD Fused Loss: For the CIoU loss function
in (12), the aspect ratio is ambiguous when the detection target
is relatively small; this may limit the loss function and affect
the regression. To fully improve the detection of small ships, we
introduce a fusion-improved loss function (CNWD) that fuses
NWD and CIoU in some ratio, and it is calculated as follows:

LCNWD = β · LCIoU + (1− β) · LNWD (20)

where β ∈ (0, 1) is a scaling factor that can be flexibly adjusted
to fully utilize the fusion loss function based on the specifics
of the target size of ships in the dataset. This loss function is
applicable to various detection networks.

The loss function theory is applied to the LS-SSDD_v1.0
and AIR-SARShip-1.0 datasets. This loss fully integrates the
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TABLE I
DETAILS OF DATASET

Fig. 6. Sample images from different datasets. (a) LS-SSDD_v1.0. (b) AIR-
SARShip-1.0.

advantages of NWD, while retaining the IoU loss function for
better detection of ships of different scales.

III. EXPERIMENTS

The proposed method is validated using the LS-SSDD_v1.0
and AIR-SARShip-1.0 datasets. This section first provides a
brief description of the datasets used for the experiments, fol-
lowed by a description of the experimental environment. Then,
the evaluation metrics of the experiments are introduced, fol-
lowed by ablation and comparison experiments to fully analyze
and validate the proposed method.

A. Datasets and Environment Settings

1) Datasets: Information on the two datasets used is shown
in Table I. As shown, the LS-SSDD_v1.0 [41] dataset is a large-
scene small-ship dataset taken by Sentinel-1. It contains 15 large,
24 000 × 16 000 pixel images of scenes with a resolution of
5 m × 20 m. These images are subdivided into 9000 subimages
of size 800 × 800 pixels, containing only one category, ships.
The 9000 images are further divided into a training set and a
validation set, containing 6000 and 3000 images, respectively.
The small size of the ship targets complicates the detection tasks.

The AIR-SARShip-1.0 [42] dataset is obtained from the
GaoFen-3 satellite, and it comprises 31 high-pixel SAR ship
images with a resolution from 1 to 3 m. Spotlight and streak
maps are used as the imaging modes. The training and test sets
comprise 21 and 10 images, respectively. The total number of
ship targets is 461. To train the model better, we augmented the
data with random flipping, panning, and cropping. Finally, we
obtain 1281 and 310 training and test images, respectively. The
example images of these two datasets are shown in Fig. 6.

TABLE II
ENVIRONMENT CONFIGURATION

2) Settings: For a fair comparison, we conducted experi-
ments on the same machine, and all models did not use pre-
trained weights. Pytorch is used the framework for the whole
experiment, and the server configuration is Intel(R) Xeon(R)
Silver 4216 CPU and NVIDIA RTX 4000 GPU, running on
torch-1.10.1, CUDA-11.3, and CUDNN-8.2.1. The hardware
information is given in Table II. The model uses stochastic
gradient descent for training, with a learning rate of 0.001,
momentum of 0.937, and decay rate of 5e−4. The anchors are
automatically generated using K-means clustering. We set the
batch-size to 16 and epochs to 200. The rest of the parameters
are kept to the default values.

B. Evaluation Metrics

The performance evaluation metrics of the model are pre-
cision, recall, and average precision. Precision refers to the
percentage of ships detected correctly to all detected ships, and
it is defined as

P =
TP

TP + FP
(21)

where true positives (TP) represent the number of correct detec-
tions by the model and false positives (FP) represent the number
of incorrect detections (also called false alarms).

Recall is the percentage of correctly detected ships to GT and
is denoted as

R =
TP

TP + FN
(22)

where false negatives (FN) represent the number of missed
detections.

Precision–recall (PR) is the curve formed by precision and
recall, and average precision (AP) is the area formed by this
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TABLE III
RESULTS FOR LS-SSDD_V1.0 DATASET

curve, which is defined as

AP =

∫ 1

0

P(R)dR. (23)

In addition, IoU represents the ratio of the intersection and
concatenation of the predicted and real boxes, and it is calculated
as

IoU =
S∩
S∪

(24)

where S∩ represents the area where the two boxes overlap and
S∪ represents the area of union.

In this study, the evaluation metrics used are mAP based on
not only PASCAL VOC but also on COCO evaluation metrics
to better assess the detection performance of ships at differ-
ent scales. In both datasets, areas smaller than 322 pixels are
small ships, areas between 322 and 962 pixels are medium-pixel
ships, and areas larger than 962 pixels are large ships. Their
corresponding evaluation metrics are represented as APs, APm,
and APl. The value of AP differs for different IoU scores. In
addition, AP50 in the COCO metrics represents the AP value
when the IoU = 0.5, while AP50:95 represents the average value
of AP for IoU = 0.5–0.95. The value of AP50:95 has more
stringent evaluation criteria. In addition, AR100 is the recall
when the maximum target detection frame is 100. Furthermore,
FPS and parameters are used to evaluate the additional detection
speed and model computational complexity resulting from the
proposed method.

C. Ablation Experiment

1) Efficacy Analysis of BRA: The impact of the BRA module
is first analyzed, and YOLOV5s is used for the baseline model.
The results of the ablation experiments on the LS-SSDD_v1.0
dataset are presented in Table III. As shown, the inclusion
of the BRA module improves the detection performance. The
mAP, AP50, and AP50:95 are improved by 0.7%, 0.7%, and
0.6%, respectively. Moreover, the number of model parameters
is only improved by 1 M and the FPS is only decreased by 1.22,
indicating that the BRA improves the accuracy without imposing
too much computational burden on the model. As mentioned
earlier, the blind introduction of transformer-based self-attention
can significantly increase the computational burden. However,
the BRA module considers both model detection and inference,
and it is a lightweight module. This is further conformed by
the results in Table IV. On the AIR-SARShip-1.0 dataset, the
BRA module improves the model performance. With a 0.7%

TABLE IV
RESULTS FOR AIR-SARSHIP-1.0 DATASET

Fig. 7. Visual detection results of BRA. The yellow circles represent the false
alarms, while the red and blue boxes represent the detection targets and missing
targets, respectively. (a) Inshore detection results. (b) Offshore detection results.

increase in mAP and no significant decrease in FPS, the results
demonstrate the low impact on inference speed. To fully validate
the effectiveness of the BRA module, the detection results are
visualized in Figs. 8 and 9. The visualized detection results
show that the attention of the baseline is not focused and the
features are not obvious. Fig. 8 shows the heat maps of the
detection process. The heat-map results show that the BRA
module makes the scattered attention more focused on ship
targets. Fig. 9 illustrates feature maps of the detection process.
The feature-map results show that the BRA module improves
the key features of ships, and this is conducive to further feature
extraction and detection of small ships by the network. In ad-
dition, Fig. 7 visually illustrates the effect of the BRA module
compared with that of the baseline. Fig. 13 shows the results of
the ablation experiment, where row 1 is the GT and rows 2–5
represent the results after adding the modules sequentially. The
green, red, blue, and yellow boxes represent the real ship target,
detection results of the different scenarios, missed targets, and
false alarms, respectively. Fig. 7 and rows 2 and 3 of Fig. 13 show
that the baseline has more omissions and false alarms, and this is
especially obvious in small targets; the BRA module effectively
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Fig. 8. Some visual heat maps of BRA. (a) GT. (b) Heat maps without BRA
(Baseline). (c) Heat maps with BRA.

Fig. 9. Some visual feature maps of BRA. (a) GT. (b) Feature maps without
BRA (Baseline). (c) Feature maps with BRA.

reduces these problems. The final detection of the ships is more
accurate, further proving the effectiveness of this module.

2) Efficacy Analysis of BSTFF: Further experiments are
conducted to analyze efficacy of BSTFF. As shown in Table III,
the adjustments to the neck structure resulted in a steady

Fig. 10. Visual detection results of BSTFF. The yellow circles represent the
false alarms, while the red and blue boxes represent the detection targets and
missing targets, respectively. (a) Inshore detection results. (b) Offshore detection
results.

improvement in detection performance. Compared to BRA, the
improved neck structure resulted in a 1.2% increase in the mAP,
a 1.2% increase in the AP50, a 0.2 M increase in the parameters,
and a 3.12 decrease in the FPS. These results show that the fusion
of the shallow and deep feature maps significantly improve the
performance at a relatively small computational cost, while the
addition of the SwTR module does not significantly affect
the model inference. That is, the proposed neck balances the
accuracy with the detection speed. Fig. 10 visually illustrates
the effect of the BSTFF compared with that of the FPN-PAN. The
detection results in rows 3 and 4 of Fig. 13 also show that the deep
feature fusion as well as the SwTR module can effectively reduce
the problem of high false-alarm rate, especially reducing the
false detection of small ships. This has also been illustrated by
the results on the AIR-SARShip-1.0 dataset, where the model’s
mAP is improved by 2.7% and AP50 by 1.6%, as shown in
Table IV, with only a slight decrease in FPS. Fig. 11 shows the PR
curves of the proposed network on the two datasets. As shown,
the area enclosed by the curves and axes increases with each
additional scheme, and the envelope area reaches its maximum
after the superposition of the three schemes. This also represents
the best detection performance of the improved network.

3) Efficacy Analysis of CNWD: In addition, the CNWD loss
function further improves the network performance without
additional parameters. As shown in Table III, mAP improves
by 0.8% and AP50 improves by 0.6%, with FPS displaying a
significant improvement. Although AP50:95 slightly decreases,
it does not affect the overall detection. These results show that
the IoU has larger parameters when regressing and is not friendly
to small targets, while the CNWD performed lesser calculations
and enhances the regression on small ships. In short, the CNWD
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TABLE V
COMPARISON WITH OTHER METHODS ON LS-SSDD_V1.0 DATASET

Fig. 11. PR curves of ablation experiments on different datasets. (a) LS-
SSDD_v1.0. (b) AIR-SARShip-1.0.

loss function enhances the detection accuracy of the model by
reducing the inference time, while only slightly increasing the
parameters. To further verify the effectiveness of CNWD, Fig. 12
shows the visual detection results of CNWD compared with
those of CIoU. The detection results in rows 4 and 5 of Fig. 13
illustrate that the CNWD further reduces the missed detection
and improves the regression of small ships. Table IV shows that

Fig. 12. Visual detection results of CNWD. The yellow circles represent the
false alarms, while the red and blue boxes represent the detection targets and
missing targets, respectively. (a) Inshore detection results. (b) Offshore detection
results.

the proposed CNWD also improves the mAP, AP50, and AP50:95.
The FPS slightly decreases for the baseline because most of the
share of IoU is retained in the CNWD loss function for detection
on the AIR-SARShip-1.0 dataset, with a lesser share of NWD.
This also illustrates that a different NWD ratio in the CNWD
affects the model inference time, further validating that the IoU is
more computationally intensive. The overall improvement of the
network enhances the detection of small ships without affecting
the original ship detection, displays better multiscale detection
capability, and reduces missed and false detections. Finally,
the proposed network with three improvements demonstrates
78.3% mAP for the LS-SSDD_v1.0 dataset and 67.3% for the
AIR-SARShip-1.0 dataset. Fig. 11 shows the PR curves of
the proposed network on the two datasets. As shown, the area
enclosed by the curves and axes increases with each additional
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Fig. 13. Comparison of ablation experiment results. The yellow circles represent the false alarms, while the red and blue boxes represent the detection targets
and missing targets, respectively. (a) GT. (b) Baseline. (c) Baseline + BRA. (d) Baseline + BRA + BSTFF. (e) Ours (Baseline + BRA + BSTFF + CNWD).
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TABLE VI
COMPARISON WITH OTHER METHODS ON AIR-SARSHIP-1.0 DATASET

scheme, and the envelope area reaches the maximum after the
superposition of the three schemes. This also represents the best
detection performance of the improved network.

D. Comparison With Other Methods

We compare the results obtained using the proposed scheme
with some other state-of-the-art object-detection methods on
both datasets, as shown in Tables V and VI. Table V shows
that the proposed method achieves the highest mAP of 78.3%,
which is 5.39%, 4.41%, and 3.29% higher than those of YOLOX,
PPYOLOE, and SSD, respectively. AP50, AP50:95, APm, AR100,
and FPS reach 77.5%, 28.9%, 37.3%, 41.7%, and 47.85, respec-
tively. The values of APs of 27.9% indicate the highest accuracy
in small-ship detection. Despite the smallest parameters, PPY-
OLOE does not perform well in accuracy and inference speed.
The proposed method improves the accuracy of smaller ships in
the detection task and only slightly influences the detection of
normal-size ships. In addition, the parameters are smaller than
those used in the other methods except for those in PPYOLOE,
which is approximately 1/3 that of SSD, and 1/4 that of TOOD,
GFLv2, and FCOS, and much smaller than those of methods,
such as Cascade-RCNN, Faster-RCNN, and CenterNet. In terms
of inference speed, the method far exceeds the two-stage detec-
tors and reaches the highest values in many one-stage detectors,
such as SSD, TOOD, and YOLOX. The results in Table VI show
that the proposed method achieved a mAP of 67.3%, and it AP50,
AP50:95, and APm are the highest levels among all the compared
methods, reaching 64.1%, 27.1%, and 30.2%, respectively. Al-
though PPYOLOE has higher APl and AR100 values, all other
AP values are lower than those of the proposed method, and
the FPS is also lower. Despite YOLOX achieving the highest
FPS, the fastest inference speed, and smaller parameters, the
performances of the remaining metrics are not satisfactory. That
is, YOLOX loses on model accuracy. The results show that the
two-stage detectors perform relatively poorly in the multiscale
detection task, in terms of not only the huge parameters and
slow inference speed but also lower accuracy. Furthermore, the
comparison of the PR curves of the different methods in Fig. 14
shows that the proposed method has the largest envelope area,
verifying the robustness. Therefore, the proposed method can be

Fig. 14. PR curves for different methods on different datasets. (a) LS-
SSDD_v1.0. (b) AIR-SARShip-1.0.

concluded to consider the practical needs and improves the target
detection accuracy of smaller ships, while fully balancing the
detection speed and model parameters. The proposed network
has good robustness, comprehensive detection performance, and
better metrics than the other methods.

E. Experiment on Large Scene SAR Image

To verify the robustness of the proposed method on large
scene SAR images, we select a large scene image from
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Fig. 15. Detection results of large SAR images on LS-SSDD_v1.0 (24 000 × 16 000 pixels). The yellow circles represent the false alarms, while the red and blue
boxes represent the detection targets and missing targets, respectively.

the LS-SSDD_v1.0 dataset with an uncropped resolution of
24 000 × 16 000, and the inference results are shown in Fig. 15.
As shown, the proposed method performs well, with the correct
detection of most of the ship targets. Fig. 15 shows the detection
results of the in-shore and off-shore scenarios. Few missing
targets and false alarms prove the effectiveness and robustness
of the proposed method.

IV. DISCUSSION

The proposed method demonstrates three improvements with
satisfactory detection results. To validate the effectiveness of the
proposed method, several visualization results have been shown,
strongly demonstrating the performance improvement brought
by the different modules. On the one hand, the overall ablation
experimental results in Fig. 13 show the reduced missing targets
and false alarms with each additional improvement. The BRA
module improves the small target attention, then the BSTFF
enables the network to incorporate global information for feature
extraction, and finally the CNWD reduces the small target sen-
sitivity problem in regression computation. As shown in Tables
V and VI, the proposed method displays a better performance
than those of other methods. On the other hand, the in-shore
background is more complex, with a considerable amount of
interference information than that in the off-shore scenario.
Especially, when the ship target intersects with the shore, the ship
target cannot be detected correctly. The large scene detection

results in Fig. 15 also show that the detection accuracy of the
in-shore ship targets is lower than that of the off-shore scenario.
Therefore, the missing targets and false alarms for small-ship
detection in in-shore scenarios must be further reduced.

V. CONCLUSION

This study proposed a small-ship detection network for SAR
images with dynamic sparse attention, improved neck structure,
and fused loss function. The introduced BRA attention is based
on the unique attention mechanism of the transformer, which
deeply mines the feature information of small ships and effec-
tively enhances the extraction of small-ship features. In addition,
the improved neck structure can fuse contextual information.
Moreover, the improvement of the detection head allows the
network to be more approachable to detect small ships. Finally,
the loss function that fuses CIoU and NWD demonstrates better
robustness in small-ship regression and allows the network to
better detect multiscale ships. The experimental results show
that the proposed network improves the detection accuracy of
small ships in SAR images and has better robustness of reducing
missing and false detection. In future research, the detection
accuracy of small ships in in-shore situations will be further im-
proved. Moreover, further research should be to reduce detection
speed and model size of the network for better performance and
applicability to other platforms.
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