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Zero-Shot Remote Sensing Scene Classification
Method Based on Local-Global Feature Fusion

and Weight Mapping Loss
Chao Wang, Junyong Li , Ahmed Tanvir , Jiajun Yang , Tao Xie , Liqiang Ji , and Tong Zhang

Abstract—Zero-shot remote sensing scene classification refers
to making the model to have the ability to identify the unseen
class scenes based on seen class scenes, and has become a re-
search hotspot in the field of remote sensing. Contemporary ap-
proaches in zero-shot remote sensing scene classification primarily
focus on extracting global information from scenes, neglecting
nuanced local landscape features. This oversight diminishes the
discriminative capabilities of recognition models. Furthermore,
these methods overlook the semantic relevance between seen and
unseen class scenes in training, leading to reduced emphasis on
learning from varied scenes and subsequent declines in classifi-
cation performance. To address these challenges, this article pro-
poses the “Zero-Shot Remote Sensing Scene Classification Method
Based on Local-Global Feature Fusion and Weight Mapping Loss
(LGFFWM).” The design incorporates a local-global feature fusion
(LGFF) module enabling adaptive labeling and feature modeling
of internal local landscapes, effectively merging them with global
features for a more discriminative representation of remote sensing
scenes. Furthermore, a weight mapping loss (WM Loss) function
is introduced, leveraging a semantic correlation matrix to compel
the model to prioritize learning seen class scenes that exhibit strong
correlations with unseen class scenes by assigning higher training
weights. Extensive experiments have been conducted on classical
remote sensing scene datasets, including UCM, AID, and NWPU,
demonstrate the superiority of the proposed LGFFWM method
over ten advanced comparative methods, yielding overall accuracy
improvements of over 2.25%, 3.47%, and 0.44%, respectively.
Additional experiments on the SIRI-WHU and RSSCN7 datasets
underscore the transferability of LGFFWM, achieving overall
accuracies of 53.50% and 47.37%, respectively.

Index Terms—Local-global feature fusion (LGFF), remote
sensing scene classification (RSSC), weight mapping, zero-shot
learning (ZSL).
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I. INTRODUCTION

R EMOTE sensing images have the advantages of fast ac-
quisition speed and wide coverage [1], [2], [3]. Based on

high-resolution remote sensing (HRS) images, remote sensing
scene classification (RSSC) is of great significance for prompt
and accurately obtaining urban development information and
scientifically conducting urban planning [4], [5], [6]. Unlike
traditional object classification tasks, remote sensing scenes are
highly abstract semantic concepts that do not always correspond
to a specific land feature type. Therefore, traditional pixel-level
or object-level classification methods [7], [8], [9] are difficult to
apply directly. Currently, HRS image classification for remote
sensing scenes has become a research hotspot in the fields of
remote sensing and computer vision.

In order to construct a more discriminating features to describe
remote sensing scenes, researchers have carried out extensive
research work and achieved many achievements [10], [11], [12],
[13], [14], [15]. Among them, the descriptors based on artificial
design rely on prior knowledge and have the advantages of
low computation and strong interpretability. For example, Zhu
et al. [10] proposed a knowledge-guided land pattern description
framework, which uses adaptive gradient perception mechanism
and land pattern cognitive model to capture the internal and
external relations between different land cover types. Lv et al.
[13] proposed an adaptive region-based Gauss-weighted spectral
(GWS) to improve the spectral homogeneity of local regions
around pixels. On this basis, an area shape index (ASI), which
describes the relationship between the area and shape of the
adaptive region around each pixel is proposed and combined
with GWS to address the problem of insufficient basic image
features for land cover classification. Compared with artificially
designed descriptors, the method based on deep learning gets
rid of the dependence on prior knowledge and can automatically
extract highly abstract and highly discriminating features, which
has become the main technical means for scene classification
[14], [16], [17]. For example, Penatti et al. [18] evaluated the
generalization ability of deep features (ConvNets) in two new
scenes, aerial and remote sensing images, for the classification
of aerial and remote sensing images. Zhu et al. [11] proposed
a weakly pseudosupervised decorrelated subdomain adaptation
(WPS-DSA) framework for high spatial resolution cross-domain
land use classification of high-speed rail. Chaib et al. [19]
used visual geometry group network (VGGNet) as a feature
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extractor to select more representative deep features to optimize
the representation of scenes. At the same time, although these
methods have shown good performance in specific datasets,
they still have prominent limitations in practical applications,
mainly manifested in the following: 1) due to factors, such
as economic development level and cultural differences, the
visual features of the same urban remote sensing scene may
vary greatly in different countries or even different regions
of the same country [20]. Therefore, the classification models
trained on specific datasets are usually not transferable, and it
is difficult to directly apply them to the classification of remote
sensing scenes in different cities and 2) modern urban remote
sensing scenes are diverse and in continuous evolution [21], [22],
while existing models can only classify the limited number of
labeled scene categories provided in the training set. For other
unlabeled or newly emerging scene categories, the models do
not have classification capabilities, i.e., the generalization ability
and scalability of the models are poor.

In order to cope with the above challenges, some researchers
proposed few-shot learning (FSL) and zero-shot learning (ZSL)
for RSSC. The former reduces the requirement on the number
of scenes for model training. For example, Huang et al. [23] pro-
posed a task-adaptive embedding network, TAE-Net, to enhance
the generalization ability of the model for unseen remote sensing
scenes under the condition of FSL. Wang et al. [24] proposed a
novel transductive learning framework with conditional metric
embedment to deal with the problems of interclass metric bias
and intraclass variation under the condition of FSL. Meanwhile,
a transductive prototype learning strategy was proposed to en-
hance the robustness of prototypes to intra-class variation. Zeng
et al. [25] proposed a calibration method for scene classification
prototype of remote sensing scenes with FSL based on feature
generation model combined with self-attention feature encoder.
Compared with FSL, ZSL completely gets rid of the dependence
on seen class scenes for RSSC tasks. ZSL can use the semantic
relevance between seen and unseen classes as a bridge to make
the classification model have good transferability and the ability
to classify unseen class scenes. Therefore, compared with FSL,
it has better usability in practical applications. For example, Li
et al. [26] proposed a novel remote sensing knowledge graph
(RSKG), which fully considers the rich connections between
remote sensing scene categories. Generate a semantic represen-
tation of scene categories by representation learning of RSKG
(SR-RSKG). Wang et al. [27] proposed a distance-constrained
semantic autoencoder to reduce the semantic gap between visual
features and semantic representations, which to some extent
alleviates the domain shift problem. Quan et al. [28] designed
a semisupervised Sammon embedding algorithm to transfer the
unseen knowledge in the semantic space to the visual space,
making it more consistent with the class structure in the visual
space. Wu et al. [29] proposed a transductive zero-shot RSSC
algorithm based on Sammon embedding to address the problem
of inconsistency between scene classes in semantic space and
visual space and the domain shift problem. The authors in [30]
constructed a semantic directed graph to describe the relation-
ship between seen and unseen classes, and used a label propa-
gation algorithm for zero-shot classification. Li et al. [31] used

generative adversarial networks for zero-shot RSSC. Ma et al.
[32] proposed to use generative adversarial networks (GANs) to
enhance the variational autoencoder generative model to better
measure the reconstruction quality in zero-shot RSSC.

However, the above ZSL methods still have significant limita-
tions and shortcomings in the following two aspects: 1) they only
consider global information while constructing the visual space
and ignore the representative local landscape in different urban
remote sensing scenes; on the other hand, the typical ground
objects and their spatial distribution information contained in
those local landscapes are often very discriminative for scene
classification tasks [33], [34], [35]. Therefore, it is necessary
to further introduce local landscape features to obtain a more
discriminating scene representation. However, at present, local
landscapes corresponding to different scenes are usually ob-
tained based on manual annotation, such as knowledge graph
[26], [36]. These methods not only have a low level of automa-
tion, but also may have differences in the prior knowledge of
annotators, resulting in poor reliability of annotation results.
So, it is urgent to find a method that can adapt to extract local
landscape representation according to the characteristics of the
scene itself and 2) these methods do not consider the difference
in semantic relevance between each seen class and unseen class
scenes in the training set [37], [38], [39], [40]. In fact, the model
should pay more attention to the learning of unseen class scenes
with a higher semantic relevance to seen classes, so as to enhance
the classification ability of unseen class scenes. Therefore, this
article assigns different weights to each seen class scene in
the training, so as to more fully mine the relevant information
between the seen class and the unseen class scenes. Based on
the above analysis, this article proposes the “Zero-Shot Remote
Sensing Scene Classification Method Based on Local-Global
Feature Fusion and Weight Mapping Loss (LGFFWM).” The
main contributions and contributions are as follows.

1) In order to fully exploit the complementary advantages
of global and local landscapes in RSSC tasks, this article
designed a local-global feature fusion (LGFF) module.
Different from the traditional manual labeling method,
LGFF can start from the scene itself, adaptively extracts
the set of proposal frames for marking local landscape
according to the type and spatial distribution of ground
objects and use the proposed normalized local feature
matrix is used to model the feature of the local landscape.
Furthermore, the local and global features are effectively
integrated by cascading method, so as to achieve more
discriminating remote sensing scene representation.

2) This article proposes a weight mapping loss (WM Loss)
function based on semantic correlation matrix to more
fully mine relevant semantic information to enhance the
classification ability of the model under zero-shot condi-
tions. WM Loss utilizes a normalized semantic correlation
matrix to evaluate the semantic relevance between each
seen class and each unseen class scene. On this basis, the
loss function can force the model to assign higher weight
to the seen class scenes with better correlation with the
unseen class scenes in the training phase, so as to force
the model to strengthen the learning of such scenes.
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Fig. 1. LGFFWM network architecture.

This article mainly includes five sections. The next section
introduces the proposed method in detail; then the experimental
settings and results are explained and discussed; the last section
concludes the contribution of the article.

II. METHODOLOGY

This section provides a detailed explanation of the proposed
method. First, it provides an overview of the zero-shot clas-
sification framework established in the article. Based on this,
it further explains the LGFF module. Finally, it provides the
working principle of the proposed WM Loss function based on
the semantic correlation matrices.

A. Model Overview

The architecture of the zero-shot RSSC model proposed in
this article is depicted in Fig. 1, consisting primarily of visual
space and semantic space, with visual space working as the
embedding space [41]. In the deep convolutional neural network
architecture, VGGNet can obtain a score vector by connecting
a softmax layer after the backbone network [42], facilitating
local landscape selection. Through the deep convolutional neural
network architecture, VGGNet effectively extracts high-level

and low-level features [43], [44], [45]. These high-level features
are then combined through fully connected layers. Therefore,
VGGNet is adopted as the base network. In the visual space,
starting from the original image, the set of proposal frames are
used for marking local landscapes is performed, followed by
feature modeling. Simultaneously, effective fusion of local and
global features is achieved through a cascaded approach [46],
[47], resulting in a more distinguished representation of scenes.
In the semantic space, the Word2Vec [48] model trained on
the Wikipedia corpus was used to transform each scene class
into a semantic vector, which is then mapped to the visual
space. The loss function adopts the WM Loss proposed by the
text and is employed to measure the differences in semantic
correlation between different scene categories, enabling a more
comprehensive exploration of relevant semantic knowledge.

B. LGFF Module

The LGFF module, as conceived in this article, primarily real-
izes the adaptive extraction of proposal frames for marking local
landscape and feature modeling, in addition to the integration of
local-global features. Subsequent sections will expound on the
comprehensive workflow of LGFF.
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Fig. 2. Framework of proposal frame extraction for local landscape annotation.

1) Proposal Frame Extraction for Local Landscapes: To
annotate representative local landscapes in urban remote sensing
scenes, a novel proposal frame extraction strategy is proposed,
different from traditional methods as, non-maximum suppres-
sion [49]. The strategy is designed to align with the spatial
distribution and types of land cover within the scene. In urban
remote sensing scenes, it is often the case that the denser and
more diverse the distribution of land features, the more likely
a proposal frame represents a local landscape. Based on this
assumption, the workflow for proposal frame extraction is illus-
trated in Fig. 2.

Given the diverse types and manifestations of typical local
urban landscapes, such as residential areas, commercial zones,
parks, etc. For this purpose, this article selects (including, but not
limited to) three representative land feature types: 1) buildings;
2) vegetation; and 3) impervious surfaces, and use MBI index
[50], NDI index [51], and BCI index [52] to extract the corre-
sponding semantic pixel set. On this basis, this article proposes
a clustering index DSloc, which combines the richness of feature
types and their distribution density, and adaptively extracts the
set of proposal frames for marking the local landscape from the
original image.

D Sloc =

∑
Bm

(
1− di

H

)
∑(

1− di
H

) . (1)

Here, if the current proposal frame is denoted as Frame, H
represents the diagonal length of Frame, di is the distance
from a particular pixel to the center pixel within Frame, and
Bm(m = 1, 2, 3) represents the values of MBI, NDI, and BCI
for a given pixel, respectively. Based on this, the specific steps
for proposal frame generation are as follows.

Step 1: For a particular pixel, pixeli in the image, use the
pixel as the center and perform proposal frame growth with
8-CONNECTIVITY [53]. Record the DSloc after growing each
proposal frame. When DSloc increases continuously for three
iterations and then. decreases continuously for three iterations,
proposal frame growing stops and record the current proposal
frame as Framei. Otherwise, if the boundary is reached during
proposal frame growth, there is no corresponding proposal frame
for pixeli.

Step 2: Repeat Step 1 by traversing all pixels in the image to
obtain the proposal frame collection Frameall.

Step 3: To avoid falling into local optima, let the total number
of image pixels be pixeltot and divide it into ten equal intervals.
On this basis, count the number of pixels in each proposal frame
in Frameall and cluster them based on the respective intervals.
Finally, select the proposal frames with the highest DSloc value
(or tied highest values) from each interval to form the final
proposal frame collection Frameopt for each image xi.

2) LGFF: Distinct local landscapes in urban remote sensing
scenes are primarily characterized by significant differences
in the distribution of land feature, while each local landscape
belonging to the similar kind of scene typically corresponding
to a specific land feature or a combination of land features that
appear with higher frequency.

Therefore, based on Frameopt, this article defines a normal-
ized local feature matrix to describe local landscapes. Initially,
VGGNet is pretrained on the ImageNet dataset to enable the
model to classify 1000 classes of objects, including typical urban
targets, such as buildings, trains, and ponds. Subsequently, for
a proposal frame corresponding to xi, it is input into VGGNet
to obtain a 1000-dimensional score vector Sq from the softmax
layer output. Each dimension in Sq corresponds to a class of
object o in the ImageNet dataset and reflects the likelihood of
the presence of o within the current proposal frame. By iterating
through all Q proposal frames in Frameopt, the local feature
matrix S = [S1,S2, . . . ,SQ] corresponding to xi is obtained.
Taking into consideration that the number of proposal frames
contained in each image may vary, the normalized local feature
matrix FLocal for xi is further defined as follows:

FLocal =
1

Q

Q∑

q = 1

Sq. (2)

Furthermore, the output of the fully connected layers of
VGGNet is employed as the global feature FGlobal for xi.
Subsequently, local and global features are fused through a
cascading approach to obtain the visual feature FFusion.

FFusion = [FGlobal, FLocal] . (3)
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Fig. 3. Illustration of the WM loss.

C. Weight Mapping Loss

To encourage the model to focus more on learning from
seen class samples that are more relevant to unseen classes,
at first, semantic vector sets Y = {Y 1,Y 2, . . . ,Y U} and
Z = {Z1,Z2, . . . ,ZV } for seen and unseen scene classes
are obtained based on Word2Vec, respectively. Here, U and V
represent the total number of categories for seen and unseen
scene classes, respectively.

For a seen class scene class u, a normalized semantic rel-
evance measure Cu is constructed using a Gaussian kernel
function, as follows:

Cu =
1

V

V∑

v = 1

e−||Y u−Zv ||2 . (4)

As it can be seen that, Cu reflects the average semantic
relevance degree between u and all unknown scene classes.
Furthermore, this article builds the proposed WM Loss by
embedding Cu based on the popular LSE Loss (least square
embedding loss) [16]. The LSE Loss connects two branches
together, significantly reducing the disparity between visual
features and semantic features in the visual space. The formula
for calculating WM Loss is as follows:

L (u) = Cu ·
∑

||FFusion −Yu||2 + λ||W ||2 (5)

where W is a randomly initialized encoding matrix for the
semantic embedding branch, aiming to align the visual space
and semantic space, and λ is a regularization parameter. Fig. 3
illustrates the workflow of the proposed WM Loss.

III. EXPERIMENTS AND ANALYSIS OF RESULTS

In order to fully evaluate the performance of the proposed
LGFFWM method, three representative datasets were selected
for the experiments and then, results were compared with ten
state-of-the-art methods.

A. Datasets

The experiments were conducted on three benchmark remote
sensing scene datasets. They are UC Merced (UCM) [54],
the Aerial Image Dataset (AID) [55], and NWPU-RESISC45
(NWPU) [56]. UCM is derived from the United States Geologi-
cal Survey National Map Urban Area Imagery series, providing
labeled samples of various categories of typical urban remote

sensing scenes. AID, released by the Huazhong University of
Science and Technology and Wuhan University, is a large-
scale aerial image dataset constructed from samples collected
from Google Maps images. NWPU, published by Northwestern
Polytechnical University, is an open dataset with significant
variations among different scene samples in terms of translation,
spatial resolution, and more. Using UCM, AID, and NWPU
datasets allows for a comprehensive analysis of performance
the proposed method from different perspectives. Moreover,
to substantiate the transferability of LGFFWM, experiments
executed on the SIRI-WHU [57] and RSSCN7 [58] datasets.
Among them SIRI-WHU, released by Wuhan University, offers
high-resolution satellite images with resolutions reaching up to
2 m. RSSCN7, an openly accessible dataset also originating
from Wuhan University, encompasses images captured across
diverse seasons and weather conditions, thereby introducing
notable challenges. Comprehensive parameter comparisons for
each dataset are presented in Table I.

B. Methods for Comparison and Experimental Settings

1) Comparison With State-of-the-Art Methods: In order to
thoroughly evaluate the performance of the LGFFWM method,
we have selected ten different state-of-the-art methods for
comparison. These baseline models include SSE [37], DMaP
[38], SAE [39], ZSL-LP [30], ZSC-SA [28], VSOP [59], f-
CLSWGAN [60], CYCLEWGAN [61], RBGN [40], and DSAE
[27].

Zhang and Saligrama [37] mapped source domain and target
domain data into the same semantic space and calculated their
relevance. Li et al. [38] explored the intrinsic relationship be-
tween semantic space manifolds and the transfer ability of visual
semantic mappings. Li et al. [30] constructed a semantic directed
graph to describe the relationship between seen and unseen
classes. Gaussian kernel weighted distance is used to establish
directed edges and Google Inception Net (GoogleNet) network
for feature extraction. Finally, employs a label propagation al-
gorithm for zero-shot classification. Kodirov et al. [39] is based
on a learning semantic autoencoder that projects visual features
into semantic space and reconstructs the original visual features.
SAE adds constraints from visual mapping to semantic features
to mitigate domain shift problems. Wang et al. [27] proposed a
distance-constrained semantic autoencoder to process zero-shot
RSSC. Quan et al. [28] adopted a semisupervised Sammon
embedding algorithm to transfer unseen knowledge from the
semantic space to the visual space, making it consistent with the
class structure of the visual space prototypes. Wu et al. [59] pro-
posed a new approach to guide visual semantic embeddedness
learning by using the mutual information between visual and
semantic features. Xian et al. [60] proposed a new generative
adversarial network (GAN) for ZSL. Felix et al. [61] proposed
a new regularization based on GAN training, which uses this
constraint to force generated visual features to reconstruct their
original semantic features. Based on conditional generative
adversarial network of generalized zero-shot learning (GZSL),
robust bidirectional generative network (RBGN) [40] proposes
a novel generative method called RBGN. These methods were
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TABLE I
COMPARISON OF EXPERIMENTAL DATASETS

TABLE II
DIVISION OF SEEN/UNSEEN CLASSES AND TRAINING/TESTING SAMPLES FOR THE SCENE DATASETS

designed with specific considerations in mapping space, domain
shift, visual and semantic feature extraction, generative adver-
sarial network, utilizing different loss functions. Comparing our
method to these baselines helps provide a comprehensive and
objective evaluation of LGFFWM.

2) Experimental Settings: In terms of experimental settings,
our proposed method is implemented on the Ubuntu 16.04 sys-
tem, using the PyTorch-1.3.1 framework, and runs on hardware
with an Nvidia GeForce RTX 2080ti GPU with 11GB of RAM.
In the visual space, we have used a pretrained VGGNet on
ImageNet to obtain local landscape representations, and the
fully connected features for the entire image are also obtained
using the pretrained VGGNet model on ImageNet. We extracted
300-dimensional word vectors using the Word2Vec model, with
parameters for KNN nearest neighbor relationships set based on
[41]. Additionally, the fully connected layers of the embedding
space model were initialized with random weights. The learn-
ing rate for the Adam optimizer was set to 0.00001, and the
minibatch size of 64.

Wang et al. [27] leveraged deep features with superior fore-
ground classification performance compared to handcrafted fea-
tures. Hence, we utilized the ResNet152 (Residual Network
152) model pretrained on the Places dataset to extract 2048-
dimensional deep features as the visual representation of the
scene images. For semantic features, a 300-dimensional vector
obtained from a Word2Vec [48] model trained on the Wikipedia
corpus was employed to represent the semantic features of
scene classes. Finally, following the recommendations in [27],
the experiments used four different ratios for the split between
seen and unseen classes for UCM, AID, and NWPU datasets,
with no overlap between seen and unseen classes. The specific

seen/unseen splits and the ratio of training/testing samples are
shown in Table II.

C. Results Comparison and Analysis

1) Evaluation Metrics: To quantitatively evaluate the perfor-
mance of our method, we have used several quantitative evalua-
tion metrics including overall accuracy (OA), standard deviation
(SD), confusion matrix (CM), and class average accuracy (AA)
[27], [62].

OA is a direct measure of the classification accuracy of the
model on the entire dataset

OA =
Nt

Nt +Nf
(6)

where Nt and Nf represents the number of correctly classified
and misclassified samples, respectively; SD reflects the disper-
sion of OA; CM is a matrix whose rows and columns describe
the predicted and actual classes of the samples, allowing for a
detailed analysis of classification errors in different categories;
AA reflects the average classification accuracy of the model for
various scene classes

AA =
1

n

n∑

i = 1

Ci

Ni
(7)

where Ci is the number of samples correctly classified for class
i, Ni is the total number of samples for class i, and n is the
number of classes.

2) Experimental Results Analysis: Based on three datasets,
the overall accuracies of our method and the comparative meth-
ods are presented in Tables III–V.
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TABLE III
OA (%) AND SD (%) OF LGFFWM METHOD AND STATE-OF-THE-ART METHODS ON THE UCM

TABLE IV
OA (%) AND SD (%) OF LGFFWM METHOD AND STATE-OF-THE-ART METHODS ON THE AID

TABLE V
OA (%) AND SD (%) OF LGFFWM METHOD AND STATE-OF-THE-ART METHODS ON THE NWPU

As shown in Tables III–V, LGFFWM achieves OA values of
60.88%, 56.96%, and 51.96% on the three datasets, which is
significantly superior to other comparative methods. Compared
to the DSAE method, LGFFWM improves OA by an average
of 2.25%, 3.47%, and 0.44% and reduces SD by an average
of 1.60%, 0.44%, and 1.03%. LGFFWM only exhibits slightly
lower accuracy when the ratio of seen/unseen classes is low
(Table V, ratio of 30/15). As a zero-shot RSSC method, DSAE
imposes a discriminative distance metric constraint to enhance

the discriminative ability of the semantic auto-encoder but over-
looks the construction of a more discriminative visual space.
Regarding the two zero-shot RSSC, SSE, and SAE, both have
much lower OA compared to DSAE and LGFFWM. This also
indicates significant differences between typical natural scenes
and remote sensing scenes in terms of background complexity,
land feature composition, and other factors. Hence, traditional
ZSL methods are not directly applicable to RSSC tasks. The
other two zero-shot RSSC methods are ZSL-LP and ZSC-SA.
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Fig. 4. CM of the two methods on the UCM. (a) DSAE, the AA is 63.6%; (b) OUR, the AA is 65.80%.

Fig. 5. CM of the two methods on the AID. (a) DSAE, the AA is 64.8%; (b) OUR, the AA is 65.70%.

Where, ZSL-LP has constructed a semantic directed graph in the
semantic space to describe the relationships between seen and
unseen classes, and ZSC-SA employs a semisupervised Sam-
mon embedding algorithm to make the semantic space and visual
space prototypes more consistent in class structure. Their highest
accuracies are only 49.01% and 50.87%, Consequently, LGF-
FWM demonstrates enhanced competitiveness. Our approach,
akin to ZSL-LP [30], establishes a connection between seen
and unseen classes. However, ZSL-LP [30], ZSC-SA [28], and
DASE [27] overlook distinctive local landscape features. This
comparative analysis facilitates a comprehensive and objective
assessment of LGFFWM. The experimental outcomes affirm the
efficacy and dependability of the LGFFWM.

Furthermore, we have used CM to analyze the recognition
performance of LGFFWM and the second-best performing
DSAE for each unseen class and evaluated the AA based on
this analysis, as shown in Figs. 4–6.

As shown in Fig. 4, for UCM with a ratio of seen/unseen
classes set at 16/5, the unseen classes include “freeway,”

“golf course,” “intersection,” “medium residential,” and “storage
tanks.” We observed that compared to DSAE, LGFFWM im-
proved the detection accuracy by 29% and 49% in the “freeway,”
and “storage tanks” categories, respectively, compared to DSAE.
Despite declines in other categories, AA improved from 63.6%
to 65.80%.

As shown in Fig. 5, for AID with a ratio of seen/unseen
classes set at 25/5, the unseen classes include “dense residential,”
“desert,” “forest,” “industrial,” and “pond.” We observed that
compared to DSAE, LGFFWM improved the detection accuracy
of the two classes “dense residential” and “forest” by 27%
and 12%, respectively. Although there are some decreases in
accuracy for other classes, overall AA has increased from 64.8%
to 65.70%. As shown in Fig. 6, for NWPU with a ratio of
seen/unseen classes set at 35/10, the unseen classes include
“airport,” “basketball court,” “circular farmland,” “cloud,”
“dense residential,” “desert,” “harbor,” “intersection,” “medium
residential,” and “sparse residential.” We observed that com-
pared to the DSAE method, LGFFWM improved the detection
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Fig. 6. CM of the two methods on the NWPU. (a) DSAE, the AA is 52.1% and (b) OUR, the AA is 52.9%.

Fig. 7. Classification visualization for the UCM, where red, yellow, green,
blue, and purple boxes denote “freeway,” “golf course,” “intersection,” “medium
residential,” and “storage tanks,” respectively.

accuracy of the “basketball court,” “circular farmland,” “cloud,”
“dense residential,” “harbor,” “medium residential,” and “sparse
residential” categories by 11%, 37%, 1%, 32%, 10%, 7%, and
57%, respectively. Although there are some decreases in accu-
racy for other classes, overall AA has increased from 52.1% to
52.9%.

To further illustrate which unseen class scenes are misclas-
sified into which other unseen classes, we have visualized the
classification results for each unseen class sample, as shown in
Figs. 7–9.

Firstly, for UCM, we have used red, yellow, green, blue,
and purple boxes to represent the unseen classes “freeway,”
“golf course,” “intersection,” “medium residential,” and “stor-
age tanks,” respectively, as shown in Fig. 7. Three scenes of
“freeway,” and “medium residential” were correctly classified;
Four scenes of “golf course,” and “storage tanks” were correctly
classified; Only two scenes of the “intersection” were correctly
classified, two of which were classified as “freeway,” and one as
“golf course”. The visualization results are consistent with the
corresponding CM.

Fig. 8. Classification visualization for the AID, where red, yellow, green, blue,
and purple boxes denote “dense residential,” “desert,” “forest,” “industrial,” and
“pond,” respectively.

Fig. 9. Classification visualization for the NWPU, where red, blue, green,
yellow, purple, orange, pink, brown, aqua, and olive boxes denote “airport,”
“basketball court,” “circular farmland,” “cloud,” “dense residential,” “desert,”
“harbor,” “ intersection,” “medium residential,” and “sparse residential,” respec-
tively.
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TABLE VI
COMPARISON OF MODEL PERFORMANCE BASED ON THE UCM AND AID DATASETS

Next, for AID, we have used red, yellow, green, blue, and
purple boxes to represent the unseen classes “dense residen-
tial,” “desert,” “forest,” “industrial,” and “pond,” respectively, as
shown in Fig. 8. One scene in the “dense residential,” and scene
categories is classified as “industrial.” Two scenes in each of
“desert,” and “forest” is correctly classified, and the other three
are classified as “industrial.” All five scenes in “industrial” are
correctly classified; three of the scenes in “pond” are correctly
classified. Through the visual results, we found that in the mis-
classifications, a majority were classified as “industrial,” which
prompted us to further investigate the relationships between the
classes to achieve ZSL.

Finally, in the NWPU dataset, we have used red, blue, green,
yellow, purple, orange, pink, brown, aqua, and olive boxes
to represent “airport,” “basketball court,” “circular farmland,”
“cloud,” “dense residential,” “desert,” “harbor,” “ intersection,”
“medium residential,” and “sparse residential,” respectively. The
results are shown in Fig. 9. Overall, the visualization results are
basically consistent with the corresponding CM.

3) Time Efficiency: To assess the temporal efficiency of LGF-
FWM, we measured the training time and the count of weight
parameters per epoch for evaluation [63] and compared it against
VGGNet. We have conducted experiments using a split ratio
of 16/5 for the UCM dataset and 25/5 for the AID dataset, as
described in Table VI.

From Table VI, we observe that LGFFWM takes nearly ten
times as long as VGGNet, but OA improves by 16.98% and
21.34% on the UCM and AID datasets, respectively. This is
because we used VGGNet’s fully connected layer output as
global features, as well as the softmax layer to output local
features of the local landscape, resulting in a change in the
number of network layers. Analysis of the table reveals that
LGFFWM exhibits a double increase in parameters compared
to VGGNet, yet attains superior performance. In summary,
LGFFWM can achieve better OA within the allowable range
of time loss, achieving a balance between accuracy and time
efficiency.

IV. DISCUSSION

A. Analysis of the Effectiveness of LGFF

To demonstrate the effectiveness of LGFF, we have conducted
experiments based on the UCM, AID, and NWPU, where the
ratios of seen/unseen classes set at 16/5, 25/5, and 35/10, re-
spectively (the same settings used in Sections IV-B, C, and D),
as shown in Table VII.

It can be seen in Table VII that the experiments on the three
datasets yielded the same conclusion: Compared to extracting
only local or global features, using the LGFF designed in this

TABLE VII
EFFECTIVENESS ANALYSIS OF LGFF

article significantly improves OA. The use of local features
alone leads to a noticeable decrease in OA compare to using
global features alone, with decreases of 14.30%, 10.76%, and
12.29%, respectively. This indicates that global features are
more discriminative. The kappa coefficients reached 0.5791,
0.5264, and 0.4079, respectively. This fully demonstrates that
in the task of zero-shot RSSC, it is feasible and necessary to
introduce local landscape features on the basis of global features,
as they complement each other.

Additionally, the widely used visualization technique,
Gradient-weighted Class Activation Mapping (Grad-CAM)
[64], is employed for further efficacy analysis of LGFF, as
depicted in Fig. 10.

Among them, brighter regions in the feature map have higher
discrimination. In contrast, ResNet50 (Residual Network 50)
only focuses on a limited portion of the scene for prediction,
while LGFF can capture details that represent semantic features
in images with complex backgrounds, covering almost the entire
target region, and has strong performance in remote sensing
scene datasets. Specifically visible, LGFF can start from the
overall content of the scene and focus on multiple local objects
related to the scene category in terms of global features. It can
be inferred that LGFF has stronger feature extraction ability and
can effectively learn discriminative features of the target region.

B. Analysis of the Effectiveness of WM Loss

To further analyze the effectiveness of WM Loss, we have
conducted experiments by replacing the loss functions in LGF-
FWM with classic loss functions, including Cross-Entropy Loss
(CE Loss), Mean Squared Error Loss (MSE Loss), and Least
Square Embedding Loss (LSE Loss), as shown in Table VIII.

It can be seen in Table VIII that the experiments on the
three datasets yielded the same conclusion: using the WM Loss
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Fig. 10. Visualization results of Grad-CAM. (a) Original images.
(b) ResNet50. (c) LGFF.

TABLE VIII
EFFECTIVENESS ANALYSIS OF WM LOSS

designed in this article significantly improves OA compared to
classic CE Loss, MSE Loss, and LSE Loss; using the designed
WM Loss results in a substantial increase in OA compared to
classic CE Loss, MSE Loss, and LSE Loss, with the highest
improvements being 27.08%, 17.26%, and 13.13%, respectively.
This demonstrates the effectiveness and feasibility of the WM
Loss designed in this article.

C. Analysis of the Impact of Semantic Vector Dimension

While constructing the semantic space, there are three differ-
ent dimensions for the semantic vectors output by the Word2Vec
model pretrained on Wikipedia: 100, 300, and 500. Therefore,
we further discuss the impact of different semantic vector di-
mensions on OA, and the results are shown in Fig. 11.

As shown Fig. 11, for vector dimensions of 100, 300, and
500, the corresponding OA values on the UCM are 0.5500,

Fig. 11. OA and SD of semantic vectors with different dimensions on the
UCM, AID, and NWPU.

0.6088, and 0.6020, respectively. On the AID, the corresponding
OA values are 0.5342, 0.5696, and 0.5602, respectively. On the
NWPU, the corresponding OA values are 0.4712, 0.5196, and
0.5048, respectively. It can be seen that the best performance is
achieved when the vector dimension is 300. We believe this
is because an adequate-low dimension leads to information
loss and confusion, making semantic vectors overly simplified
and abstract, making it difficult to distinguish subtle semantic
differences, thus reducing the model’s discriminative power. On
the other hand, an overabundant dimension can significantly
increase computational costs and may even lead to overfitting
issues for the model.

D. Analysis of the Influence of the Image Resolution

When images are at a higher spatial resolution, more pixels are
included in an image of the same object and thus, more details
are found [65]. That is why this article analyzed the impact of
resolution changes on OA. In the experiments, we downsampled
the original images to 0.4, 0.6, and 0.8 times the resolution and
tested them using LGFFWM, as shown in Fig. 12.

It can be seen that, with the increase in resolution, the three
datasets show a gradual increasing trend in OA when using
LGFFWM. We believe this is because higher resolution implies
richer contextual information, which helps in fine-grained char-
acterization of urban remote sensing scenes and results in a more
discriminative feature space. This also indicates that changes in
resolution have a significant impact on the accuracy of urban
RSSC under zero-shot conditions.

E. Analysis of the Transferability of the LGFFWM

To further validate the transferability of LGFFWM, supple-
mentary experiments are conducted on the SIRI-WHU [57] and
RSSCN7 [58] datasets, using OA and kappa for assessment.
Results are presented in Tables IX–X.

As shown in the Tables IX–X, the highest OA values are
53.50% and 47.37%, respectively, with little fluctuation com-
pared to OA on the UCM, AID, and NWPU datasets. Specifi-
cally, under different seen/unseen class ratios (9/3, 7/5, 5/7, 3/9)
on the SIRI-WHU dataset, the OA values are 53.50%, 39.70%,
27.42%, and 15.72%, respectively. On the RSSCN7 dataset with
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Fig. 12. Influence of the spatial resolution of images on the OA (%):
(a) down-sampling results of original images at the resolution scales of 0.8,
0.6 and 0.4 based on the UCM; (b) down-sampling results of original images at
the resolution scales of 0.8, 0.6 and 0.4 based on the AID; (c) down-sampling
results of original images at the resolution scales of 0.8, 0.6, and 0.4 based on
the NWPU; and (d) OA (%) curves of images with different resolutions based
on the UCM,AID, and NWPU.

TABLE IX
CLASSIFICATION RESULTS OF SIRI-WHU DATASET WITH DIFFERENT

SEEN/UNSEEN CLASS SEGMENTATION RATIOS

TABLE X
CLASSIFICATION RESULTS OF RSSCN7 DATASET WITH DIFFERENT

SEEN/UNSEEN CLASS SEGMENTATION RATIOS

different seen/unseen class ratios (5/2, 4/3, 3/4, 2/5), the OA
values are 47.37%, 34.08%, 26.43%, and 23.85%, respectively.
Experimental results affirm the transferability of the LGFFWM
method.

V. CONCLUSION

In this article, we proposed a way out for zero-shot RSSC
based on LGFF and WM Loss. Benefitting from our design
LGFFWM, the model can adaptively label local landscapes in

the scenes and effectively fuse them with global visual features,
resulting in a more discriminative representation of urban re-
mote sensing scenes. Building upon this, we introduced a WM
Loss function based on the semantic correlation matrices to
address the varying semantic relatedness between each unseen
class and different seen-class scenes. This loss function can
adaptively adjust the assigned weights during training based
on the semantic relevance between seen-class samples and a
particular unseen sample, thus compelling the model to focus
more on learning from highly relevant samples. This enhances
the model’s discriminative ability by fully exploiting relevant
semantic knowledge. We conducted extensive experiments on
three datasets, achieving an OA for unseen class classification
of up to 60.88%, 56.98%, and 51.96%, respectively, and SD less
than 9.63%, 8.14%, and 5.88%, respectively, which significantly
outperformed ten advanced baseline methods.

In future work, we plan to explore two main directions: 1) the
limited number of feature types selected in the proposal frame
extraction process in this article makes it difficult to construct a
relatively complete feature space to reflect the particularities
of the urban landscape. Therefore, how to construct a more
discriminative landscape index set and evaluate its recognition
ability for different urban landscapes is a research scope that we
will soon carry out and 2) in real-world applications, scenes may
come from both seen and unseen classes. Therefore, studying
and analyzing GZSL in remote sensing scene datasets will be a
direction for our future research.

REFERENCES

[1] J. Kong, Q. Sun, M. Mukherjee, and J. Lloret, “Low-rank hypergraph
hashing for large-scale remote sensing image retrieval,” Remote Sens.,
vol. 12, no. 7, 2020, Art. no. 1164.

[2] F. Ye, H. Xiao, X. Zhao, M. Dong, W. Luo, and W. Min, “Remote sensing
image retrieval using convolutional neural network features and weighted
distance,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 10, pp. 1535–1539,
Oct. 2018.

[3] L. Han, P. Li, X. Bai, C. Grecos, X. Zhang, and P. Ren, “Cohesion intensive
deep hashing for remote sensing image retrieval,” Remote Sens., vol. 12,
no. 1, 2020, Art. no. 101, doi: 10.3390/rs12010101.

[4] Y. Zhao, J. Qi, F. Korn, and X. Wang, “Scalable building height estimation
from street scene images,” IEEE Trans. Geosci. Remote Sens., vol. 60,
2022, Art. no. 3000718, doi: 10.1109/TGRS.2022.3206223.

[5] Y. Da, X. Gao, and M. Li, “Remote sensing image ship detection based
on improved YOLOv3,” in Proc. 7th Int. Conf. Intell. Comput. Signal
Process., 2022, pp. 1776–1781, doi: 10.1109/ICSP54964.2022.9778531.

[6] H. Li, A. Liu, X. Xie, H. Guo, H. Xiong, and X. Zheng, “Learning dense
consistent features for aerial-to-ground structure-from-motion,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 16, pp. 5089–5102,
2023.

[7] L. Sun, Y. Fang, Y. Chen, W. Huang, Z. Wu, and B. Jeon, “Multi-structure
KELM with attention fusion strategy for hyperspectral image classifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5539217,
doi: 10.1109/TGRS.2022.3208165.

[8] A. M. Cheriyadat, “Unsupervised feature learning for aerial scene classi-
fication,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 439–451,
Jan. 2014, doi: 10.1109/TGRS.2013.2241444.

[9] J. Zhang, T. Li, X. Lu, and Z. Cheng, “Semantic classification of high-
resolution remote-sensing images based on mid-level features,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 6, pp. 2343–2353,
Jun. 2016.

[10] Q. Zhu et al., “Knowledge-guided land pattern depiction for urban land use
mapping: A case study of Chinese cities,” Remote Sens. Environ., vol. 272,
Apr. 2022, Art. no. 112916.

https://dx.doi.org/10.3390/rs12010101
https://dx.doi.org/10.1109/TGRS.2022.3206223
https://dx.doi.org/10.1109/ICSP54964.2022.9778531
https://dx.doi.org/10.1109/TGRS.2022.3208165
https://dx.doi.org/10.1109/TGRS.2013.2241444


WANG et al.: ZERO-SHOT REMOTE SENSING SCENE CLASSIFICATION METHOD BASED ON LGFF AND WEIGHT MAPPING LOSS 2775

[11] Q. Zhu, Y. Sun, Q. Guan, L. Wang, and W. Lin, “A weakly pseudo-
supervised decorrelated subdomain adaptation framework for cross-
domain land-use classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 5623913, doi: 10.1109/TGRS.2022.3170335.

[12] Z. Lv, P. Zhong, W. Wang, Z. You, J. A. Benediktsson, and
C. Shi, “Novel piecewise distance based on adaptive region key-
points extraction for LCCD with VHR remote-sensing images,” IEEE
Trans. Geosci. Remote Sens., vol. 61, 2023, Art. no. 5607709,
doi: 10.1109/TGRS.2023.3268038.

[13] Z. Lv, P. Zhang, W. Sun, J. A. Benediktsson, J. Li, and W. Wang, “Novel
adaptive region spectral–spatial features for land cover classification with
high spatial resolution remotely sensed imagery,” IEEE Trans. Geosci.
Remote Sens., vol. 61, 2023, Art. no. 5609412.

[14] Z. Lv, H. Huang, W. Sun, M. Jia, J. A. Benediktsson, and F.
Chen, “Iterative training sample augmentation for enhancing land
cover change detection performance with deep learning neural net-
work,” IEEE Trans. Neural Netw. Learn. Syst., to be published,
doi: 10.1109/TNNLS.2023.3282935.

[15] Z. Lv et al., “Land cover change detection with heterogeneous remote
sensing images: Review, progress, and perspective,” Proc. IEEE, vol. 110,
no. 12, pp. 1976–1991, Dec. 2022, doi: 10.1109/JPROC.2022.3219376.

[16] Y. Fang, Q. Ye, L. Sun, Y. Zheng, and Z. Wu, “Multiattention joint convolu-
tion feature representation with lightweight transformer for hyperspectral
image classification,” IEEE Trans. Geosci. Remote Sens., vol. 61, 2023,
Art. no. 5513814.

[17] G. Cheng, X. Xie, J. Han, L. Guo, and G.-S. Xia, “Remote sensing image
scene classification meets deep learning: Challenges, methods, bench-
marks, and opportunities,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 13, pp. 3735–3756, 2020, doi: 10.1109/JSTARS.2020.3005403.

[18] O. A. B. Penatti, K. Nogueira, and J. A. dos Santos, “Do deep features
generalize from everyday objects to remote sensing and aerial scenes
domains?,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops,
2015, pp. 44–51.

[19] S. Chaib, H. Liu, Y. Gu, and H. Yao, “Deep feature fusion for VHR remote
sensing scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 8, pp. 4775–4784, Aug. 2017.

[20] J. Gawlikowski, S. Saha, A. Kruspe, and X. X. Zhu, “An advanced
Dirichlet prior network for out-of-distribution detection in remote sens-
ing,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5616819,
doi: 10.1109/TGRS.2022.3140324.

[21] J. Rosier, J. van Vliet, and V. Bakker, “Mapping intra-urban development
trajectories in Nairobi, Kenya,” in Proc. Joint Urban Remote Sens. Event,
2023, pp. 1–4.

[22] Y. Wang, Q. Huang, A. Zhao, H. Lv, and S. Zhuang, “Semantic network-
based impervious surface extraction method for rural-urban fringe from
high spatial resolution remote sensing images,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 14, pp. 4980–4998, 2021.

[23] W. Huang, Z. Yuan, A. Yang, C. Tang, and X. Luo, “TAE-net: Task-
adaptive embedding network for few-shot remote sensing scene clas-
sification,” Remote Sens., vol. 14, no. 1, Dec. 2022, Art. no. 111,
doi: 10.3390/rs14010111.

[24] B. Wang, Z. Wang, X. Sun, Q. He, H. Wang, and K. Fu, “TDNet: A
novel transductive learning framework with conditional metric embedding
for few-shot remote sensing image scene classification,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 16, pp. 4591–4606, 2023,
doi: 10.1109/JSTARS.2023.3263149.

[25] Q. Zeng, J. Geng, K. Huang, W. Jiang, and J. Guo, “Prototype calibra-
tion with feature generation for few-shot remote sensing image scene
classification,” Remote Sens., vol. 13, no. 14, Jul. 2021, Art. no. 2728,
doi: 10.3390/rs13142728.

[26] Y. Li, D. Kong, Y. Zhang, Y. Tan, and L. Chen, “Robust deep alignment
network with remote sensing knowledge graph for zero-shot and gen-
eralized zero-shot remote sensing image scene classification,” ISPRS J.
Photogrammetry Remote Sens., vol. 179, pp. 145–158, 2021.

[27] C. Wang, G. Peng, and B. De Baets, “A distance-constrained semantic
autoencoder for zero-shot remote sensing scene classification,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 12545–12556,
2021.

[28] J. Quan, C. Wu, H. Wang, and Z. Wang, “Structural alignment based zero-
shot classification for remote sensing scenes,” in Proc. IEEE Int. Conf.
Electron. Commun. Eng., 2018, pp. 17–21.

[29] C. Wu, Y. Wei, H. Wang, Y. Liu, S. Li, and J. Quan, “Transductive zero-shot
classification algorithm for remote sensing image scenes,” Application
Res. Comput., vol. 37, no. 5, pp. 1597–1600, May 2022.

[30] A. Li, Z. Lu, L. Wang, T. Xiang, and J.-R. Wen, “Zero-shot scene
classification for high spatial resolution remote sensing images,” IEEE
Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 4157–4167, Jul. 2017,
doi: 10.1109/TGRS.2017.2689071.

[31] Z. Li, D. Zhang, Y. Wang, D. Lin, and J. Zhang, “Generative adversarial
networks for zero-shot remote sensing scene classification,” Appl. Sci.,
vol. 12, no. 8, 2022, Art. no. 3760.

[32] S. Ma, C. Liu, Z. Li, and W. Yang, “ Integrating adversarial generative
network with variational autoencoders towards cross-modal alignment
for zero-shot remote sensing image scene classification,” Remote Sens.,
vol. 14, no. 18, 2022, Art. no. 4533.

[33] Q. Zhu, Y. Zhong, B. Zhao, G.-S. Xia, and L. Zhang, “Bag-of-visual-words
scene classifier with local and global features for high spatial resolution
remote sensing imagery,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 6,
pp. 747–751, Jun. 2016.

[34] J. Ma et al., “Remote sensing scene classification based on global and local
consistent network,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2020,
pp. 537–540, doi: 10.1109/IGARSS39084.2020.9323281.

[35] F. Li and J. Wang, “Remote sensing image scene classification via re-
gional growth-based key area fine location and multilayer feature fu-
sion,” IEEE Geosci. Remote Sens. Lett., vol. 20, 2023, Art. no. 5500905,
doi: 10.1109/LGRS.2022.3233374.

[36] Y. Li, D. Kong, Y. Zhang, Y. Tan, and L. Chen, “Robust deep
alignment network with remote sensing knowledge graph for zero-
shot and generalized zero-shot remote sensing image scene classifica-
tion,” ISPRS J. Photogrammetry Remote Sens., vol. 179, pp. 145–158,
Sep. 2021.

[37] Z. Zhang and V. Saligrama, “Zero-shot learning via semantic similarity
embedding,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 4166–4174,
doi: 10.1109/ICCV.2015.474.

[38] Y. Li, D. Wang, H. Hu, Y. Lin, and Y. Zhuang, “Zero-shot
recognition using dual visual-semantic mapping paths,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 5207–5215,
doi: 10.1109/CVPR.2017.553.

[39] E. Kodirov, T. Xiang, and S. Gong, “Semantic autoencoder for zero-shot
learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 4447–4456.

[40] Y. Xing, S. Huang, L. Huangfu, F. Chen, and Y. Ge, “Robust bidirectional
generative network for generalized zero-shot learning,” in Proc. IEEE Int.
Conf. Multimedia Expo, 2020, pp. 1–6.

[41] L. Zhang, T. Xiang, and S. Gong, “Learning a deep embedding model for
zero-shot learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2017, pp. 3010–3019.

[42] X. Cheng, J. Lu, J. Feng, B. Yuan, and J. Zhou, “Scene recognition with
objectness,” Pattern Recognit., vol. 74, pp. 474–487, 2018.

[43] Z.-R. Huang, “Fusion of complex networks-based global and local features
for feature representation,” in Proc. Int. Conf. Mach. Learn. Cybern., 2021,
pp. 1–6.

[44] Q. Zhao, B. Wang, B. Zhou, J. Di, and L. Chen, “Remote sensing image
surface feature classification based on VGG-UNet,” in Proc. Int. Conf.
Comput. Inf. Sci. Artif. Intell., 2021, pp. 1043–1047.

[45] P. B, K. Maharajan, and R. Srikanteswara, “Deep learning based image
classification using small VGG net architecture,” in Proc. IEEE 2nd
Mysore Sub Sect. Int. Conf., 2022, pp. 1–6.

[46] F. Li and J. Wang, “Remote sensing image scene classification via re-
gional growth-based key area fine location and multilayer feature fu-
sion,” IEEE Geosci. Remote Sens. Lett., vol. 20, 2023, Art. no. 5500905,
doi: 10.1109/LGRS.2022.3233374.

[47] J. Chen, J. Yi, A. Chen, and Z. Jin, “EFCOMFF-Net: A multiscale feature
fusion architecture with enhanced feature correlation for remote sensing
image scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 61,
2023, Art. no. 5604917.

[48] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, “ Efficient estimation
of word representations in vector space,” in Proc. Int. Conf. Learn. Rep-
resentations, 2013, pp. 1–12.

[49] A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,” in
Proc. 18th Int. Conf. Pattern Recognit., 2006, vol. 3, pp. 850–855.

[50] X. Huang and L. Zhang, “ Multidirectional and multiscale morphological
index for automatic building extraction from multispectral GeoEye-1
imagery,” Photogrammetric Eng. Remote Sens., vol. 77, pp. 721–732,
2011.

[51] Y. Fu et al., “Winter wheat nitrogen status estimation using UAV-based
RGB imagery and Gaussian processes regression,” Remote Sens., vol. 12,
no. 22, 2020, Art. no. 3778.

https://dx.doi.org/10.1109/TGRS.2022.3170335
https://dx.doi.org/10.1109/TGRS.2023.3268038
https://dx.doi.org/10.1109/TNNLS.2023.3282935
https://dx.doi.org/10.1109/JPROC.2022.3219376
https://dx.doi.org/10.1109/JSTARS.2020.3005403
https://dx.doi.org/10.1109/TGRS.2022.3140324
https://dx.doi.org/10.3390/rs14010111
https://dx.doi.org/10.1109/JSTARS.2023.3263149
https://dx.doi.org/10.3390/rs13142728
https://dx.doi.org/10.1109/TGRS.2017.2689071
https://dx.doi.org/10.1109/IGARSS39084.2020.9323281
https://dx.doi.org/10.1109/LGRS.2022.3233374
https://dx.doi.org/10.1109/ICCV.2015.474
https://dx.doi.org/10.1109/CVPR.2017.553
https://dx.doi.org/10.1109/LGRS.2022.3233374


2776 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

[52] C. Deng and C. Wu, “ BCI: A biophysical composition index for re-
mote sensing of urban environments,” Remote Sens. Environ., vol. 127,
pp. 247–259, 2012.

[53] R. Tao and J. Qiao, “Fast component tree computation for images of
limited levels,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3,
pp. 3059–3071, Mar. 2023.

[54] Y. Yang and S. Newsam, “ Bag-of-visual-words and spatial extensions for
land-use classification,” in Proc. ACM SIGSPATIAL Int. Workshop Adv.
Geographic Inf. Syst., no. 10, 2010, pp. 270–279.

[55] G.-S. Xia et al., “AID: A benchmark data set for performance evaluation
of aerial scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 7, pp. 3965–3981, Jul. 2017, doi: 10.1109/TGRS.2017.2685945.

[56] G. Cheng, J. Han, and X. Lu, “Remote sensing image scene classifi-
cation: Benchmark and state of the art,” Proc. IEEE, vol. 105, no. 10,
pp. 1865–1883, Oct. 2017.

[57] B. Zhao, Y. Zhong, G.-S. Xia, and L. Zhang, “Dirichlet-derived multi-
ple topic scene classification model for high spatial resolution remote
sensing imagery,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 4,
pp. 2108–2123, Apr. 2016, doi: 10.1109/TGRS.2015.2496185.

[58] Q. Zou, L. Ni, T. Zhang, and Q. Wang, “Deep learning based fea-
ture selection for remote sensing scene classification,” IEEE Geosci.
Remote Sens. Lett., vol. 12, no. 11, pp. 2321–2325, Nov. 2015,
doi: 10.1109/LGRS.2015.2475299.

[59] H. Wu, Y. Yan, S. Chen, X. Huang, Q. Wu, and M. K. Ng, “Joint visual
and semantic optimization for zero-shot learning,” Knowl.-Based Syst.,
vol. 215, 2021.

[60] Y. Xian, T. Lorenz, B. Schiele, and Z. Akata, “Feature generating networks
for zero-shot learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 5542–5551.

[61] R. Felix, B. G. Vijay Kumar, and G. Carneiro, “ Multi-modal cycle-
consistent generalized zero-shot learning,” in Proc. Eur. Conf. Comput.
Vis., 2018.

[62] X. Wang, L. Duan, C. Ning, and H. Zhou, “Relation-attention networks
for remote sensing scene classification,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 15, pp. 422–439, 2022, doi: 10.1109/JS-
TARS.2021.3135566.

[63] X. Chen, Z. Han, Y. Li, M. Ma, S. Mei, and W. Cheng, “Attention-
aware deep feature embedding for remote sensing image scene classifi-
cation,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 16,
pp. 1171–1184, 2023, doi: 10.1109/JSTARS.2022.3229729.

[64] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 618–626, doi: 10.1109/ICCV.2017.74.

[65] C. Wang et al., “Earthquake-damaged buildings detection in very high-
resolution remote sensing images based on object context and boundary
enhanced loss,” Remote Sens., vol. 13, 2021.

Chao Wang received the B.S. degree in information
engineering and the M.S. degree in communication
and information system from the China University of
Mining and Technology, Xuzhou, China, in 2007 and
2010, respectively, and the Ph.D. degree in computer
application technology from Hohai University, Nan-
jing, China, in 2014.

He is currently an Associate Professor with the
School of Electronics and Information Engineering,
Nanjing University of Information Science and Tech-
nology, Nanjing. His current research interests in-

clude remote sensing image processing and applications, machine learning, deep
learning, and pattern recognition.

Junyong Li received the B.S. degree in electronic
information engineering from the Henan Institute of
Technology, Xinxiang, China, in 2021. He is currently
working toward the M.S. degree in electronic infor-
mation with the Nanjing University of Information
Science and Technology, Nanjing, China.

His research interests include remote sensing
image processing and deep learning.

Ahmed Tanvir received the B.S. degree in electronic
information engineering, in 2023, from the Nanjing
University of Information Science and Technology,
Nanjing, China, where he is currently working toward
the M.S. degree in information and communication
engineering.

His research interests include the intersection of
remote sensing and deep learning.

Jiajun Yang received the B.S. degree in electronic
information engineering from the Nanyang Institute
of Technology, Nanyang, China, in 2022. He is cur-
rently working toward the M.S. degree in electronic
information with the Nanjing University of Informa-
tion Science and Technology, Nanjing, China.

His research interests include zero-shot learning
and remote sensing scene classification.

Tao Xie received the M.S. degree in materials from
the Guizhou University of Technology, Guiyang,
China, in 2002, and the Ph.D. degree in electromag-
netic fields and microwave technology from Shanghai
Jiao Tong University, Shanghai, China, in 2005.

He is currently a Professor with the School of Re-
mote Sensing and Geomatics Engineering, Nanjing
University of Information Science and Technology,
Nanjing. His current research interests include elec-
tromagnetic fields and microwave technology, satel-
lite oceanography, satellite meteorology, and polar

remote sensing.

Liqiang Ji received the B.S. degree in electronic
information engineering from Lishui University,
Lishui, China, in 2022. He is currently working to-
ward the M.S. degree in electronic information with
the Nanjing University of Information Science and
Technology, Nanjing, China.

His research interests include machine learn-
ing, deep learning, and remote sensing image
processing.

Tong Zhang received the B.S. degree in commu-
nication engineering from Zhonghuan Information
College, Tianjin University of Technology, Tianjin,
China, in 2022. She is currently working toward
the M.S. degree in electronic information with the
Nanjing University of Information Science and Tech-
nology, Nanjing, China.

Her research interests include image enhancement
and position measurement.

https://dx.doi.org/10.1109/TGRS.2017.2685945
https://dx.doi.org/10.1109/TGRS.2015.2496185
https://dx.doi.org/10.1109/LGRS.2015.2475299
https://dx.doi.org/10.1109/JSTARS.2021.3135566
https://dx.doi.org/10.1109/JSTARS.2021.3135566
https://dx.doi.org/10.1109/JSTARS.2022.3229729
https://dx.doi.org/10.1109/ICCV.2017.74


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


