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Abstract—Precision agriculture (PA), also known as smart farm-
ing, has emerged as an innovative solution to address contempo-
rary challenges in agricultural sustainability. A particular sector
within PA, precision viticulture (PV), is specifically tailored for
vineyards. The advent of the Internet of Things (IoT) has facili-
tated the acquisition of higher resolution meteorological and soil
data obtained through in situ sensing. The integration of machine
learning (ML) with IoT-enabled farm machinery stands at the
forefront of the forthcoming agricultural revolution. These data
allow ML-based forecasting as an alternative to conventional ap-
proaches, providing agronomists with predictive tools essential for
improved land productivity and crop quality. This study conducts
a thorough examination of vineyards with a specific focus on three
key aspects of PV: mitigating frost damage, analyzing soil moisture
levels, and addressing grapevine diseases. In this context, several
ML-based models are proposed in a real-world scenario involving
a vineyard located in Southern Italy. The test results affirm the
feasibility and efficacy of the ML models, demonstrating their
potential to revolutionize vineyard management and contribute to
sustainable agricultural practices.

Index Terms—Artificial intelligence (Al), frost, grapevine
diseases, Internet of Things (IoT), precision agriculture (PA),
precision viticulture (PV), soil moisture.

1. INTRODUCTION

N RECENT decades, modern agriculture has grappled with
I the need to balance the growing demand for high-quality food
with the preservation of the environment and natural resources.
A crucial step in this direction is represented by the adoption
of new digital technologies, which serve as essential tools for
addressing the challenges posed by this complex intersection of
needs [1], [2]. The emergence of sensors and smart equipment
has particularly revolutionized the agricultural sector, opening
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up new prospects for enhancing the sustainability of production
processes and mitigating environmental impacts [3]. In this
context, precision agriculture (PA) emerges as a fundamental
pillar, offering innovative solutions to enhance agricultural pro-
duction [4], [5], [6], [7]. PA aims to address the variability
within cultivated fields with the goal of standardizing yields
and maximizing overall efficiency [8]. This approach represents
a synergistic integration of computer science and agronomic
management, paving the way toward quality and sustainable
production. The goal of PA is to become a decision-support tool
for comprehensive and sustainable farm management [9]. Fig. 1
illustrates a typical PA scenario.

Within the realm of PA, precision viticulture (PV) is a specific
application area in vineyards [10], [11]. Viticulture holds a sig-
nificant position within both the agricultural and food industries
due to its considerable economic impact. It stands out as one of
the most extensively cultivated crops, spanning approximately
7.3 million hectares. This vast area is dedicated to cultivat-
ing various grape varieties, encompassing those specifically
for wine production, table consumption, and raisin production.
Addressing these challenges requires a profound recognition
of the dynamic nature inherent in agricultural systems. This
dynamism stems from substantial temporal and spatial variations
in responses to various production factors. Consequently, imple-
menting site-specific management strategies becomes essential.
The progression of PV is intricately linked to technological
advancements that have enabled tailored management practices
for specific sites. Significant strides have been made in devel-
oping user-friendly software capable of handling spatial and
geographic data. Furthermore, there has been a proliferation of
remote sensing platforms boasting high spatial and temporal
resolutions. The emergence of proximal sensors has further
facilitated focused and continuous monitoring of crops within
specific areas [12]. The objectives of PV encompass achieving
finer control over crop yields, minimizing the occurrence and
spread of grapevine diseases, and elevating the overall quality
of produce. PV involves a cycle of activities that begins with the
collection of accurate data related to vine cultivation, proceeds to
the interpretation of such data, and culminates in the application
of targeted agronomic techniques.

Incorporating wireless sensor networks and remote sensing
technologies constitutes a crucial aspect of PA, leveraging the
potential of data acquisition, analysis, global positioning sys-
tems, and the Internet of Things (IoT) for optimized solu-
tions [13], [14], [15]. These methods enable remote monitoring
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of production processes, providing a wide range of real-time
information about the surrounding environment. The variety of
available sensors is remarkable, ranging from measuring basic
parameters, such as temperature and humidity, to more sophisti-
cated elements, such as images, acoustic data, and microradars,
among others. Variables, such as temperature, atmospheric hu-
midity, and soil conditions, are aspects that PV particularly
focuses on. This approach plays a central role in frost prevention
thanks to continuous climate monitoring that allows for the
anticipation of potential critical situations. At the same time,
soil moisture analysis is fundamental to optimizing irrigation
systems, enabling the delivery of the right amount of water in
the most targeted manner possible. Another significant challenge
is the prevention of grapevine diseases, where climatic factors
exert a significant influence on the development of plant patholo-
gies. As a result, anticipating the conditions of the vineyard
and constant monitoring of every part of it are concrete tools to
prevent the onset of pest infestations, or at least to intervene in
the early stages [16].

In the abovementioned context, a significant point concerns
the application of artificial intelligence (AI) [17], [18], [19]. The
ability demonstrated by machine learning (ML) to solve a wide
range of challenges, regardless of the context, has highlighted
it as one of the most significant and promising research fields.
When the problem can be adequately formulated as input, ML al-
gorithms exhibit surprising flexibility in recognizing underlying
rules and hidden connections among the provided information.
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This range of applications spans from categorizing data into
specific classes (classification) to predicting numerical values
(regression). Recently, even in the viticulture sector, the use
of ML methodologies to address various challenges has been
observed [20], [21], [22]. In many parts of the world, traditional
farmers have historically relied on the experience and wisdom
of industry professionals to make operational decisions. How-
ever, this method exposed them to the uncertainty of weather
conditions, which have become increasingly unstable due to
climate changes and variations in precipitation. Manual and
indiscriminate pesticide use, for example, led to resource waste
and environmental damage. The introduction of Al and IoT
in agriculture has ushered in a new paradigm, eliminating the
random factor. This new era provides farmers with tools to
optimize every phase of the process, surpassing the randomness
of atradition-based approach. This lays the groundwork for more
informed and targeted decisions.

Based on these premises, this study explores the use of a series
of regression models capable of learning from historical data
collected from weather stations. These datasets include various
parameters, such as air temperature, relative humidity, wind
speed, precipitation, and solar radiation. Information from time-
domain reflectometry (TDR) probes, such as soil temperature
and moisture, is also considered. The main goal is to generate
valuable information and data to equip agronomists with pre-
dictive tools aimed at enhancing land yield and product quality.
Therefore, the main contributions can be summarized as follows.
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1) Mitigating potential frost damage by accurately predicting
the minimum temperatures for the following day.

2) Optimizing irrigation scheduling through soil moisture
forecasts, ensuring the efficient utilization of water re-
sources for the highest crop yield.

3) Proactive grape disease management by developing a
classification model that forecasts the onset of key factors
contributing to the spread of major pathogens, including
downy mildew and powdery mildew. This prediction con-
siders current weather conditions.

The rest of this article is organized as follows. Section II
provides a comprehensive review of the related literature, and
Section IIT outlines the test vineyard area along with a compre-
hensive overview of the available data. Section IV details the
experimental protocol employed for each forecasting module.
Section V presents and analyzes the results obtained. Sec-
tion VI critically examines the current limitations of this study,
providing a foundation for future research directions. Finally,
Section VII concludes this article.

II. LITERATURE REVIEW

This section provides an overview of the technologies and
concepts relevant to frost prediction and protection systems. The
concepts of soil moisture forecasting for smart irrigation (SI),
along with an examination of current algorithms for predicting
diseases in vineyards, are also discussed.

A. Frost Prediction

The crop damage caused by frost constitutes a significant eco-
nomic challenge for farmers globally. In the viticulture industry,
frosts introduce a significant threat, capable of causing extensive
damage to wine production across expansive regions or entire
territories in a single occurrence. Such damage can have adverse
and long-lasting effects on plant growth and yields for multiple
growing seasons. The severity of the damage is contingent upon
the lowest temperature recorded and the duration of exposure
to critical temperature thresholds. During winter, dormant plant
buds can withstand temperatures as low as —10°C (down to
—20°C), but in spring, they can sustain damage even at tempera-
tures slightly below 0°C. Numerous studies have drawn attention
to the role of climate change in altering the growth patterns of
various plant species. For example, grapevines are exhibiting a
propensity toward earlier spring budbreak due to milder winter
temperatures. Common strategies to address frost-related issues
include the use of wind turbines, fuel combustion, and heating
enclosed environments, such as greenhouses. However, these
methods come with a significant cost in terms of installation
and management, potentially eroding the grower’s profits. In
addition, to avoid unnecessary expenses, it is essential for farm-
ers to accurately recognize when a frost episode poses an actual
threat. In this context, access to precise meteorological data and
frost risk forecasts assumes an invaluable role [23].

Predicting the next day’s minimum temperature based on key
indicators, such as solar radiation, dew point, wind, rainfall,
and humidity, could help mitigate frost damage [24]. However,
it should be emphasized that climate prediction is a complex
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process due to its numerous dynamic and chaotic variables.
Addressing this complexity requires the use of advanced com-
puter models, field observations, and an understanding of me-
teorological patterns-aspects that have garnered the attention of
researchers from a wide range of scientific disciplines [25], [26].
Most research regarding frost prediction relies on simulating
partial differential equations or conventional statistical models to
anticipate weather conditions. These methods are computation-
ally intensive and necessitate constant theoretical refinement to
incorporate meteorological and atmospheric assumptions. The
use of ML models is now widely adopted for detecting frost
episodes, as well as being applied in various other meteorolog-
ical fields [27]. Employing ML techniques trained on specific
data from a given area has enabled the creation of tailored models
for local situations. In contexts, where factors, such as terrain
complexity or other elements, could compromise the accuracy
of existing meteorological models, these approaches prove par-
ticularly valuable. Previous studies have achieved encouraging
results in complex scenarios, and further research has high-
lighted how integrating data from nearby weather stations can
further improve the models’ predictive capabilities. However,
adopting such algorithms poses some challenges. For instance,
variable local frost-related conditions make it difficult to obtain
detailed information from weather stations. Furthermore, to
obtain effective results, data must be collected over an extended
period of time (greater than 7 years). In addition, the paucity
of specific data on frost events makes modeling a challenging
task. All these considerations have led to preferring the use of
temperature regression-based models rather than those based on
frost classification (frost/no frost) [28].

B. Soil Moisture Prediction

Soil moisture content plays a fundamental role in reg-
ulating water balances and ecological processes in various
ecosystems [29]. These processes encompass phenomena, such
as evaporation, transpiration, biological diversity, and rainfall
runoff. Within the viticulture industry, soil moisture levels hold
crucial importance in preventing water stress situations for crops
and in monitoring drought conditions [16]. Insufficient moisture
can impede plant growth, reduce production, intensify sugar
content, and lead to an acidity deficiency in wines. Conversely,
excessive moisture adversely affects grape growth, yield, and
quality, heightening susceptibility to winter damage and dis-
eases. Therefore, prudent irrigation management is essential
for achieving high-quality grapes, underscoring the significance
of continuous soil moisture monitoring and understanding the
spatial and temporal patterns that underlie predictions.

In the past, onsite detection technologies were both expensive
and unreliable. Consequently, this prompted the adoption of
indirect methods, which estimated water consumption by con-
sidering plant evaporation and transpiration, with precipitation
as the primary water source. However, with the emergence of
the 10T, the era of SI began, allowing for more precise direct
measurements and automated monitoring. SI systems utilize
wireless sensor networks to precisely control irrigation opera-
tions. This emerging field employs data-intensive methodologies
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Fig.2. Example of powdery mildew (left-hand side) and downy mildew (right-
hand side) infection.

to enhance agricultural productivity while simultaneously miti-
gating environmental impacts. Leveraging a variety of sensors,
contemporary agricultural practices collect large amounts of
data, providing meaningful information in operational contexts.
As a result, this promotes more accurate and precise decision-
making. Through the application of SI strategies in response to
real-time soil and weather conditions, farmers can efficiently
meet their water needs while preserving water consumption for
the irrigation process [30]. SI has demonstrated its capacity to
enhance water utilization, decrease energy consumption, and
increase crop yield [31], [32]. These advancements have revolu-
tionized the process of soil moisture monitoring and prediction,
offering a viable alternative to indirect methods reliant on water
balance. Moreover, given the various data sources available, the
application of ML has emerged as a promising approach for soil
moisture prediction [33], [34], [35], [36]. Over the years, various
studies have compared conventional methodologies with ML
techniques, including linear regression (LR), support vector ma-
chines (SVM), random forests (RF), and adaptive neuro-fuzzy
inference systems. Despite the variances in applications across
different investigations, accounting for factors, such as input
data, locations, and specific crop types, the results presented in
Section V align cohesively with the existing literature.

C. Grapevine Diseases Prediction

Downy mildew and powdery mildew represent the main mi-
crobial diseases that devastatingly affect grapevines (see Fig. 2).
Plasmopara viticola is the pathogenic agent responsible for
downy mildew in grapevines. This microorganism, native to the
United States, causes a reduction in the photosynthetic efficiency
of the affected green tissues, contributing to early leaf drop.
At the same time, Uncinula necator, responsible for powdery
mildew, also originates from North America and affects green
tissues, including the berries, causing significant losses in yield
and a decrease in the wine quality [37]. In Italy, the effects of
downy mildew are becoming increasingly severe. Due to heavy
spring rains that are affecting several Italian regions, the Italian
Wine Union Observatory has anticipated losses in some areas
of up to 40% in the upcoming imminent grape harvest season.
According to [38], these infections can destroy 40% —90% of
plants in the field at optimal humidity and temperature.

Downy mildew and powdery mildew can manifest severe
symptoms in grapevines in the early stages of infection, prompt-
ing farmers to resort to fungicide treatments. However, concerns
regarding the negative impacts of chemicals on the environment
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and human health have led to the implementation of restric-
tions to regulate the use of such fungicides. Weather conditions
emerge as one of the main threats capable of triggering diseases
in crops [39]. Adverse climatic conditions, such as frequent
precipitation and high humidity levels, increase the risk of fungal
disease development. In Table I, a summary of the main factors
favoring the growth and spread of P. viticola and U. necator
diseases in grapevines is provided, with particular attention to
climatic conditions and the time interval necessary for the onset
of infection. Therefore, continuous monitoring of weather condi-
tions is of fundamental importance in detecting indicative signs
of potential infections. In response to these challenges, various
models, both empirical and based on climatic parameters, have
been developed to predict grapevine diseases and assist farmers
in making decisions regarding crop protection [40].

Expanding computing capacity is revolutionizing data col-
lection and processing. By employing ML techniques, it be-
comes possible to investigate a wide range of factors, integrating
different real-time data sources to evaluate interactions among
the pathogen, host plant, and climatic variables, often before
any visible signs of disease emerge [41], [42], [43], [44]. This
in-depth analysis aims to guarantee the efficient and sustainable
management of fungicidal treatments. Nevertheless, the efficacy
of statistical models and ML algorithms in forecasting the onset
of grapevine diseases has received limited attention in the current
literature.

III. MATERIALS AND METHODS
A. Data Acquisition and Overview

The test vineyard is located within the Taurasi DOCG area,
in the province of Avellino (Campania, Italy), specifically in
the municipality of Montemiletto, at the Donna Elvira Estate
(Latitude: 41.0118, Longitude: 14.9323, Elevation: 328 m). The
dataset employed in this research is categorized into two primary
categories: meteorological data and soil moisture data. Data
were collected over a span of approximately 2 years, from 2021
to 2023, with a frequency of 5 min. The professional Davis
Vantage Pro2 Plus wired weather station is responsible for the
collection of meteorological data, including key parameters,
such as air temperature, air humidity, dew point, wind speed and
direction, precipitation, and solar radiation. Three TDR probes
(Acclima TDR-315H model) have been positioned at varying
depths of 30, 60, and 90 cm, enabling precise data acquisition
(soil temperature and moisture) at multiple levels. WeatherLink
serves as the specialized software for managing data from Davis
weather stations. One of WeatherLink’s notable features is its
capacity to present meteorological variables in standardized
formats, facilitating data interpretation and thereby simplifying
the comparison and analysis of information.

B. Data Processing

During the preprocessing phase, the data were grouped into
daily 24-h intervals. Subsequently, it was necessary to perform
certain statistical operations, including calculating the mean,
maximum, and/or minimum of the climatic variables, along with
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TABLE I
OVERVIEW OF THE KEY ELEMENTS THAT FAVOR THE PROLIFERATION AND DISPERSION OF P. VITICOLA AND U. NECATOR DISEASES IN GRAPEVINES, ALONG
‘WITH THE TIMING OF INFECTION [37]
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Grape disease Precipitation (mm) Temperature (C) Humidity (%) Wind speed (km/h) Time to Infection (Days)
Downy mildew 6—10 6-26 >90% >9.0 7-18
Powdery mildew 2—10 15-25 >40% >2.3 5-7
TABLE II TABLE III
VARIABLES USED AS INPUT FEATURES IN ML MODELS FOR FROST PREDICTION VARIABLES USED AS INPUT FEATURES IN ML MODELS FOR SOIL MOISTURE
PREDICTION
Variables Abbreviation Temporary aggregation
Temperature, °C TAVG Daily mean Variables Abbreviation Temporary aggregation
Solar radiation, W/m? RADI14 Only 14:00 h Temperature, °C TAVG Daily mean
Dew point, °C DP23 Only 23:00 h Precipitation, mm RSUM Accumulated daily
Humidity, % H23 Only 23:00 h Humidity, % HAVG Daily mean
Winq speed, km/h WSAVG Da%ly mean Soil temperature, °C STAVG Overall daily mean averaged
Wind run, km WRAVG Daily mean over three TDR probes
Precipitation, mm RSUM Accumulated daily Soil moisture. % SMAVG Overall daily mean averaged
? over three TDR probes
TABLE IV

determining the total daily precipitation by summing the daily
values. The soil moisture content was also adjusted to its daily
average. In terms of data cleaning, NaN values were introduced
toreplace missing values, and outliers were removed. Additional
details can be found in the following sections.

1) Frost Forecast: Due to the significant variability in mini-
mum hourly temperature and the common practice of developing
frost mitigation strategies in viticulture on a daily scale, a
rolling 24-h window was introduced to forecast the minimum
temperature for the next day. The meteorological variables in-
cluded are temperature (°C), humidity (%), dew point (°C), solar
radiation (W/m?), wind speed (km/h), wind run (km), and pre-
cipitation (mm). Table II provides the complete list of param-
eters. The input data for each of the ML models are structured
into an array featuring eight distinct columns. The first column
indicates the daily mean temperature (TAVG), followed by pa-
rameters, such as solar radiation at 14:00 h (RAD14), dew point
and humidity at 23:00 h (DP23 and H23, respectively), daily
averages of wind speed and wind run (WSAVG and WRAVG),
along with the accumulated daily precipitation (RSUM). Finally,
the last column contains the minimum air temperature for the
next day (TMIN). The rows of each array correspond to the daily
temporal evolution from 2021 to 2023.

2) Soil Moisture Forecast: For effective predictive irrigation
scheduling, a one-day-ahead (D + 1) forecast of soil moisture is
essential [29]. In this context, the involved variables encompass
the daily mean temperature (TAVG), accumulated daily pre-
cipitation (RSUM), daily average humidity (HAVG), the daily
average of each sensor in relation to soil temperature and soil
moisture (STAVG and SMAVG, respectively), and finally, the
overall daily average for soil moisture of the next day. The
parameters’ details are presented in Table III.

3) Grapevine Diseases Forecast: Grapevine disease predic-
tion plays a crucial role in promoting sustainable vineyard
cultivation and the production of high-quality grapes. In the
proposed model, data collected from sensors serve as input for
ML algorithms, while the presence (or absence) of conditions
that favor grapevine diseases acts as the target variable. Con-
sequently, in the preprocessing phase of the time series, it was
necessary to label the database. This process led to the creation

VARIABLES USED AS INPUT FEATURES IN ML MODELS FOR GRAPEVINE
DISEASE PREDICTION

Variables Abbreviation Temporary aggregation
Temperature, °C TMAX Daily max
Solar radiation, W/m? RADMAX Daily max
Wind speed, km/h WSMAX Daily max
Humidity, % HMAX Daily max
Precipitation, mm RSUM Accumulated daily

of three columns, each with 24-h sliding windows, including
meteorological factors contributing to the development of grape
diseases, namely, precipitation, temperature, humidity, and wind
speed. In accordance with the conditions outlined in Table I,
two additional columns are introduced: “DownyMildew” and
“PowderyMildew,” respectively. The assigned value in these
columns is 1 when the initial infection conditions are met;
otherwise, it is 0. Variables involved include the highest daily
temperature (TMAX), maximum solar radiation (RADMAX),
highest wind speed (WSMAX), maximum humidity (HMAX),
and cumulative daily precipitation (RSUM). For further details,
refer to Table IV.

During database labeling, it is important to analyze the
imbalance between the two classes. This imbalance can sig-
nificantly impede model accuracy, increasing the chances of
misclassifying an instance as part of the majority class. To
mitigate this issue, utilizing data oversampling techniques, such
as SMOTE [45], is fundamental, as it balances class distributions
by oversampling minority-class data. This approach results in a
significant enhancement of ML models performance, allowing
them to adeptly handle the minority class with precision and
dependability.

IV. EXPERIMENTAL SETUP

The experiments were conducted utilizing the free version of
the PyCharm integrated development environment software on
a MacBook Pro 2.6 GHz Intel Core i7 6 Core, 16 GB, 2667 MHz
DDR4 Intel UHD Graphics 630, 1536 MB, with Python 3.7.6.
The algorithms employed for model training were sourced
from the scikit-learn repository, a Python module equipped
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with useful functions for ML. During the experimental phase,
several well-known ML algorithms were applied to address re-
gression and classification tasks. For regression, the algorithms
included LR, RF regressor, XGBoost (XGB), support vector
regression (SVR), and multilayer perceptron (MLP) regressor. In
the domain of binary classification, the models considered were
RF, SVM, and XGB. To enhance performance, the grid-search
tuning technique was employed to identify the most effective
hyperparameters for the considered models. For each database, a
random dataset split was performed, allocating 80% for training
and reserving the remaining 20% for constructing the test set.

A. Evaluation Metrics

To assess the performance of regression models, four per-
formance measures are utilized, including the mean abso-
lute error (MAE), root mean squared error (RMSE), mean
squared deviation (MSE), and the coefficient of determination
(R-squared, R?), according to the following equations:

1 n
MAE = — Y|y — 3 1
nﬁﬂy Uil )
1 & o
MSE = o § (yi — 0i) (2)
=1

1 n
RMSE = \/n Zizl(yi = 9:i)? 3

S (i — 0i)?
S (i =9

In the given formulas, ¢j; denotes the forecasted value, y; stands
for the actual value, and y represents the mean of the observed
value. The MAE evaluates the average of absolute prediction
discrepancies, where lower values indicate superior model per-
formance. The MSE measures the mean squared errors. Its
square root, known as the RMSE, is particularly sensitive to
outliers. A lower RMSE implies higher model accuracy. R?
quantifies the proportion of total data variability attributable to
the model. Values close to 1 suggest that the model adeptly
accounts for observed data variations.

When dealing with classification tasks, the results are clas-
sified into four distinct groups: true positives (TP), true nega-
tives (TN), false negatives (FN), and false positives (FP). Ac-
cordingly, each algorithm’s performance was evaluated using
different metrics, specifically accuracy, precision, recall, and
F1-score. These metrics are defined mathematically as

R*=1- 4)

TP + TN
Accuracy = (5)
TP + TN + FP + FN

Precisi TP ©)
recision = ———
TP + FP

TP

Recall = —— @)
TP + FN

Flscore — 2 - Precision - Recall @)

Precision + Recall
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TABLE V
ONE-DAY-AHEAD FORECAST MINIMUM TEMPERATURE: ML ALGORITHMS
RESULTS
ML algorithms | MAE | MSE | RMSE | RZ?

LR 1.34 | 2.65 1.63 | 0.93
RF 128 | 2.64 1.63 | 093
XGB 146 | 333 1.83 | 091
SVR 134 | 2.69 1.64 | 092
MLP 138 | 295 172 | 092

The bold values indicate the best results (in particular, for the
Linear Regression model).

TABLE VI
ONE-DAY-AHEAD FORECAST MINIMUM TEMPERATURE: COMPARISONS OF
ACTUAL AND PREDICTED VALUES—LR

Actual min. Predicted min.
temperature temperature
14.6 11.30
3.1 4.15
11.2 13.54
18.1 17.74
17.2 14.76
0.8 2.88

Accuracy quantifies the percentage of correct predictions among
the entire prediction set. Precision evaluates the percentage of
correctly predicted positive outcomes relative to all predicted
positives. Recall computes the percentage of correctly predicted
positive outcomes in comparison to the total instances within that
class. The F1-score considers both precision and recall, enabling
an analysis of FP and FN values.

V. RESULTS AND DISCUSSION
A. Results for Regression Problem

Frost: Table V provides the one-day-ahead forecast results
for the minimum temperature. It can be observed that for all
configurations, both MAE and RMSE are lower, at 1.28 °C
and 1.72 °C, respectively. These values are clearly inconsequen-
tial when compared with the current thermal variability. Specif-
ically, during the test phase, the LR and RF regression models
yielded the most promising outcomes. The R? values indicate
strong correlations between the models and observations (0.91—
0.93), underscoring the effectiveness of the algorithms employed
in capturing the variability of the minimum temperature. Impor-
tantly, the LR model excels in performance relative to more
intricate algorithms, offering a distinct advantage in terms of
model interpretability. Fig. 3 illustrates the prediction error plot,
allowing for a visual comparison between the model’s projected
outcomes and the actual results; the closer the data points align
with the regression line, the more accurate the model proves to
be. Finally, Fig. 4 shows the LR model prediction results, while
Table VI reports some forecasted minimum temperature values
compared with the actual ones.

Table VII provides the evaluation metrics obtained from em-
ploying the LR model across different forecast lead-days. The
D + 2 prediction horizon yielded a temperature forecast with an
RMSE of 2.22°C, whereas the D + 3 time horizon produced
an RMSE of 2.82°C. As expected, the model’s performance
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Fig. 3. One-day-ahead minimum temperature: Prediction error plot.
TABLE VII
MINIMUM TEMPERATURE: LR MODEL PREDICTION AT VARIOUS LEAD-DAYS
Time horizon | MAE | MSE [ RMSE | RZ?
D+2 1.78 4.92 2.22 0.85
D+3 2.4 7.93 2.82 0.77

worsened as the prediction lead-time increased. When dealing
with longer forecasting periods for minimum temperature, en-
countering a low R? value is not unusual. This can be attributed
to multiple factors, including variability in weather patterns, the
impact of seasonal shifts, and the potential for unforeseen events.
Although the model may not explain as much of the variation, it
can still provide valuable insights for planning and preparation.

The RF regression model assesses feature importance to iden-
tify the key parameters contributing to the frost forecast model’s
accuracy. Results reveal that predicting minimum temperatures
greatly depends on the dew point (0.8), which represents the
temperature at which air reaches saturation and water vapor
condenses. When the minimum temperature aligns closely with
or matches the dew point, it indicates nearing air saturation,
paving the way for dew or fog formation. Hence, in weather
forecasting, the dew point is pivotal for accurate predictions
concerning temperature lows.

Soil moisture: The soil moisture prediction results presented
in Table VIII are high across all models, with R? values sur-
passing 0.96. By incorporating precipitation, climatic factors,
as well as current-day soil moisture and soil temperature as
inputs, ML models can accurately foresee soil moisture average
levels for the next day. Although MLP and SVR exhibit superior
performance, the preference is for LR due to its interpretability
and ease of explanation. This choice facilitates direct compar-
isons with more complex models and enables an evaluation of
the model’s complexity in relation to the inherent nature of the
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TABLE VIII
ONE-DAY-AHEAD FORECAST SOIL MOISTURE: ML ALGORITHMS RESULTS
ML algorithms | MAE | MSE | RMSE | R2

LR 04 | 074 | 086 | 098

RF 0.5 1.06 .03 [ 097

XGB 057 | 087 | 093 [ 098

SVR 041 | 067 | 082 [ 098

MLP 039 | 065 | 081 | 0.98

The bold values indicate the best results (in particular, for the
Linear Regression model).

TABLE IX
ONE-DAY-AHEAD FORECAST SOIL MOISTURE: COMPARISONS OF ACTUAL AND
PREDICTED VALUES—LR

Actual soil Predicted soil
moisture moisture
36.79 36.84
41.23 41.46
26.75 26.78
43.71 41.90
26.01 26.05
30.10 29.87
TABLE X
SOIL MOISTURE: LR MODEL PREDICTION AT VARIOUS LEAD-DAYS
Time horizon | MAE | MSE | RMSE RZ
D+3 0.83 1.63 1.28 0.96
D+7 1.41 3.8 1.95 0.90

regression problem. Fig. 5 demonstrates the LR model’s ability
to capture soil moisture dynamics, with very few outliers in
the predictions. The predicted soil moisture values compared
with the actual target are shown in Fig. 6. Table IX reports
some forecast soil moisture values and the effective observed
measurements.

The results of the LR model for forecasting at D + 3 and D
+ 7 time horizons are also discussed. Predicting soil moisture
beyond a single day in advance is essential for effectively
implementing a precision irrigation system. A time frame ex-
ceeding one day enables more advanced and strategic planning
of irrigation activities. In addition, accounting for the inertia of
hydrological processes within the soil, these projections offer
a more precise understanding of soil moisture variations over
time. As reported in Table X, the results exhibit highly satis-
factory performance, characterized by an average R? value of
approximately 0.93.

Furthermore, an investigation comparing data utilization from
one probe (TDR probes 1 and 2) to data from three probes
was conducted. Excluding the deeper TDR probe 3, which
could incur higher replacement costs, did not impact prediction
accuracy. The R? values for TDR probes 1 and 2 are 0.96 and
0.95, respectively. While acknowledging the potential benefits
of using more probes for better insights, the results emphasize
that utilizing data from a single probe can yield exceptional pre-
dictions and potentially reduce maintenance expenses associated
with additional probes.
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Fig. 4. One-day-ahead minimum temperature: Actual versus prediction values.

Prediction Error for LinearRegression TABLE XII
v 7 ONE-DAY-AHEAD FORECAST POWDERY MILDEW FAVORABLE CONDITIONS:
45.0 ® R?=0.981 ,,’ ’ ML ALGORITHMS RESULTS
- = best fit » '//e )
— = identity o ,,’/ Powdery Mildew
425 P PY ® ML algorithms | Class Precision Recall Fl-score Accuracy
RE 0 0.94 0.94 0.94 0.94
400 Py 1 0.94 0.94 0.94 ’
) ° 0 0.97 0.97 0.97
, g XGB 1 0.97 0.97 0.97 0.97
0 0.94 0.88 0.91
375 ,v‘. SVM | 0.89 0.04 0.92 091
(“1” indicates infectious initial conditions, “0” otherwise)
> 35.0 / The bold values indicate the best results (in particular, for the Linear Regression
’ model).
®
00 = TABLE XIII
’ DowNY MILDEW: XGB MODEL PREDICTION AT VARIOUS LEAD-DAYS
® .
275 Downy Mildew
Time horizon Class  Precision Recall Fl-score Accuracy
0 0.93 0.89 0.91
250 D+3 1 0.88 0.92 0.90 091
250 275 300 325 350 375 400 425 450 D45 0 0.90 0.90 0.90 0.90
y 1 0.90 0.90 0.90 )

Fig. 5. One-day-ahead soil moisture: Prediction error plot.

B. Results for Classification Problem

TABLE XI . . .

ONE-DAY-AHEAD FORECAST DOWNY MILDEW FAVORABLE CONDITIONS: ML G'j apevine diseases: ”[jal.)les Xl and XII gIve the performa.lnce
ALGORITHMS RESULTS metrics (accuracy, precision, recall, and F1 score) obtained
- during the testing phase for each algorithm utilized in the downy

Downy Mildew . . . .. .
ML algorithms | Class  Precision Recall FI-score Accuracy and powdery H_nldew grapevine dlls.ease predl'ct{o.n. 'Spe01ﬁcally,
RE 0 0.98 0.87 0.92 0.92 the XGB algorithm accurately anticipated the initiation of downy
! 0.86 0.98 0.92 ' and powdery mildew infection cycles (D + 1 time frame) with

0 0.97 0.95 0.96 . .
XGB 1 0.95 0.97 0.96 0.96 an accuracy of 96% and 97%, respectively. Further experiments
SVM 0 0.98 0.84 0.90 0.90 were performed to assess potential infectious initial conditions

1 0.83 0.98 0.90 : . . S . .

(“1” indicates infectious initial conditions, “0” otherwise) using various prediction time horizons, i.c., D + 3 and D + 5.
The bold values indicate the best results (in particular, for the Linear Regression Tables X1 and XIV prov1de the results achieved using the XGB

model). algorithm.
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TABLE X1V
POWDERY MILDEW: XGB MODEL PREDICTION AT VARIOUS LEAD-DAYS

Powdery Mildew
Time horizon Class  Precision Recall Fl-score Accuracy
0 0.91 0.94 0.93
D+3 i 094 090 092 092
0 1.00 0.94 0.97
D+s 1 0.94 100 097 097

VI. LIMITATIONS

Al and IoT-driven PA have introduced a level of precision that
allows modern farmers to optimize every aspect of the agricul-
tural process. Among these technologies, wireless sensor net-
works play a vital role in collecting data, including parameters,
such as temperature and humidity. These variables are essential
for predicting soil properties, meteorological conditions, crop
yields, and diseases. However, traditional ML models encounter
some challenges in estimating soil parameters and weather data
across different ecosystems. They may also be influenced by
historical trends, which makes forecasting extreme weather
events more complex.

Advances in image processing and the rise of Al, particularly
in the field of deep learning (DL), have revolutionized the
analysis of complex scenarios and the automation of specific
tasks [46], [47]. Compared with conventional remote sensing
tools, unmanned aerial vehicles (UAVs) enable near-real-time
field monitoring. The development of remote sensing technology
has also improved the use of multispectral imagery, which has
become an effective tool for assessing and monitoring crop
health, crop stress, and making yield predictions. Looking to
the future, further advances in remote sensing technology and
the application of DL algorithms are expected to continue to rev-
olutionize the field of PA [48], [49], [50]. This could lead to even
more effective management of agricultural resources, enabling
a more sustainable and efficient food production process.

ﬁ
|
| ‘/
\z
30 /

60 80 100

VII. CONCLUSION

As the agricultural landscape undergoes rapid transformation,
the integration of IoT and ML in PA emerges as a promising av-
enue for the future of smart and sustainable farming. This study
exemplifies the potential of merging IoT-generated data with ML
techniques to revolutionize agricultural practices, particularly
in vineyards. This wealth of information empowers us to rely
on ML-driven forecasts for frost damage and soil moisture,
surpassing conventional methods for weather monitoring and
irrigation planning. To mitigate economic losses and reduce
environmental impacts, this research also incorporates a pre-
dictive model for the onset of grapevine diseases. This enables
accurate and confident forecasts of the initial stages of infections,
facilitating timely and effective interventions. Despite the data
being collected over a limited time period, the results are highly
promising. In the future, we plan to change the time measure-
ments, analyzing hourly rather than daily intervals. The goal is to
determine whether this leads to advantages, especially for crops
that will benefit from a continuous irrigation method. Forecast
models should be extended to also include rainfall. This will
ensure that irrigation practices are meticulously adjusted to yield
even greater water savings, maximizing the efficient utilization
of anticipated rainfall volumes. The proposed approach has the
potential to be seamlessly integrated into an IoT sensor network
or alocalized alarm system. In addition, we intend to incorporate
UAVs for near-real-time field monitoring, alongside advanced
DL algorithms, to further improve efficiency and diversify data
sources.
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