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Parallel Space and Channel Attention for Stronger
Remote Sensing Object Detection

Yuhui Zhao , Ruifeng Yang , Chenxia Guo , and Xiaole Chen

Abstract—The object detection of natural images tends to obtain
advanced semantic information through multiple convolutions and
pooling, ignoring the detailed information in the feature map.
Pixel-level images may be the target we are looking for in remote
sensing images. This article designs a new attention mechanism that
can fully utilize the spatial and channel information of the image,
strengthen the region of interest, and try to protect the image’s
original information. Find the most influential location information
in the spatial dimension and the most influential feature map in the
channel dimension. Strengthen important channels and positions
in the feature map to make vital information stronger and weak
information not lost. Combine the designed attention mechanism
with existing modules to enhance YOLO-V7 detection capability.
We have merged two publicly available remote sensing image
datasets, increasing object types, and richer appearance features,
which can better detect model performance. Experimental results
on an improved dataset have shown that the enhanced model in this
article can improve the detection ability of small- and medium-sized
targets in complex backgrounds, with a 1% increase in mean aver-
age precision (mAP) value and a maximum improvement of 8.2%
for single-class targets. Medium targets such as airports, dams, and
soccer ball fields also increase by about 5%. We also conducted
experiments on the DOTA1.0 dataset to demonstrate that mAP
improved by 1.1%, with 13 target categories having higher APs.
The improved model reduces computational complexity by 2.7%,
which is very user-friendly for embedded devices.

Index Terms—Attention mechanism, convolutional neural
networks (CNNs), object detection, optical remote sensing images.

I. INTRODUCTION

IN RECENT years, the rapid development of remote sensing
technology has dramatically improved the quality and quan-

tity of remote sensing images. Representative landmarks such
as airports, ports, and stations and small objects such as planes,
ships, and cars can all be captured, making remote sensing
image object detection increasingly widely used in military,
commercial, agricultural, livelihood, and other fields. Compared
with natural images, object detection in remote sensing images
still faces difficulties such as scale diversity, particular view-
ing angles, multiple small targets, multidirectional shooting,
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Fig. 1. Airplanes and ships captured by different satellites.

high background complexity, and rich background information.
Changes in weather, scale, perspective, mutual occlusion of
buildings, and similarity between objects and backgrounds can
all affect the effectiveness of detection performance.

High-quality datasets and efficient network structures are
crucial to obtaining good detection results, which are beneficial
for model training and validation based on data-driven deep
learning. The images of publicly available datasets come from
various sensors with different temporal, spatial, spectral, and po-
larization characteristics. The same object exhibits multiple ap-
pearance characteristics. Imaging fusion technology can provide
more information but is more complex and requires specialized
datasets. We used a larger dataset to train the network model,
improving remote sensing objects’ detection ability. The widely
used publicly available datasets include DOTA1.0 [1], DIOR
[2], NWPU VHR-10 [3], LEVIR [4], and VEDAI [5]. As shown
in Fig. 1, these images come from different satellites and exhibit
various features. By merging datasets, the diversity and richness
of the data are enhanced, the range of target types to be evaluated
is expanded, and the number of instances available for analysis
is increased. Merging datasets can help investigate the impact
of multisource datasets on the accuracy and effectiveness of
remote sensing target recognition and verify the generalization
performance of the network.

Researchers have made progress in target detection in remote
sensing images. Sun et al. [6] proposed an anchor-free method
for ship target detection in HR SAR images. Zhang et al.
[7] proposed a task-collaborated detector for oriented object
detection in remote sensing image. We hope to achieve better
results at higher baselines. The YOLO [8], [9], [10], [11] series
has powerful object detection capabilities, with YOLO-V7 [12]
having the best detection performance. We combine the parallel
spatial attention and channel attention (P-SACA) module with
YOLO-V7 to enhance the image’s region of interest in both
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channel and spatial dimensions when outputting anchor boxes of
different scales in YOLO-V7. To address challenges associated
with small objects and poor image quality encountered in remote
sensing image object detection, we have introduced a space-to-
depth (SPD) module [13]. The SPD module reduces the model’s
computational complexity and parameter size while ensuring
that detection accuracy is unaffected. The P-SACA module
explores the most influential channel and spatial information
and multiplies it with the original feature map, emphasizing
critical information but not wholly ignoring unimportant areas.
Experimental results have shown that embedding the P-SACA
module designed in this article and the SPD module into the
YOLO-V7 model is more effective. In multiple object detection,
the P-SACA module outperforms attention mechanism modules
such as CBAM [14] and SE [40]. Our main contributions are
summarized as follows.

1) We propose a new parallel spatial and channel atten-
tion module that fully utilizes input, spatial, and channel
information. It strengthens key features while retaining
weak information, making it more conducive to remote
sensing target detection tasks with complex backgrounds
and large-scale spans.

2) Integrate the designed attention mechanism into the
YOLO-V7 model. The improved network model has
a more vital exploration ability for large and complex
datasets, reducing computational complexity by 2.7%.
Experimental results on the DOTA1.0 dataset have shown
that our model can improve mAP by 1.2%. In total, 13
types of targets can achieve higher AP.

3) Experiments on a larger dataset have shown that the im-
proved model has more stronger object detection capabil-
ities. It improves the detection performance of medium
to large targets with fewer instances and weakens the
impact of sample imbalance on detection performance.
The detection accuracy is higher among the 15 target
types. The mean average precision (mAP) increased by
1%. The maximum growth rate for single-category objects
is 8.2%. Multiple medium-sized objects have increased by
about 5%.

II. RELATED WORK

Improving the quality of datasets and building more efficient
network structures are the directions that researchers are con-
stantly striving for.

Researchers have made many efforts to improve the quality
of remote sensing images. They establish new algorithms and
networks to fully utilize the multimodal information of remote
sensing images, hoping to make the features of remote sensing
images more prominent. Wang et al. [15] proposed a multistage
self-guided separation network (MGSNet) and a self-guided
network, fully utilizing the differences between the background
and the target, as well as the similarity between the targets, to
make the features of remote sensing images apparent. Wang et al.
[16] proposed a representation enhanced status replay network
(RSRNet) for multisource remote sensing image classification,
which mainly solves the problem of representation bias and
classifier bias accumulation and the problem of insufficient

interaction of multisource information. Zhang et al. [17] pro-
posed a spatial logical aggregation network (SLA-NET), focus-
ing on the significance of spatial morphological differences and
validating their effects through experiments. Hong et al. [18]
provide a baseline solution by developing a general multimodal
deep learning (MDL) framework, which dramatically inspires
multimodal remote sensing image tasks. In [19], a new set of
multimodal remote sensing benchmark datasets (called C2Seg
dataset, including hyperspectral, multispectral, SAR) was built,
facilitating the cross city semantic segmentation task research.
The low-rank representation net (LRR-Net) was presented to
hyperspectral anomaly detection, which did not rely on manual
parameter settings to achieve better generalization performance
[20]. The SpectralGPT [21] was created, which is purpose-built
to handle spectral RS images using a novel 3-D generative
pretrained transformer (GPT). The SpectralGPT fills the gap
in applying spectral data in remote sensing. To address the issue
of spectral variability in hyperspectral images, the augmented
linear mixing model (LMM) is proposed [22], which applies
a data-driven learning strategy in inverse problems of hyper-
spectral unmixing to solve spectral variability. For multimodal
data of remote sensing images, Yao et al. [23] proposed a novel
MDL framework by extending conventional ViT with minimal
modifications, which propelled the development of land use and
land cover (LULC) classification. Zhang et al. [24] proposed the
interleaving perception convolutional neural network (IP-CNN)
to integrate heterogeneous information and improve the joint
classification performance of hyperspectral image (HSI) and
light detection and ranging (LiDAR) data. Yao et al. [25] propose
a novel coupled unmixing network with a cross-attention mech-
anism, CUCaNet for short, to enhance the spatial resolution of
HSI using higher spatial-resolution multispectral image (MSI).

Insufficient data and imbalanced samples are important fac-
tors that constrain the development of deep learning. To solve
the problem of scarce training data, Tai et al. [26] proposed
the connection-free attention module, which can transmit the
sharing features of electro-optical and SAR images from the
source network to the target network for information supple-
ment. Because of the limited effective offshore ship training
samples obtained and the severe imbalance between positive and
negative examples, Zhuang et al. [27] proposed the structured
sparse representation model to realize more effective and robust
offshore ship detection under the condition of a small sample set.

The YOLO algorithm has been improved by many researchers
and can adapt to various object detection tasks. Shao et al. [28]
constructed a night navigation ship dataset and proposed an
improved algorithm called TASFF-YOLOV5, which achieved
good ship detection results. Aiming at bridge detection in
aerial images, Guo et al. [29] proposed a directional bridge
detection model with water body segmentation as an auxiliary
task to guide bridge positioning. It combines the advantages of
semantic-segmentation-based supplementary supervision, water
constraints, and instance switching-based data augmentation
to improve detection results. Zhu et al. [30] proposed TPH-
YOLOV5 to solve the problems of target density and motion
ambiguity in UAV target recognition. It replaced the original pre-
diction heads with transformer prediction heads to achieve better
results. R. S. et al. [13] proposed a new CNN building block,
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called SPD-Conv, for the problem that the performance of CNNs
would decline rapidly under challenging tasks with low image
resolution or small objects. Lin et al. [31] proposed a dynamic
object detection framework named Dynamic-det for YOLO-V7.
Through adaptive reasoning, the dynamic model can obtain
significant accuracy and computational efficiency. Zheng et al.
[32] improved YOLO-V7 by adding an attention mechanism
and replacing the loss function, which can effectively realize the
detection of small objects under complex backgrounds. Hussain
et al. [33] proposed a framework for autonomous rack inspection
based on computer vision around the YOLOv7 architecture. Zhu
et al. [30] proposed an improved object detection algorithm for
YOLO-V5 UAV capture scenes, which can solve the problem of
multiple small and dense objects and complex backgrounds in
high-altitude photography. A feature enhancement block (FE-
Block) is first presented to generate adaptive weights for differ-
ent receptive field features by convolution, assigning significant
weights to shallow feature maps to improve small object feature
extraction ability [34]. Sun et al. [35] proposed a YOLO-based
arbitrary-oriented SAR ship detector using bidirectional feature
fusion and angular classification (BiFA-YOLO).

Researchers hope that well-designed attention mechanisms
can better utilize images. The CBAM module infers the attention
map along two independent dimensions (channel and space),
and then, multiplies the attention map with the input feature
map for adaptive feature optimization. The authors demonstrated
through experiments that the CBAM module is practical in
classification and object detection networks. The SE module
aims to assign different weights to different image positions from
the perspective of the channel domain through a weight matrix to
obtain more critical feature information. BotNet [41] is a concep-
tually simple yet powerful backbone architecture incorporating
self-attention for multiple computer vision tasks. It replaces spa-
tial convolution with global self-attention in ResNet’s last three
bottleneck blocks without making any other changes. It also
reduces parameters and minimizes latency overhead, achieving
good results in instance segmentation and object detection. The
application of the C3TR module has achieved good results in
object detection tasks with a multihead self-attention module
and position encoding. The coordinate attention factorizes (CA)
[42] channel attention into two 1-D feature encoding processes
that aggregate features along the two spatial directions, which
performs well in tasks such as image classification, object de-
tection, and semantic segmentation.

In summary, current research on object detection in remote
sensing images mainly focuses on small targets. Improving the
quality of remote sensing images and fully utilizing multimodal
information effectively enhance remote sensing image tasks.
Many publicly available datasets with small object instances
exhibit the characteristic of imbalanced samples. These have
greatly improved the detection effect of small targets. How-
ever, the number of medium-sized targets is relatively small,
and the background is complex. But medium-sized targets are
landmark buildings with fixed positions, essential in navigation
and positioning. CNNs obtain advanced semantic information
about images through continuous convolution and pooling,
but they may lose detailed information. A well-designed net-
work structure can enhance feature extraction capabilities. The

attention mechanism designed in this article can search for more
influential feature maps in the channel dimension and essential
positions in the spatial dimension. Enhance the input feature
map in parallel from both channel and spatial dimensions, am-
plify important information, and retain detailed information. We
embedded the designed attention mechanism into YOLO-V7,
effectively improving the detection performance of small- and
medium-sized targets under imbalanced sample conditions.

III. DATASET-MAKING AND OBJECT-DETECTION NETWORK

This article uses two remote sensing datasets, DIOR and
DOTA1.0, to form a more complex dataset, DIOR&DOTA. The
new dataset contains 24 target categories and 380 754 annotated
instances. The same target has more appearance features. In
addition, we performed image augmentation to simulate natural
scenes, including conventional rotation and scaling, weather
conditions like rainy and foggy days, and motion blur.

This article employs the YOLO-V7 model as the baseline.
YOLO-V7 has good detection performance for small objects
such as airplanes, cars, and ships, with an accuracy of up to
90%. Due to imbalanced samples and significant differences in
object size, many types of detection perform poorly. The method
proposed in this article enhances the detection ability of complex
background targets and effectively reduces the computational
complexity. Uneven data distribution will guide the network
to learn more features of multisample objects, weakening the
detection ability of objects with fewer samples. The improved
model has more vital learning ability and performs better on
larger datasets under the same training conditions. Because
it fully utilizes the information in channels and space, it can
weaken the negative impact caused by imbalanced samples.

A. Datasets Preparation

The indispensability of datasets in the realm of deep learning
is self-evident. Remote sensing images predominantly originate
from satellites, encompassing various sensors and platforms,
such as Google Earth, JL-1 satellite, and GF-2 satellite. There-
fore, remote sensing images exhibit significant differences,
exacerbating the challenges associated with target detection.
Image fusion is employed to augment the detected attributes
of the tested object and enhance its target features. However,
this method requires high technical requirements. Designing
a more comprehensive dataset and a network with stronger
feature extraction capabilities can learn more features so that the
model can effectively capture objects with different appearance
features at multiple scales.

The DOTA1.0 dataset encompasses 2 806 aerial images and
188 282 instances. These images exhibit varying pixel dimen-
sions, spanning from 800∗800 to 4000∗4000, accommodating
objects of diverse sizes, orientations, and shapes. It has 15
target categories. The DIOR datasets comprise 23 463 images,
categorized into 20 distinct target classes. The images are all
800∗800 in size and collected under different imaging condi-
tions, including changes in weather, season, and image quality.

Within the DOTA1.0 dataset, 98% of the targets exhibit di-
mensions below 300 pixels, and 57% of the marks are less than
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TABLE I
OPTICAL REMOTE SENSING IMAGE DATASET

TABLE II
DIOR&DOTA CATEGORIES

Fig. 2. Image enhancement results. (a) Turns the color image into a gray image.
(b) Reduces image quality. (c) Distorts the image. (d) Simulates rainy days.

50 pixels. Similarly, in the DIOR dataset, approximately three-
quarters of the target types possess dimensions below 300 pixels,
and a majority of the eight targets are less than 100 pixels in size.
The significant presence of a large number of small targets in
annotated datasets makes networks inclined toward small target
detection, which helps obtain relevant features unique to small
targets. However, the uneven distribution of samples increases
the difficulty of detecting large-sized objects.

The comparison between DIOR&DOTA and other popular
datasets is shown in Table I. The newly established dataset
has made significant progress in target categories and annotated
instances. Table II shows the target types.

We randomly enhance the image to simulate various real-
world scenarios, including rainy, foggy, snowy, and motion blur,
and perform random rotation, translation, brightness changes,
and other conventional image enhancements. As shown in Fig. 2,
our dataset’s richness and authenticity have been enhanced
through image enhancement, enabling a more accurate repre-
sentation of the real-world scenes depicted in the test images.

B. YOLO-V7

Compared to previous algorithms within the YOLO series,
the primary innovation of YOLO-V7 lies in integrating model

reparameterization into the network architecture. The concept of
reparameterization was initially introduced within the REPVGG
[36] framework, serving as a foundation for the novel approach
of YOLO-V7. Furthermore, YOLO-V7 presents a novel network
architecture that exhibits high efficiency, thereby enhancing the
extraction of image features. The significant highlight of YOLO-
V7 is the ELAN network architecture design, characterized by
its simplicity and efficiency. As an efficient aggregation network,
ELAN follows a similar concept to Resnet [37]. It divides the
input feature map into two paths: one path undergoes multiple
iterations of the CBS module to extract advanced semantic fea-
tures. In contrast, the other path passes through the CBS module
once to better preserve positional features. The SPPCPS module
combined with SPP [38] and CBS [39] effectively expands
the receptive field, enabling the algorithm to adapt to images
of different resolutions. Finally, the feature maps from both
approaches are combined through superposition. YOLO-V7
proposes a training method involving auxiliary heads to improve
accuracy without affecting inference time. These auxiliary heads
operate solely during training, optimizing the balance between
inference time and training costs. Fig. 3 shows the network
structure of YOLO-V7.

IV. IMPROVEMENTS TO YOLO-V7

As shown in Fig. 4, we embedded the P-SACA module in the
last layer of the YOLO-V7 backbone and the SPD module in
front of the head. This structural design can enhance the feature
extraction ability of the model without increasing computational
complexity.

After multiple convolution operations, the size of the feature
map gradually decreases, and the number of channels increases.
Using the P-SACA module in the last layer of the feature
extraction network will increase the minimum computational
complexity but significantly impact the subsequent network. The
P-SACA calculates spatial attention and channel attention sep-
arately. When extracting channel features, the most influential
feature channel is selected. Spatial features will select the feature
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Fig. 3. YOLO-V7 network structure.

Fig. 4. SPD-P-SACA with YOLO-V7.

area of greatest interest. Finally, the feature maps obtained from
the two attention modules are overlaid with corresponding pixels
to output the feature maps.

The SPD module carries out spatial information recombina-
tion and channel splicing for the feature map to reduce the size of
the feature map and the amount of calculation. The SPD module
performs interval sampling on the pixel points of the feature map,
and the larger feature map yields four smaller feature maps. The
feature map size decreases, and the dimension increases, but
the information is not lost. It also plays a vital role in reducing
computational complexity.

The experimental results show that our improved network
has good detection performance for small- and medium-sized
objects.

A. Space-to-Depth (SPD)

There is a large amount of redundant information when de-
tecting small objects in high-resolution images. However, each
pixel is essential if the image’s resolution is low or the object’s
size is small. As the depth of the network continues to increase,
convolution and pooling increase the receptive field of each pixel
in the feature map, enhancing the ability to represent abstract
features while gradually losing shallow spatial information.
The performance of the detector deteriorates. Consequently,
the multilayer feature maps fail to provide high-level semantic
features and fine-grained spatial information for accurate target
localization. During the down-sampling process, the semantic
information of small targets gradually diminishes. Large-scale
targets with rich detail features require more robust semantic

Fig. 5. SPD module.

information for accurate classification, while detecting small-
scale targets necessitates more precise spatial information for
precise localization. These challenges underscore the limitations
of the CNN architecture, where convolutional layers and pooling
layers contribute to the loss of fine-grained details.

To address these limitations, we introduce the SPD module.
Fig. 5 illustrates the image interval sampling approach employed
by the SPD module to decrease the image size. The SPD module
is similar to pooling in that it extracts local information from the
image but does not directly discard the remaining information.
The SPD concatenates the reconstructed feature maps in order
based on channel dimensions without losing any information.
This approach effectively integrates spatial and channel infor-
mation, preserving all relevant data while minimizing computa-
tional demands.

B. Attention Module With Parallel Spatial Attention and
Channel Attention (P-SACA Model)

Incorporating an appropriate attention mechanism into
the network can significantly enhance its feature extraction
capability. We conducted experiments using recognized and in-
fluential attention mechanisms such as CBAM, SE, Botnet, and
other widely acknowledged effective methods to improve detec-
tion efficiency. However, these attempts did not yield satisfactory
results. We define channel attention and spatial attention. Spatial
attention can make the neural network pay more attention to the
pixel region, which plays a decisive role in image classification,
while ignoring the unimportant part. Channel attention can deal
with the distribution relationship of channels in feature mapping.
The superposition of two attention allocation forms enhances
attention mechanisms’ impact on model performance.
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Fig. 6. P-SACA module.

Fig. 7. Channel attention module.

Using the last layer feature map F(C∗H∗W) of the backbone as
input, P-SACA generates a 1-D channel attention feature map
Mc

(C∗1∗1) and a 2-D spatial attention feature map MS
(1∗H∗W) in

parallel. The entire process of extracting regions of interest can
be summarized as follows:

Fc = Mc (F )⊗ F (1)

Fs = Ms (F )⊗ F (2)

Fout = Fc ⊕ Fs (3)

where ⊗ represents element by element multiplication and ⊕
represents element by element addition. Multiply the obtained
Mc and Ms with the original image to obtain Fc and Fs,
highlighting the region of interest without losing detailed in-
formation. Finally, the two feature maps obtained are overlaid
element by element to get the output feature map Fout. The
structure of the P-SACA module is shown in Fig. 6.

1) Channel Attention Module: Each channel of the multi-
channel feature map is a detector for different features. The
attention mechanism we designed explores the relationships
between channels and identifies the most influential feature
maps. To effectively calculate channel attention, we used the
average pooling method to compress the spatial dimension of the
input feature map. Then, we obtain the channel attention vector
from the adaptive pooling feature map through convolution and
activation functions, scale it using the sigmoid function, and
apply it to the input feature map. Fig. 7 shows the execution
process of the module in channel attention.

The channel attention is computed as

Mc = σ
(
f1×1

(
r
(
f1×1 (AvgPool (F ))

)))
(4)

where σ represents the sigmoid function, and r represents the
RELU activation function. The f1×1 represents a convolution
operation with a filter size of 7 × 7.

2) Spatial Attention Module: Channel attention focuses on
which feature detector is the most important, while spatial
attention is more interested in which region to focus on in
the 2-D plane. When calculating spatial attention, to extract
as much important information as possible, we first perform
maximum pooling and average pooling on the channel dimen-
sion of the feature map; superposition the obtained two 2-D

Fig. 8. Spatial attention module.

Fig. 9. P-SACA mode.

feature maps into a new feature map with a channel num-
ber of 2; use 7 × 7 convolution check to convolution the
input feature map, and use the sigmoid function to scale it
to obtain Ms. The calculation process can be summarized as
follows:

Ms = σ
(
f7×7 [AvgPool (F ) ;MaxPool (F )]

)
(5)

where [AvgPool(F );MaxPool(F )] represents a 3-D feature map
formed by stacking two 2-D feature maps according to channel
dimensions. The spatial attention module is shown in Fig. 8.

Finally, we will multiply the calculated Ms and Mc pixel
by pixel with the original feature map to obtain Fs and Fc,
respectively. The H, W, and C of Fs and Fc are consistent with
F. Add Fc and Fs pixel by pixel to obtain the desired output
feature map Fout. Fig. 9 illustrates the specific change process
of using the P-SACA module feature map in the last layer of the
backbone.

Compared to the CBAM module of concatenating spatial
attention and channel attention, this article preserves more image
information through parallel connection. Multiply the feature
maps with important details on the channel and the feature maps
with important information in the space with the original input
feature maps, and then, cover them. By doing so, the image’s
original data will be saved to a greater extent while highlighting
important information, which is meaningful for information-rich
remote sensing images.

V. EXPERIMENTS AND RESULTS

A. Experimental Environment

The experiment was conducted on a Windows 10 system
with an Intel(R) Core (TM) i9-9940X CPU at 3.30 GHz and
a GeForce RTX 3090 GPU with 24-GB memory. The entire
framework was implemented in python. The implementation
heavily relied on various libraries such as torch, SciPy, imgaug,
matplotlib, opencv-python, and NumPy.
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TABLE III
DIOR EXPERIMENTS ON MULTIPLE OBJECT DETECTION ALGORITHMS ON DIOR DATASETS

B. Implementation Details

In this study, we adopt the learning strategy of the YOLO-V7
model. The initial learning rate is set to 0.01, and a cyclic learning
rate of 0.1 is employed. Set the batch size to 6. The experiment
needs 150 epochs to converge the model. The input image size
is 640 × 640. To fairly compare the models, all experiments did
not use pretrained weights.

We retained the dataset allocation method and directly merged
the original DOTA1.0 and DIOR datasets for training, validation,
and testing. This approach ensures consistency in data parti-
tioning with the original datasets, facilitating a more accurate
comparison.

C. Evaluation Measures

The average precision is commonly used by object detection
methods to evaluate the merits of the algorithms. This metric is
also used in this article to compare with other methods.

The precision is the percentage of positive samples among all
samples, and it is calculated as

P =
TP

TP + FP
(6)

where true positive (TP) is the number of positive samples
detected correctly, and false positive (FP) is the number of
samples incorrectly judged as positive by a negative sample.

The average precision (AP) is the area enclosed by the recall
rate of the correctness curve and the x-axis. It is expressed as

AP =

∫ 1

0

P (y) dy (7)

where y is the recall curve under different intersection ratio
thresholds.

The mAP refers to the average of the AP of all categories
contained in the detection target, which is calculated as

mAP =

∑N
n APn

N
. (8)

D. Results and Analysis

This article demonstrates through experimental analysis on
the DIOR dataset that the YOLO-V7 network has the best
detection performance for remote sensing targets, as shown
in Table III. Therefore, we chose YOLO-V7 as our baseline.
Categories C1–C24 correspond to Table II. The mAP represents
the average accuracy of all types, compiled in percentage format.
The following tables all use the same method.

We combined the P-SACA module with the YOLO-V7 algo-
rithm and introduced an SPD module in the detection head. As
shown in Table IV, we compared the designed attention mecha-
nism with some proven methods through experiments. Table V
shows the parameter count and computational complexity of
these methods. Despite our network design exhibiting slightly
lower average accuracy, it requires less computational power.
Notably, we have eight types of objects that have better detection
performance.

As shown in Table VI, we conducted experimental verification
on the DOTA1.0 dataset. Our model was based on YOLO-V7
and achieved an improvement in AP among 13 target categories,
with an increase of 1.1% in mAP.
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TABLE IV
COMPARISON OF NETWORK MODEL IMPROVEMENT METHODS ON DIOR DATASETS

TABLE V
COMPARISON OF THE PARAMETERS AND COMPUTATION OF THE IMPROVED MODEL

TABLE VI
COMPARISON OF NETWORK MODEL IMPROVEMENT METHODS ON DOTA1.0

Table VII presents a performance comparison between
YOLO-V7 and our model on the DIOR&DOTA datasets. The
first two rows correspond to the results obtained from the vali-
dation datasets, while the last two rows compare a larger test
dataset. The experimental results indicate that our improved
network model has a more vital exploration ability for complex
large datasets with reduced computational complexity. The mAP
shows a 1% increase, with higher detection accuracy observed
across 15 target types. The train station exhibits the most

significant improvement, with a remarkable increase of 8.2%.
Medium-sized targets such as airports, dams, and soccer ball
fields have also increased by about 5%, significantly impacting
navigation.

For the target detection task of remote sensing images, detect-
ing objects with drastic scale changes in complex backgrounds
and detecting objects with tiny targets are the biggest challenges.
Figs. 10 and 11 provide more direct evidence that our detection
performance is better.
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TABLE VII
COMPARISON OF NETWORK MODEL IMPROVEMENT METHODS

Fig. 10. Comparison of small target detection results in complex background. The first line is our model, and the second is the YOLO-V7 model. (a) Detected
ground track fields with tiny pixels. (b) Detected multiple ground track fields and bridges. (c) Detected more than two vehicles.

Fig. 11. Detection results of large objects in complex background. The first line is our model, and the second is the YOLO-V7 model. (a) Large receptive field.
(b) Detected a dam. (c) Detected more than one tennis court. (d) Detected the bridge.
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Fig. 12. Comparison of the mAP convergence speed.

Fig. 13. Comparison of loss convergence speed.

In Fig. 10(a) and (b), our model can detect ground-track
fields in extremely complex backgrounds, which are difficult
for humans to recognize. The bridge in Fig. 10(b) and the car
in Fig. 10(c) are more similar to the background color, making
recognition more difficult. However, our model still completed
the task. The aforementioned indicates that in complex back-
grounds, our model has a stronger ability for feature extraction
and will not ignore detailed information, which is very helpful
for small object detection. In Fig. 11(a), YOLO-V7 divides an
extensive golf course into three parts for recognition. The dam
in Fig. 11(b) and the bridge in Fig. 11(c) only have slender edge
information. These pieces of information are easily overlooked
in convolutional networks. Our network has achieved target
recognition with more robust information extraction capabili-
ties. In Fig. 11(d), missed detections were avoided. Fig. 11 shows
that our model has stronger feature extraction capabilities even
for medium to large objects.

We compared the convergence speed of mAP of multiple
methods combined with YOLO-V7 models, as shown in Fig. 12.
The results indicate that the convergence speed of the P-SACA
module is faster than other attention mechanisms, and the SPD
model further improves the convergence speed of the model.
Based on the analysis in Tables IV and VII, the SPD module

Fig. 14. Confusion matrix of detection results.

Fig. 15. F1-score.

can accelerate the convergence of the model, while the P-SACA
module can have stronger feature extraction capabilities. The
SPD-P-SACA module fully absorbs their respective advantages
and performs better on large datasets than YOLO-V7. The loss
curve in Fig. 13 again indicates that our model converges faster
than other methods. Faster convergence speed represents lower
training costs, which is significant for deep learning.

Fig. 14 shows the confusion matrix obtained by our model
during training, which indicates that the complex background
is a significant constraint on the poor detection performance of
remote sensing image targets. The F1-score in Fig. 15 provides a
balanced evaluation of model performance, with the gray curve
representing 24 target categories and the blue curve representing
the average value. The F1-Score curve indicates that our model
can achieve good results when the confidence level is less
than 0.8.

V. CONCLUSION

Remote sensing images have complex backgrounds and large
object scale spans. The existing public datasets have relatively
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few types of objects, and their distribution is highly uneven.
The sources of images are also quite complex. To improve
the target detection in remote sensing images, we designed
the P-SACA module and combined it with existing modules to
improve YOLO-V7. The improved network has better detection
performance on the large dataset. First, we have designed a new
attention mechanism for the parallel use of spatial and channel
attention. It has a more robust feature extraction ability and
stronger resistance to complex background interference. The
module converges faster than other attention mechanisms and
can reduce training costs. Second, we will combine the P-SACA
module with the SPD module to improve the YOLO-V7 model.
Experiments have shown that the improved model has a more
vital detection ability for medium-sized targets with fewer sam-
ples and a more vital exploration ability on larger datasets. The
mAP shows an increase of 1%. Higher detection accuracy was
observed among 15 target types. The improvement of the railway
station was the most significant, with a considerable increase
of 8.2%. Midsize objects such as airports, dams, and catch
courts have also increased by about 5%. Improving detection
accuracy at airports and train stations will play a critical role
in navigation. Third, we established the optical remote sensing
target detection dataset DIOR&DOTA with more types of targets
and instances through dataset merging. This dataset has a more
vital ability to explore the effectiveness of remote sensing target
detection. As far as we know, it has the most target types and
corresponding instances, with more external features for the
same target. It means that it will evaluate the target detection
model more strictly. Finally, the experimental results show that
the improved model in this article reduces the computational
complexity by 2.7%, which is extremely friendly to embedded
devices.

Fig. 14 shows that the background significantly impacts
target detection in remote sensing images. Imbalanced sam-
ples in the dataset result in significant differences in detection
performance among different categories. We will improve the
detection performance in the future by addressing complex
backgrounds and imbalanced data samples. We hope to explore
network models with smaller parameters and computational
complexity, which can be more conveniently embedded into
devices.
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