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Abstract—Spectral indices are of fundamental importance in
providing insights into the distinctive characteristics of oil spills,
making them indispensable tools for effective action planning. The
normalized difference oil index (NDOI) is a reliable metric and
suitable for the detection of coastal oil spills, effectively leveraging
the visible and near-infrared (VNIR) spectral bands offered by
commercial sensors. The present study explores the calculation
of NDOI with a primary focus on leveraging remotely sensed
imagery with rich spectral data. This undertaking necessitates a
robust infrastructure to handle and process large datasets, thereby
demanding significant memory resources and ensuring scalability.
To overcome these challenges, a novel cloud-based approach is pro-
posed in this study to conduct the distributed implementation of the
NDOI calculation. This approach offers an accessible and intuitive
solution, empowering developers to harness the benefits of cloud
platforms. The evaluation of the proposal is conducted by assessing
its performance using the scene acquired by the airborne visible
infrared imaging spectrometer (AVIRIS) sensor during the 2010
oil rig disaster in the Gulf of Mexico. The catastrophic nature of
the event and the subsequent challenges underscore the importance
of remote sensing (RS) in facilitating decision-making processes.
In this context, cloud-based approaches have emerged as a promi-
nent technological advancement in the RS field. The experimen-
tal results demonstrate noteworthy performance by the proposed
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cloud-based approach and pave the path for future research for
fast decision-making applications in scalable environments.

Index Terms—Cloud computing (CC), disaster monitoring,
hyperspectral images (HSIs), remote sensing (RS), spectral indices.

I. INTRODUCTION

THE field of Earth observation (EO) has experienced signif-
icant advancements as a result of technological progress in

remote sensing (RS) instruments. These instruments capture vast
amounts of data in the optical domain, including hyperspectral
images (HSIs) [1]. Particularly, HSI sensing instruments capture
the solar radiation reflected by the ground materials, which ex-
hibits variability across different wavelengths due to the atomic
structure of the surface. Consequently, each material has a dis-
tinctive spectral signature associated with its specific combina-
tion of physical and chemical properties. The spectral signature
is represented by each pixel in the form of an N -dimensional
vector, with N corresponding to the number of bands [2]. The
information enfolded is highly distinctive and valuable, given
the local properties of every pixel [3]. Consequently, the volume
of data is predominantly influenced by the spectral, spatial, and
temporal resolutions [4]. Some examples where the application
of HSI finds particular significance include environmental stud-
ies, disaster management [5], precision agriculture [6], and urban
planning [7].

A. Toward Big RS Data Analysis

Regarding data acquisition, RS has experienced a notable
surge in the accessibility of advanced hyperspectral missions,
resulting in a continuous and large stream of data [8]. Sev-
eral missions have been launched to capture valuable data for
different applications. The airborne visible/infrared imaging
spectrometer (AVIRIS) [9] is the most popular one, operated by
the National Aeronautics and Space Administration (NASA) Jet
Propulsion Laboratory. It measures up-welling spectral radiance
across 224 contiguous bands. Its primary purpose is to identify,
measure, and monitor various constituents present in the Earth’s
surface and atmosphere. AVIRIS operates at a data collection
rate of 2.5 MB/s (approximately 9 GB/h), generating substantial
data volumes during its flights. The Environmental Mapping and
Analysis Program (EnMAP), a satellite mission led by the Ger-
man Aerospace Center, includes a high-resolution hyperspectral
imagery comprising 230 bands. It captures more than 20 TB/day
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of biophysical and chemical data for multiple scientific and envi-
ronmental applications [10]. Similarly, the PRecursore IperSpet-
trale della Missione Applicativa (PRISMA), an Italian Space
Agency mission, carries a hyperspectral sensor equipped with
approximately 240 bands. Its objectives encompass forest moni-
toring, agricultural assessments, water, and soil analysis, as well
as climate change and environmental research [11]. Looking
ahead, new satellite missions are on the horizon, including the
Copernicus Hyperspectral Imaging Mission for the Environ-
ment (CHIME), jointly designed by the European Union and
the European Space Agency. CHIME aims to provide regular
hyperspectral imaging to facilitate the monitoring of land cover
changes and support sustainable agricultural practices [12].

This proliferation of information brings about the inherent
benefits of data richness, enabling more detailed and compre-
hensive analysis. However, data abundance poses significant
challenges in terms of the scalable and efficient processing of
hyperspectral data [13]. To address these challenges, it becomes
imperative to develop robust and effective strategies for handling
the vast amounts of data generated by the aforementioned sen-
sors. Such strategies should be designed not only to guarantee
scalability, but also to aim for the optimal utilization of com-
putational resources, ensuring reliable and timely extraction of
valuable information. Specifically, and as part of the scope of this
work, the utilization of HSIs assumes a pivotal role in the field
of disaster management. This imagery offers valuable insights
for identifying areas prone to natural disasters, including floods,
landslides, and earthquakes [14], [15]. Also, it enables effective
environmental monitoring, which facilitates the identification of
changes in vegetation, water quality, and other crucial environ-
mental factors [16]. In these contexts, the information can be
instrumental in developing early warning systems that produce
alerts to be disseminated to individuals, thereby mitigating po-
tential disasters prior to their occurrence [17], [18]. Concretely,
the management of ocean disasters, such as the monitoring and
characterization of oil spills at sea, considers the interaction
between electromagnetic waves and water based on the optical
properties of water. The ability of remote sensors to capture
responses is attributed to their sensitivity toward the presence,
concentrations, and types of substances in the water [19]. Within
this problematic area, the enhanced spectral and spatial resolu-
tions facilitate the differentiation of false positives and accurate
determination of oil types [20], [21]. Nevertheless, the high
correlation between bands reduces the efficiency and accuracy
of analysis and classification and poses new challenges [22]. A
practical solution resides in selecting the most relevant bands
for the study, thereby mitigating the storage and computational
burdens while preserving essential information for analysis.

B. Analysing HSI Data: Use of Spectral Indices

Spectral indices are widely adopted as a technique to reduce
the volume of data and facilitate feature detection. These spectral
indices are combinations of bands obtained through simple arith-
metic operations for highlighting particular spectrum patterns
and suppressing the background. Therefore, each index employs

only a relatively narrow range of bands of interest to detect a
particular phenomenon.

Numerous spectral indices that have been extensively tested
in the literature, such as the fluorescence index (FI) [23],
rotation-absorption index (RAI) [23], normalized difference oil
index (NDOI) [24], hydrogen index (HI) [25], and oil slope
index (OSI) [26]. In addition, some seawater and vegetation
indices are also included, such as the water absorption feature
(WAF) [27] and colored dissolved organic matter (CDOM) [28],
or chlorophyll content (CHL) [29], normalized difference veg-
etation index (NDVI) [30], normalized difference water index
(NDWI) [31], and ratio B2/B11 [32]. Specifically, the NDOI
is particularly noteworthy due to its ability to account for vary-
ing spill thicknesses, rendering it highly effective for coastal
area spills, especially when suspended sand is involved. This
distinctive characteristic sets it apart from the aforementioned
alternatives, contributing to a better performance.

The performance of spectral indices, coupled with the increas-
ing volume of HSI data generated from acquisition missions,
and the inherent intricacies associated with calculating spectral
indices, lead to a clear conclusion: a compelling requirement
emerges to accelerate these computations, facilitating a fast and
effective response to natural disasters. This poses new challenges
in handling and processing RS data. Traditional data processing
methods (i.e., MATLAB, R, or ENVI) have limited possibilities
when dealing with such vast volumes of data [33]. Moreover,
real-time applications are increasingly in demand [34], where
the processing speed is essential [35]. To surmount these chal-
lenges, the utilization of highly scalable parallel and distributed
architectures becomes indispensable. In this context, graph-
ics processing units (GPUs) have notably improved the paral-
lelization of computations. Nevertheless, processing extensive
HSI data archives is still a research interest, given the limited
by memory and availability constraints [36], [37]. Traditional
computational methodologies, which include high-performance
computing (HPC), cluster computing, and grid computing, pro-
vide viable solutions for processing large datasets. These clusters
stand out as distributed systems composed of interconnected
computing resources, such as GPUs, functioning collectively
as an integrated resource [38]. Building upon this foundation,
grid computing aims to establish an interconnected network of
clusters that share computational and storage capacities. These
approaches have undergone a thorough investigation concerning
the processing of HSI data [39], [40].

C. Clouds Rise: Cloud-Computing for Mass Processing

In particular, cloud computing (CC) has emerged as a promis-
ing solution for distributed data processing due to its no-
table attributes, including scalability, cost-effectiveness, service-
oriented architecture, high-performance capabilities, and on-
demand resource provisioning [41]. The inherent attributes of
CC offer clear advantages over traditional computing platforms.
First, traditional platforms require significant upfront invest-
ments in hardware infrastructure. In contrast, cloud computing
adopts a pay-as-you-go model with two major advantages: 1)
users are billed only for the used resources, and 2) scalability is
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achieved through on-demand access to a large pool of computing
resources. The benefits include flexible and scalable resource
accessibility. By contrast, traditional distributed computing has
issues with accessibility and scalability since it depends on
specialized hardware and more strict resource allocation models.
This dynamic resource allocation may result in costs that are
prohibitively high and jeopardize the central architecture, data
management, and scalability. Second, CC excels in providing
user-friendly interfaces that enable seamless interaction and
resource provisioning through intuitive web-based interfaces.
Third, the management of concurrent executions by multiple
users without relying on a conventional job queue presents a
significant advantage, which distinguishes CC from traditional
computing methods.

These attributes, coupled with its cost-effectiveness and sim-
plified provisioning mechanisms, have made CC a compelling
option for hyperspectral data analysis [42], [43], [44]. Indeed,
CC has a crucial and very positive role to play in facilitat-
ing effective decision-making for a wide range of applications
based on hyperspectral data, especially in the context of risk
monitoring and disaster management. The scalability of cloud
platforms is especially remarkable in the era of Big Data, where
on-demand resource models provide instant access to computing
power and distributed processing techniques help reduce overall
processing time. Recognizing the importance of sensitive data,
cloud platforms incorporate strong security precautions such as
data encryption, secure protocols, backups, redundancy, user
identification, and secure data transmission. These protocols
collectively strengthen the safeguarding of hyperspectral data,
reinforcing the suitability of cloud platforms for applications
that demand both efficiency and data integrity. Lastly, consid-
erations extend to challenges such as the inefficient manage-
ment of heterogeneous computational resources for land cover
approaches [45], or interconnectivity and data dependency at
sensitive times, especially in disaster monitoring [46].

Cloud platforms comprise multicore systems that facilitate
the distribution and parallelization of computational tasks across
numerous processing units. These platforms utilize distributed
file systems to store, manage, and process large data, which
simplifies access and analysis [47]. To facilitate appropriate
interaction between data processing algorithms and large-scale
datasets, the distribution of data and execution of operations
on partitioned subsets across cloud machines have emerged as
instrumental approaches [48]. This data management involves
the formulation of a high-level programming language, which
conceals the intricacies associated with directly engaging the
distributed programming model, such as MapReduce. This is
translated into data flow instructions to split the dataset and
assign data segments to different nodes, ensuring efficiency,
scalability and security with file systems such as Hadoop Dis-
tributed File System (HDFS) [49], [50]. Then, the framework
runs processing algorithms on the distributed data, which sup-
ports parallel processing of computation-intensive tasks [51].
Also, users are enabled to customize algorithms and settings for
data processing tasks using user-defined functions (UDFs).

To summarize, the cloud brings several benefits to RS, includ-
ing scalability, elasticity, cost-efficiency, and reliability [52].

In this regard, the integration of CC into disaster management
holds substantial promise for improving operational efficiency
and facilitating prompt responses through real-time processing.

D. Contributions of the Research

This article presents a cloud-based approach for the detection
of oil spills using the NDOI in HSIs [24]. The study focuses
on the case of the Gulf of Mexico oil rig explosion in 2010, a
significant incident that had profound environmental and eco-
nomic consequences. The proposed approach leverages Apache
Pig to incorporate UDFs into the data processing workflow.
Additionally, HDFS is used for efficient distributed storage of
the hyperspectral data. The implementation of the proposed
approach is based on the MapReduce parallel model, which
is utilized to leverage the capabilities of CC environments. By
harnessing the parallel processing and distributed computing
capabilities offered by the MapReduce model, the proposed
approach aims to maximize the potential of CC environments for
efficient and scalable data processing. This enables the effective
utilization of resources and facilitates the execution of compu-
tationally intensive tasks in a distributed manner. This research
highlights the advantages of utilizing sophisticated algorithms in
RS applications. Furthermore, experimental results demonstrate
the effectiveness of the proposed approach in handling large
volumes of data efficiently, showcasing its scalability as the
dataset size increases. As a summary, the contributions of this
research are the following.

1) A novel distributed implementation of the NDOI tailored
for the efficient processing of extensive datasets in the
context of oil spill detection.

2) The establishment of a crucial link between the imperative
need for robust and fast decision-making capabilities in
sensitive scenarios and distributed computing.

3) A practical showcase of the seamless deployment of the
proposal within cloud-based environments, facilitated by
user-friendly frameworks.

The rest of this article is organized as follows. Section II sets
out the previous work relevant to the current proposal. Section III
outlines the distributed framework design that will be used in our
implementation. Section IV presents the experimental validation
and discussion. Finally, Section V concludes this article.

II. RELATED WORK

Cloud solutions excel in the efficient processing of remotely
sensed data, outperforming alternative approaches, such as grid
computing [40]. The flexibility and efficiency of CC have pro-
moted the incorporation of traditional, artificial intelligence, and
deep learning (DL) techniques for RS data processing. On the
one side, parallel and distributed dimensionality reduction [53]
and fast principal component analysis [54] have been developed
on cloud architectures. Moreover, a noteworthy approach in the
realm of HSI classification pertains to the utilization of schedul-
ing meta-heuristics. This strategy aims to ensure an equitable and
automated distribution of computational tasks across different
CC resources [47].
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In recent studies, significant attention has been given to the
advancement of cloud-based adaptations of complex and com-
putationally demanding algorithms. For instance, one notable
contribution involves the adaptation of multinomial logistic
regression [55] for HSI analysis in unmanned aerial vehicles
(UAVs) using Apache Spark. The adaptation of multinomial lo-
gistic regression (MLR) in the cloud environment yields notable
time reductions, demonstrating the potential for accelerated
HSI analysis. It is crucial to highlight that the performance
of the algorithm remains consistent. In addition, the K-means
algorithm has also been adapted for Apache Spark [42]. This
algorithm plays a crucial role in unsupervised clustering of
HSI and represents a notable advancement in the literature
by introducing a distributed framework for clustering massive
hyperspectral datasets. Finally, novel algorithms have undergone
adaptations to leverage such computational capabilities. Among
these adaptations, a notable contribution is the implementation
of auto-encoders (AE) in Apache Spark [43]. The cloud-based
AE exhibits remarkable flexibility, enabling its application in
several tasks, such as spectral unmixing. This represents a sub-
stantial milestone in the pursuit of complex deep models that
consume extensive computational power and memory resources.
Apache Spark presents a versatile and efficient data processing
solution within a comprehensive ecosystem boasting substan-
tial support and an extensive repository. In contrast, Apache
Hive [56] prioritizes in-memory capabilities, particularly suited
for real-time data processing scenarios. Such advancements hold
significant implications, particularly in areas like environmental
monitoring or decision-making.

Apache Pig emerges as a promising data flow approach to
simplify large datasets processing. Leveraging the automatic
parallelization and high-level data manipulation language pro-
vided by Apache Pig, users can effortlessly address complex
tasks across large-scale clusters. For instance, Quirita et al. [57]
proposed a distributed N-finder end-member extraction algo-
rithm. Also, Apache Pig has been also implemented for spe-
cific classification algorithms, such as decision trees (DT) or
random forest (RF) [58]. Furthermore, different methods have
been proposed as alternatives for remotely sensed image pro-
cessing, storage, and management. Specifically, these include
a global-oriented spatial-temporal data simulation approach
using OpenStack [59], a parallel content-based HSI retrieval
system [60], an efficient segmentation model [61], a MapRe-
duce method for image management [62], and an extension of
Apache Hadoop for efficient data processing [63]. Finally, the
data distribution offered by Apache Pig serves as a motivation
to develop novel distributed solutions for hyperspectral data
analysis, where spectral indices stand out as essential tools for
disaster management. These indices use simple arithmetic op-
erations to enhance specific spectral features while minimizing
background interference. The strategic combination of bands
not only accentuates pertinent information, but also addresses
the challenges posed by the high dimensionality of hyperspectral
data. Spectral indices rationalize this demand by focusing on the
most relevant bands, which optimizes processing and resource
utilization. In this context, CC emerges as a pivotal solution. CC
environments provide the necessary resources for streamlined

processing and align seamlessly with the objective of managing
and optimizing storage concerns related to high-dimensional
spectral images.

III. SPECTRAL-INDEX FRAMEWORK FOR CLOUD STRATEGIES

Conventional data processing methods encounter challenges
in the effective management of extensive data volumes, par-
ticularly in terms of computational demands and memory re-
quirements. As aforementioned, the cloud has emerged as a
promising approach to overcome these challenges effectively.
The integration of CC with efficient distributed techniques
presents a compelling solution for addressing these difficulties
encountered in large-scale data analysis [55], [64], [65].

In this context, the proposed methodology contributes valu-
able insights into the successful integration of CC for HSI
processing [57], [66]. The research explores crucial factors,
architectural principles, and best practices that underpin this
integration. Moreover, the study addresses not only technical
considerations but also important aspects related to security,
privacy, and data management. These considerations play a vital
role in ensuring the safeguarding of sensitive data and compli-
ance with regulatory requirements. Finally, this work includes
guidelines that serve as a road-map to optimize data workflows
and fully leverage the potential of cloud-based parallelization.

A. Architecture Design

The proposed method enables efficient and seamless in-
teraction between data processing algorithms and large-scale
datasets. The employed approach adheres to a fundamental
methodology that entails the dissemination of data and the
execution of operations on segregated subsets. These subsets are
allocated to individual tasks, which are deployed across inter-
connected machines within the cloud infrastructure following a
master–worker design. The framework encompasses several key
components, which are introduced as follows.

1) Application Definition: This component encompasses the
settings and preconditions required by the algorithms. The pri-
mary objective is to facilitate user-machine interaction through
a friendly interface. Users are empowered to define algorithm
specifications and configure various execution parameters, such
as the number of nodes, dataset characteristics, or cores per
node, among others. To ensure the ease of use and integration
with subsequent components, the Java programming language is
employed. This choice is based on the language simplicity and
the ability to integrate with the overall framework. Furthermore,
users have the flexibility to provide UDFs at this stage, enabling
customization and extending the functionality of the algorithms.

2) Storage and Data Management: This module leverages
the information provided by the preceding stage to perform the
crucial tasks of specify the data flow and divide the dataset into
slices. The data flows through the Pig framework, utilizing the
Pig Latin language for efficient processing, while HDFS handles
the storage system. Specifically, HDFS is designed to manage
large datasets in a secure and cost-effective environment.

Each data slice is systematically assigned a unique identifier
ranging from 1 to N , corresponding to the respective worker
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Fig. 1. Workflow diagram of the deployed CC framework, showcasing the primary components. The execution flow from the initial stage to the final point is
depicted.

node responsible for its processing. This strategic allocation
of data slices enables effective parallelization and distributed
execution within the computational environment. Moreover, this
step plays a pivotal role in ensuring the overall performance and
scalability of the application. Also, critical considerations such
as load balancing and data privacy are addressed.

3) Execution and Collection: This phase encompasses the
distributed data processing implemented according to the as-
signed data in each worker. For this purpose, UDFs are translated
into MapReduce jobs, facilitating efficient computation across
the computational environment. At the end, the results are col-
lected. The execution of these algorithms follows a well-defined
pipeline, comprising distinct stages that compose the processing
workflow.

In the subsequent sections, a thorough breakdown of the
fundamental concepts that form the foundation of each individ-
ual component is provided. The architectural overview of the
framework is illustrated in Fig. 1.

4) Pig Framework: Apache Pig [49] presents a highly effi-
cient and streamlined approach for incorporating UDFs into the
execution workflow. The framework is assisted by a compiler
that enables the interpretation of Pig Latin scripts into optimized
MapReduce jobs. The scripts provide the possibility to integrate
external libraries using multiple languages, such as Java. This
inherent versatility empowers users to tailor data transforma-
tions and operations to meet the specific requirements of a wide
range of computationally demanding tasks. In addition, UDFs
facilitate code reusability and modular-paradigm, enhancing
collaboration and maintainability within the system.

Pig Latin provides a sequential structure in a nested data
model, where each step corresponds to a unique data operation or
transformation. The operations are performed using a straight-
forward and high-level programming paradigm, akin to SQL.
Indeed, a range of operations, including filtering, grouping,
joining, and aggregation, among others, are efficiently encap-
sulated in Pig Latin. Pig operates directly on files, and hence,

eliminates the need for costly data movements. Furthermore, it
adopts a simple data model with a limited number of data types,
including: 1) atomics for strings and numbers; 2) tuples for data
sequences; and 3) maps as collections of key-value items. These
operations greatly facilitate the compilation of MapReduce op-
erations, streamlining the overall process. To further enhance
usability, a debugging environment is provided, which proves
indispensable when dealing with complex workflows.

As a consequence of the above, the Pig framework offers
a comprehensive solution to address current challenges in dis-
tributed large-scale data processing, which is well-suited for rich
spectral data.

5) Apache Hadoop: Hadoop is developed by the Apache
Software Foundation1 and presents a highly scalable implemen-
tation of the MapReduce operation. This powerful framework
enables the efficient processing of vast datasets by distributing
computational tasks across multiple workers, thereby leveraging
the advantages of data distribution within a computationally effi-
cient environment [67], [68]. To achieve this objective, Hadoop
employs two critical components. First, the HDFS is utilized to
ensure efficient data retrieval and storage. Second, the MapRe-
duce model is employed for facilitating parallel computation.
The integration of these components forms the foundation of
the Hadoop capabilities to handle large-scale data processing
tasks in a distributed computing environment.

The HDFS incorporates a meticulously designed partitioning
and replication mechanism to efficiently distribute data among
workers. This process enables the strategic allocation of data
to workers with a higher likelihood of being mapped. More-
over, HDFS leverages the concurrency capabilities provided
by a large-scale node infrastructure and effectively mitigates
the impact of failures through data replication, ensuring both
fault tolerance and data availability. Moreover, it includes block

1Apache Software Foundation. (2010). Retrieved from https://hadoop.apache.
org

https://hadoop.apache.org
https://hadoop.apache.org
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duplication techniques that play a critical role in preserving data
integrity and availability. The block-based approach involves
partitioning blocks based on the overall data size by utilizing
a hierarchical structure consisting of a central NameNode and
multiple DataNodes. The NameNode works as a centralized
repository for data files and essential metadata, and runs on
the master node to control the distribution of metadata to
DataNodes. Efficient replication of data blocks in memory is
made possible through a well-established connection between
the NameNode and DataNodes.

Although Hadoop provides a fault-tolerant environment, the
data loading process into HDFS is often time-consuming and
data-intensive. Consequently, several related issues have been
extensively investigated in the literature. For instance, the
study [69] proposes energy enhancements by the usage of two
resource boxes: interactive or batch jobs. Alternatively, an al-
tered version of Hadoop deployed within the cluster incorpo-
rates an efficient scheduler [70], which utilizes resources more
efficiently.

6) MapReduce Programming Model: MapReduce is imple-
mented as a purpose-built computational model designed to
harness the capabilities of widely available hardware [50], [71].
The primary goal is to efficiently process massive volumes of
data within a scalable environment. This is achieved through a
two-step process: applying a map function to the relevant data
blocks, followed by the reduction of results to obtain the desired
output. The master node manages a significant dataset stored
in HDFS, which is then subdivided into smaller subdatasets.
Each of these subtasks is independently assigned to individual
worker nodes for processing, and the results are subsequently
aggregated. The workflow of MapReduce can be divided into
five distinct stages: 1) data reading; 2) mapping; 3) shuffling;
4) reducing; 5) output results. This workflow facilitates the
dissemination of data to workers during run-time through a
projection process. An exemplary implementation of this model
is Amazon Elastic MapReduce (EMR), which empowers users
to instantiate Hadoop clusters for processing extensive datasets.
Alternatively, resources such as Amazon Elastic Compute Cloud
(EC2) and additional Amazon Web Services (AWS), ensure
scalable processing capabilities.

MapReduce operates on discrete data blocks, enabling the
parallel execution of operations within each block to expedite
application processing. As previously introduced, HDFS works
in combination with MapReduce providing data blocks to be
distributed to accomplish reliable and extremely fast computa-
tions. Replication is implemented to ensure feasibility, where
DataNodes balance the data in case of need to ensure a high
replication. Also, the NameNode constantly tracks which blocks
need to be replicated. In this context, parallelization takes place
among various data blocks during both the Map and Reduce
phases. This is also optimized through the use of key-value pairs
assigned to MapReduce tasks, enabling the reduction of specific
data before the completion of all tasks. Standard MapReduce
frameworks consist of four fundamental concepts: 1) workers,
2) job trackers, 3) task trackers and 4) task runners. The job
tracker initiates the job and partitions the tasks among workers.
Each task is associated with a unique identifier that corresponds

Algorithm 1: Pig Latin framework outline for seamless
integration into novel algorithms. The settings, libraries
and UDF paths are represented as CONFIG,LIBS, and
UDF , respectively. The implemented algorithm as f(·),
datasetX , outputsO, p partition, and k ∈ K iterations. Bold
typing refers to Pig Latin instructions.

1: REGISTER CONFIG & LIBS & UDF � Distribution
and parallelization

2: DEFINE f (UDF)
3: LOAD X from S3
4: FOR EACH Xp ∈ X GENERATE Op

5: REDUCE O ←Op

6: STORE S3←O
7:
8: ifk �= K then �Exit condition
9: Repeat from step 5.

10: end if
11:
12: Obtain and validate results.

to a specific data partition and launched by a runner within a
Java Virtual Machine (JVM). Also, the job trackers manages
and updates in execution time the status of the workers, which
are facilitated by the task tracker. This tracker periodically
reports the progress of workers during the execution of tasks
and retrieves the Java archive (JAR) file containing UDFs from
the HDFS. Upon task completion and when a worker becomes
idle, the job tracker dispatches a new task using a scheduling
algorithm, ensuring optimal utilization of available resources.
This iterative process continues until all required task slots are
filled. Finally, the reduce task is executed by a task tracker to
consolidate the results obtained from the different tasks.

B. NDOI: A Distributed Solution

The NDOI (η) has exhibited its proficiency in detecting oil
spills in marine environments [24]. Specifically, the reflectance
at wavelengths R599 and R870 has been identified as a crucial
region of interest for this purpose. The computation of this index
is determined as follows:

η =
R599 −R870

R599 +R870
.

At first glance, its calculation seems straightforward. How-
ever, it becomes increasingly intricate due to the substantial
number of bands within HSI scenes. In this regard, the HSI
data cube is denoted as X ∈ RH×W×B , where H,W,B are
the height, width, and bands, respectively. Moreover, the num-
ber of bands varies for each sensor, owing to their different
properties. To effectively address the spatial-spectral informa-
tion encompassed by the scene, the significance of memory
requirements becomes paramount. The data require partitioning
across multiple computing nodes or workers, which perform
computations proportional to their assigned data portions to
calculate η. In this context, the proposed procedure harnesses
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Fig. 2. Execution workflow of the proposed CC architecture, based on Apache Hadoop and Pig. The wavelengths required for the calculation of η are highlighted,
with R599 represented by the light blue color and R870 represented by the dark blue color.

cloud-based methodologies that align with the architectural de-
sign introduced previously. The ensuing procedure is as follows.

The initial step involves configuring the cloud environment,
which includes setting up Amazon EC2 instances, Amazon S3
storage, HSI data X , scripts, and the UDF (η). The entirety
of the data is stored in HDFS along with the necessary files
for the workers tasks. Subsequently, the Pig script is com-
piled, and then, the execution starts. MapReduce parallelizes
the calculations of η by initially mapping the partitioned data
Xp among the workers, where p ∈ P denotes the number of
partitions corresponding to the number of workers. For each
data partition, its ith pixel is utilized for calculating η using the
corresponding wavelengths, thereby generating a worker output
Op. Concretely, the total number of pixel isH ×W . Ultimately,
the individual outputs are aggregated, resulting in the generation
of O, which is subsequently stored in HDFS. The complete
procedure is illustrated in Fig. 2.

C. Integration Guidelines

The employed architecture is specifically engineered to en-
hance the utilization of innovative and diverse data-intensive
processing applications. One key aspect contributing to its ef-
fectiveness is the incorporation of UDFs. Therefore, integrating
this framework into new methodologies requires a structured set
of steps. First, configure a cloud resource provider. Next, develop
UDFs tailored to the specific algorithm and the corresponding
configurations. Lastly, deploy the combined Apache Hadoop and
Pig environment.

The procedure is outlined in Algorithm 1. The initial phase
involves the distribution and parallelization of data, which is
realized through the implementation of the Pig Latin script.
Significant emphasis should be placed on recognizing that each

subset of data is different. Subsequently, each worker indepen-
dently processes its assigned data subset. Then, the final results
are stored in the Amazon S3 storage. These individual outputs
are then combined to evaluate the outcomes of the implemented
algorithm, which may be encapsulated in a JAR file. Finally,
a termination condition is assessed, based on factors such as
reaching an iteration limit, achieving the desired results, or other
predetermined criteria.

IV. EXPERIMENTAL RESULTS

A. Environment and Platform Details

Experiments are conducted on AWS, where S3 is used to store
the data, the UDFs and all the required libraries. Also, EMR2

is used to manage the Hadoop framework, to distribute and
process the data between the cluster nodes, which is dynamically
built using EC2 instances. This makes it possible to deploy
configurable Hadoop/Spark clusters based on the available tools
and the execution nodes capabilities [72]. Worker nodes are
m5.xlarge3 EC2 instances, each equipped with 16 GB of RAM, 4
virtual CPUs, and an Intel Xeon Scalable processor running at a
maximum clock speed of 3.1 GHz (Skylake 8175 M or Cascade
Lake 8259CL). Data files are stored in S3 and then distributed
among workers for parallel processing. Each node incorporates
a 32 GB volume of Elastic Block Store (EBS/gp2) type, re-
sulting in a total solid state drive (SSD) size of P × 32. The
networking configuration boasts a 10 Gbps network bandwidth
and 4750 Mbps EBS bandwidth.

The UDF function (η calculation) is integrated within a
PIG script, with the objective of using the native capabilities
of Hadoop for the parallelization of operations based on the

2[Online]. Available: https://aws.amazon.com/es/emr/
3[Online]. Available: https://aws.amazon.com/es/ec2/instance-types/m5/

[Online]. ignorespaces Available: ignorespaces https://aws.amazon.com/es/emr/
[Online]. ignorespaces Available: ignorespaces https://aws.amazon.com/es/ec2/instance-types/m5/
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Fig. 3. Visualization of the dataset, captured by AVIRIS on May 17, 2010 (f100517t01p00r11). The colors observed in (b) indicate the intensity of oil within a
specific pixel, ranging from white (representing water) to black, with complete whiteness indicating the absence of oil in that pixel. (a) RGB. (b) NDOI (η). (c)
Spill map. (d) Thin spill. (e) Medium spill. (f) Thick spill.

MapReduce paradigm [73]. The used environment includes
several applications, such as Hadoop 3.3.3, HBase 2.4.15, Hive
3.1.3, Hue 4.10.0, Oozie 5.2.1, Pig 0.17.0, Sqoop 1.4.7, Tez
0.10.2, and ZooKeeper 3.5.10.

To run the experiments, the execution script is designed and
loaded on the master node. The script incorporates the essential
code and input data, which are stored within the S3 service.
Therefore, the target UDF (η) is executed on each cluster, which
consists of a predefined set of computing nodes. The experi-
ments are conducted using a range of input file sizes. For each
combination of experiments, involving different cluster config-
urations sizes and input file sizes, five Monte Carlo executions
are performed. The time evaluation includes the average values
obtained from these five executions. The overall execution of the
experiments spanned approximately 30 hours, incurring a cost
of 0.214 USD/h per equivalent normalized EC2 instance hour
of execution in the cluster.

In order to analyze the performance of the η calculation, a
profiling option is incorporated. Each conducted experiment
records the number of invocations to the UDF, which directly
relies on the file size, along with the corresponding execution
time in microseconds on the nodes. While these specific data
are not considered in the current dataset analysis, they offer
valuable insights, particularly in confirming the linearity of the
η calculation regardless of the input data loading and output data
storage operations in S3.

B. Dataset Description

The target scene corresponds to the Deepwater Horizon
(DWH) mission in the Gulf of Mexico, situated southeast of the
Mississippi River Delta. In May 2010, the imagery was acquired
utilizing the AVIRIS sensor [74]. Acquired images possess a
spatial resolution ranging from 20 to 1 m, which compress
hyperspectral data across the visible and near-infrared (VNIR)
and short-wave infrared (SWIR) spectral ranges, spanning from
366 to 2496 nm, with a lower bandwidth of 10 nm. The scene en-
compasses 224 bands from an altitude of approximately 28 000
feet.

The scene shown in Fig. 3(a) [33] exposes diverse magnitudes
of oil slicks, distinguished by multiple luminous lines traversing
the lower portion of the image, suggestive of emulsification.
Moreover, conspicuous dark crimson rounded marks in the
upper region of the image denote substantial oil blemishes.
The η result, shown in Fig. 3(b), highlights contaminated areas,
appearing more prominently in areas of thicker oil. This oil spill
occurred within the geographical coordinates of 26° to 30°north
and 84° to 92°west. In order to conduct a thorough analysis,
the attention is exclusively directed toward the region of utmost
significance within the image. Concretely, the classification map
illustrated in Fig. 3(c) [33], serves to differentiate between mul-
tiple levels of oil spill thickness. This classification yields three
distinct categories. The thick spill shown in Fig. 3(d) highlights
the presence of emulsion lines traversing the scene. In addition,
it shows the perception of black spots in the higher section of
the image. In the second category, the medium spill is shown in
Fig. 3(e), where a grainy pattern that resembles irregular spots is
evident. Finally, the fine spill from Fig. 3(f) reveals the existence
of thin films of oil, commonly referred to as sheen, on the water
surface.

In order to perform extensive testing of memory and com-
putational resources on the cloud platform, the entire scene
is replicated to achieve the desired file size. This approach
allows for an in-depth examination of the cloud performance
and its ability to effectively handle varying data sizes, simulating
real-world scenarios where data volumes may vary significantly.

C. Experimental Discussion

The proposed cloud-based methodology has undergone rig-
orous evaluation through three different experiments, aimed
at comprehensively assessing its performance, efficiency, and
scalability.

In this context, the size of the dataset plays a critical role
in determining the efficiency and scalability of the proposed
approach. The first experiment aims to investigate the impact
of file size on the performance of the cloud-based methodology,
concretely for 1, 4, 8, 16, and 32 GBs. For this purpose, multiple
workers configuration (1, 2, 4, 8, 16, and 32 workers) are used
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Fig. 4. Experimental results for the AVIRIS dataset encompassing various file size and workers configurations are presented. All three experiments are displayed
in ascending order from left to right. Standard deviations are depicted in the plots and indicated with a small line positioned at the top of the bars.

to evaluate the obtained run-time for each configuration. In
this regard, as the file size increases, a corresponding increase
in the computational resources required to process the data
emerges. This, in turn, produces longer execution times and
potentially impact the environment responsiveness. Moreover,
an understanding of the proposed method’s performance across
different file sizes of upmost importance in identifying potential
bottlenecks or scalability issues. This is particularly relevant
in real-world applications, where data amounts are often con-
siderable. Such insights can facilitate the optimization of the
proposed method performance and its applicability to practical
scenarios.

The second experiment is designed to ascertain the elapsed
time necessary for completing the execution. This metric holds
significant importance for measuring the system’s overall effi-
ciency. In this context, the run-time serves as an indicator of
possible bottlenecks or inefficiencies within the environment.
Addressing these issues becomes imperative to enhance the
methodology overall performance. Thus, this experiment plays a
crucial role in providing valuable perspectives for the refinement
and optimization of the cloud-based methodology.

The third experiment emphasizes classification to identify oil
spill areas in the original image, pixel by pixel, and distinguish
them from watery regions. In this regard, the evaluation con-
siders different spectral indices, such as, HI, RAI, NDWI, and
NDOI (η). Four classifiers are employed for such evaluation:
support vector machine (SVM), random forest (RF), k-nearest
neighbors (KNN), and multinomial logistic regression (MLR).
Therefore, this experiment holds significant importance as it
demonstrates the classification performance of the η against
multiple indices.

The last experiment focuses on the speedup, a crucial metric
to evaluate the degree of improvement achieved in the scalability
performance. Speedup quantifies the advantage gained by paral-
lelize computations across multiple workers (in a similar way to
the previous experiment). Two key insights arise from this met-
ric. First, a speedup greater than 1 signifies that the cloud-based
approach surpasses traditional computing. Therefore, this result
underscores the benefits of harnessing distributed computing
resources. Secondly, a speedup value close to or equal to the

number of cloud nodes employed indicates near-linear scala-
bility, which demonstrates the proposed method proficiency in
efficiently handling larger workloads.

1) Experimentation on File Size: The results obtained from
the first experiment are depicted in Fig. 4(a). Notably, when
executing with a baseline configuration of a single worker,
the required run-time exhibits a nearly exponential growth as
the file size increases. As a consequence, the worker becomes
saturated, leading to a substantial increase in run-time. This
observation underscores the limitations of nondistributed ap-
proaches in terms of performance. As the number of workers
increases, the required run-time significantly decreases. For
instance, employing two workers results in approximately half
the time required compared to using only one worker. Similar
trends are observed with subsequent configurations. This clearly
demonstrates that the distribution and parallelization of the
workload aim to proportionally reduce the run-time.

Another important observation is that, for the same number
of workers, the execution time increases with larger file sizes.
Finally, for a large number of workers, such as 16 or 32, the
run-time reaches a minimum. This minimum ensures a proficient
execution of the workers. From these findings, it can be inferred
that when the required execution time begins to exhibit linear
growth, for example, with four workers for a 16 GB workload,
the addition of more workers could be considered. Particularly,
this fact assumes particular importance when the maintenance of
a stable run-time becomes paramount in the application. This de-
termination could be crucial in scenarios where the calculation of
the η value is critical, as the reduction in execution time enables
the implementation of real-time considerations. Furthermore, it
should be observed that when considering a memory capacity of
32 GBs, the introduction of additional workers leads to a greater
decrease in run-time up to a specific threshold (with 16 and 32
workers). However, beyond this threshold, the incorporation of
new nodes ceases to yield significant advantages.

Overall, these results provide valuable observations into the
relationship between the number of workers, file size, and ex-
ecution time. Such ideas guide the optimization and decision-
making processes in designing efficient and responsive cloud-
based methodologies.
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Fig. 5. Experimental showcase for classification purposes. The (a) and (b) images show the intermediate results of the η calculation final result (c). In (d) and
(e), the set of pixels colored in blue represents water regions, while the green determines oil spill zones. (a) R599 −R870. (b) R599 +R870. (c) NDOI (η). (d)
Labels. (e) Overlapping.

TABLE I
TIMES IN SECONDS (S) OBTAINED FOR ALL WORKER AND FILE SIZE

CONFIGURATIONS

2) Experimentation on Run-Times: The second experiment
studies the evolution of run-time when varying numbers of
workers, as depicted in Fig. 4(b). To comprehensively assess the
performance, four different configurations were executed based
on the file sizes from the previous experiment.

The results clearly demonstrate that higher file sizes corre-
spond to longer execution times. Additionally, a notable trend is
observed wherein an increase in the number of workers leads to a
considerable reduction in run-time, up until the maximum num-
ber of workers, i.e., 32, is reached. At this worker configuration,
the execution time becomes nearly consistent for all file sizes.
Furthermore, this indicates the continued effectiveness of paral-
lelization. The consistent execution time observed across various
file sizes when employing the maximum worker configuration
suggests the potential for enhanced utilization of computational
resources with larger datasets. Also, this insight implies that the
proposed cloud-based methodology can effectively scale with
the available resources, accommodating larger datasets without
compromising performance. However, when contemplating a
smaller file size, such as 1 GB, the execution time maintains a rel-
atively consistent pattern even with increased distribution, such
as deploying more than eight workers. This phenomenon occurs
due to the detrimental effects of partitioning data into excessively
small sizes. In such instances, the overhead associated with
partitioning surpasses the advantages of parallelization with a
substantial idle time for computational resources. Consequently,

the time reduction achieved in this scenario is minimal. The
results are shown in Table I.

The insights of this experiment provide valuable insights to
optimize the proposed cloud-based methodology by strategi-
cally allocating the right number of workers based on file size
and computational requirements.

3) Experimentation on Classification: The performance of
the η calculation is contingent upon the classification of each
pixel within the dataset. Moreover, different zones within the
original image are specifically chosen for classification. Fig. 5
shows the concern of this experiment by manually labeling.
Also, the intermediate results to obtain the final classification
provided by the η calculation are included.

The outcomes of the classification are presented in Table II.
A comparative analysis is conducted against various established
methods in the literature for oil split detection. Notably, the
results obtained from the proposed η calculation surpass the
performance of the other indices. The best results are obtained
with the KNN classifier. In addition, the classification maps are
provided in Fig. 6. RAI achieves significant results by detecting
not only thick spills, as in the case of NDWI, but also medium
and thin spills, where the oil dispersion in the water is visible.
However, the η manages to improve the classification of fine-
grain oil splits within the entire image, for instance, multiple
pixels in the upper left corner.

It is important to highlight that the simplicity of the proposed
calculation, relying on only two spectral bands, underscores the
outstanding quality of the achieved results.

4) Experimentation on Speedup: This last experiment fo-
cuses on determining the speedup achieved by the different
worker configurations for all file sizes. Results are included
in Fig. 4(c). As observed, the maximum theoretical speedup
is determined by the number of workers. Although this value
is theoretical, the obtained speedup value closely approximates
this theoretical maximum. Consequently, starting with a single
worker, no distribution occurs and the speedup serves as the
baseline. As additional worker configurations are introduced,
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TABLE II
CLASSIFICATIONS RESULTS FOR DISCRIMINATING BETWEEN WATER AND OIL CLASSES; THE OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA), AND KAPPA

(KX100) METRICS ARE PRESENTED; BEST RESULTS FOR EACH CLASSIFIER ARE HIGHLIGHTED IN BOLD

Fig. 6. Visual representation of classification maps illustrating water (blue) and oil (green) categories for various spectral indices. (a) HI-SVM. (b) RAI-SVM.
(c) NDWI-SVM. (d) NDOI(η)-SVM. (e) HI-RF. (f) RAI-RF. (g) NDWI-RF. (h) NDOI(η)-RF. (i) HI-KNN. (j) RAI-KNN. (k) NDWI-KNN. (l) NDOI(η)-KNN.
(m) HI-MLR. (n) RAI-MLR. (o) NDWI-MLR. (p) NDOI(η)-MLR.

the speedup value increases significantly. However, noteworthy
implications emerge from this metric.

First, when the file size does not necessitate a high number of
workers, the speedup value stabilizes even with an increment
in the number of workers. For instance, with eight workers,
the obtained speedup values for file sizes of 8 and 16 GBs are
remarkably similar. This observation leads to the conclusion that
the usage of a higher number of workers may not be necessary
in such cases, as it may not result in a substantial increase in
speed. The cloud environment configuration offers the capability
to adapt executions to these requirements.

Second, the discrepancy between the speedup theoretical
value and the obtained value for 32 workers configuration indi-
cates that workers can effectively handle more data in this sce-
nario. However, it also suggests that the computational resources
of these workers may not be fully exploited. This analysis high-
lights the potential for further optimization to achieve enhanced
resource utilization. Given this insight, it becomes feasible to
ascertain the tradeoff between parallelization, resources, and
economic considerations. Undoubtedly, the observed ascending
trend in positive speedup with the usage of 32 workers and 32
GBs provides evidence supporting the notion that the distribu-
tion achieved is optimal, with a maximum speedup obtained of
26.26. The speedup values are included in Table III.

TABLE III
SPEEDUP VALUES OBTAINED FOR ALL WORKER AND FILE SIZE

CONFIGURATIONS

As a summary, the complete set of experiments contribute sig-
nificantly to the understanding of the cloud-based methodology
performance. The evaluation of the experiments demonstrates
that the proposed cloud implementation achieves noteworthy
results in all cases.

V. CONCLUSION

This article introduces a new cloud-based implementation of
the NDOI (η) calculation, serving as an effective spectral index
for discriminating oil spills through CC-based HSI data analysis.
Leveraging the inherent advantages of cloud platforms, the
proposed methodology addresses the considerable memory and



2472 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

computational demands entailed in processing extensive HSI
scenes. The adoption of the Pig framework offers an easy-to-use
architecture, facilitating the distributed deployment of the NDOI
algorithm. Furthermore, harnessing Amazon services, such as
EC2 and S3, increases the scalability of our mechanism and pro-
vides a well-suited platform for future endeavors encompassing
complex scenes and the implementation of intricate algorithms.
The obtained experimental results demonstrate a high degree of
scalability, with both the number of workers and the file size
exhibiting notable reductions in run-times. The efficient perfor-
mance observed during the experiments serves as a promising
indicator of the proposed methodology proficiency and capacity
to accommodate increasingly demanding workloads. The ulti-
mate outcome highlights the considerable advantage of utilizing
cloud implementations for real-time disaster response.

As limitations to consider, the scalability of the η calcula-
tion is tied to the memory requirements for dataset storage. In
our particular case, attempts to speed up the calculations have
proved negligible, given the simplicity of these calculations.
However, as we move toward the processing of large data sets,
there are two critical challenges to be tackled: the efficient
storage of gargantuan datasets and the intricacies associated with
distributed processing. Large hyperspectral datasets, with their
multitude of spectral bands, offer an ideal environment for as-
sessing the potential of cloud-based technologies when handling
these drawbacks. Additionally, the majority of capturing sensors
are capable of detecting the target wavelengths for the NDOI
calculation, which contributes to the reliability of the suggested
index computation.

In our forthcoming research, we plan to explore the im-
plementation of new algorithms tailored to resource-intensive
computations and memory-demanding tasks. Moreover, deploy-
ing these algorithms in a real-time environment is identified
as a future target for disaster monitoring and decision-making
tasks. These efforts will broaden the scope of RS applications,
catering to a variety of needs and driving the field forward in
environmental monitoring and disaster response scenarios. In
light of this, it is imperative to deploy a dedicated cloud-based
system for real-time disaster management. Future work involves
introducing additional methodologies utilizing machine learning
algorithms to predict the spread of different oil splits. Such
approach aims to offer valuable insights for anticipating and
implementing solutions to minimize future damage.
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