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Crossed Dual-Branch U-Net for Hyperspectral
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Abstract—Hyperspectral images have gained great achieve-
ments in many fields, but their low spatial resolution limits the
effectiveness in applications. Hyperspectral image super-resolution
has emerged as a popular research trend, where high-resolution
hyperspectral images are obtained via combining low-resolution
hyperspectral images with high-resolution multispectral images.
In this process of multimodality data fusion, it is crucial to en-
sure effective cross-modality information interaction. To gener-
ate higher quality fusion results, a crossed dual-branch U-Net is
proposed in this article. In specific, we adopt U-Net architecture
and introduce a spectral–spatial feature interaction module to
capture cross-modality interaction information between two input
images. To narrow the gap between downsampling and upsam-
pling processes, a spectral–spatial parallel Transformer is designed
as skip connection. This novel design simultaneously learns the
long-range dependencies both on spatial and spectral informa-
tion and provides detailed information for final fusion. In the
fusion stage, we adopt a progressive upsampling strategy to refine
the generated images. Extensive experiments on several public
datasets are conducted to prove the performance of the proposed
network.

Index Terms—Hyperspectral image (HSI), multispectral image,
super-resolution transformer, U-Net.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) have extensive spectral
bands that carry a wealth of spectral information, which

enables them to identify object materials. Accordingly, HSIs
have been employed in the field of computer vision, including
image classification [1], [2] and environmental monitoring [3]
to anomaly detection [4], [5], etc. However, limited by sensor
devices, obtaining HSIs with high spatial and spectral resolu-
tion concurrently is difficult. To alleviate this problem, some
methods for HSI super-resolution have been suggested [6],
[7], [8]. There are usually two solutions, namely, single im-
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age and fusion-based HSI super-resolution. The fusion-based
strategy obtains high-resolution hyperspectral (HRHS) images
by merging low-resolution hyperspectral (LRHS) images with
high-resolution multispectral (HRMS) images, which are pre-
ferred solutions. The existing fusion-based methods for HSI
super-resolution generally fall into four classes: component sub-
stitution (CS), multiresolution analysis (MRA), model-based,
and deep learning-based methods.

The CS methods attempt at generating HRHS images simply
by replacing the spatial details in LRHS images with the corre-
sponding HRMS images [9], [10]. The MRA methods extract
spatial detail information of HRMS images by multiresolution
decomposition, and yield HRHS images by incorporating the
obtained spatial details into LRHS images [11], [12]. Both CS
and MRA methods have advantages, such as low computational
cost and fast implementation, but they often suffer from spectral
or spatial distortion.

Model-based methods typically establish an optimization
function to model the fusion problem, and the function is solved
with iterative algorithms [13], [14], [15], [16], [17], [18]. In
HSI super-resolution tasks, the optimization function generally
includes two parts: data fidelity terms and regularization terms.
The data fidelity terms mainly serve to stabilize the model
and reduce the differences between input and output images
in spatial and spectral information. The regularization terms
constrain the fusion result based on some prior knowledge.
These prior knowledge are often based on the latent statistics
of HSI, such as sparsity prior [19], [20], low-rank prior [21],
and total variation prior [22]. Model-based methods have the
advantage of interpretability, but they usually rely too much
on handcrafted priors, resulting in many parameters need to be
tuned.

Deep learning-based methods have attracted extensive interest
from researchers owing to their powerful feature extraction
capabilities. These methods typically build end-to-end deep
neural networks to effectively learn the underlying relationships
of inputs and outputs. In recent years, many CNNs have been
employed in HSI super-resolution tasks, such as ResNet [23],
U-Net [24], [25], DenseNet [26], and GAN [27]. Because of the
limited size of receptive field in convolution operation, CNNs
fail to effectively utilizing global information. To overcome this
disadvantage, Transformer has been developed and become a
promising solution [28]. Transformer relies on the self-attention
mechanism to handle the long-range dependencies in images,
which has been applied successfully in HSI super-resolution
tasks.
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There are two shortcomings in current deep learning-based
methods. One is that these methods cannot fully utilize local
and global features. The other is that these methods often ignore
the correlations of spectral information, leading to suboptimal
fusion. Given the aforementioned issues, we propose a crossed
dual-branch U-Net for HSI super-resolution based on CNN and
Transformer. Specifically, we design two CNN-based branches
to fully extract local and shallow features of images. To make full
use of these features, a feature interaction module that consists of
convolution operations and matrix multiplications is designed to
merge these spectral and spatial features and generate interaction
information. In particular, we propose a spectral–spatial parallel
Transformer (SSPT) that includes a spatial self-attention and a
spectral self-attention, which both considers the spatial correla-
tions and spectral correlations. This study’s major contributions
are described in the following.

1) A novel HSI super-resolution method named crossed dual-
branch U-Net is proposed, which combines CNN and
Transformer to effectively utilize local details and global
information.

2) To facilitate the interaction of information between
branches, we introduce a spectral–spatial feature interac-
tion module (SFIM), hence improving quality of fusion.

3) We introduce an SSPT as skip connection to supplement
global relevance features, which models global spatial
information and takes into account the dependencies be-
tween adjacent spectral bands.

The rest of this article is organized as follows. In
Section II, we review existing works in HSI super-resolution.
Section III mainly describes the proposed network and its
components. The presentation and analysis of the experimental
results are discussed in Section IV. Finally, Section V concludes
this article.

II. RELATED WORKS

We give brief review of the model-based and deep learning-
based methods of HSI super-resolution.

A. Model-Based Methods

In general, model-based methods are summarized within two
categories, nonfactorization- and factorization-based methods.
Nonfactorization-based methods aim to obtaining target im-
ages via prior knowledge. For example, Wei et al. [29] uti-
lized the probability information within the scene and proposed
a Bayesian fusion method. A fast fusion method integrating
Sylvester equation was presented, which dramatically reduced
computational complexity [30]. Factorization-based methods
mainly decompose the target image and then build an opti-
mization model to solve. The factorization-based methods in-
clude matrix factorization-based methods [31], [32], [33], [34]
and tensor decomposition-based methods [16], [35], [36], [37],
[38], [39], [40], [41], [42]. Matrix factorization-based methods
primarily transform the fusion task into an estimation of the
spectral basis and corresponding coefficients. Dian et al. [32]
formulated an optimization model in conjunction with sparse

prior and estimated the spectral basis and coefficients simultane-
ously. Considering the subspace low-rank relationships between
HRMS/LRHS images, Xue et al. [21] proposed a subspace
clustering-based approach that formulated a variational opti-
mization model. Since the original HSIs are considered as 3-D
cubes, the tensor decomposition-based methods could better
handle multidimensional information. Examples of popular ten-
sor decomposition methods include Tucker decomposition, CP
decomposition, and tensor-ring decomposition. For example, Jin
et al. [38] presented a tensor network by fusing the high-order
tensors that correspond to LRHS and HRMS images, designing
a new regularization term named weighted graph regulariza-
tion. In response to the noise and nonsmooth problems, Guo
et al. [39] inserted two different operators to design a tensor
decomposition network. Based on tensor-ring decomposition,
He et al. [40] designed a model that iteratively obtain cor-
responding core tensors from LRHS and HRMS images. A
regularization method was proposed by Xu et al. [42], which
integrated two priors simultaneously to estimate tensor subspace
and tensor coefficients and obtained excellent super-resolution
results.

B. Deep Learning-Based Methods

Deep CNNs have powerful feature extraction capabilities and
are extensively used in variety of deep learning tasks. In the
last few years, many efficient HSI super-resolution methods
that use CNNs have been proposed [43], [44], [45], [46], [47],
[48], [49], [50]. Yang et al. [43] introduced a network with
two branches, where one branch was dedicated to extracting
spatial features of HRMS image while the other branch was
involved in extracting spectral features of LRHS image. To fully
utilize multiscale features, Zhan et al. [44] raised a network
incorporating octave convolution with attention mechanism and
designed a multisupervised loss function. For a further im-
provement in the interpretability of pure deep networks, model-
driven methods have been suggested. Specifically, these methods
solve the iterative algorithm by building a deep network [45].
Combining effective mathematical theoretical guidance, Dong
et al. [46] suggested a dual spatial–spectral optimization strategy
and introduced two optimization branches based on spatial and
spectral priors, respectively. Based on U-Net architecture, Wang
et al. [49] proposed a novel approach incorporating spectral and
spatial attention that employed dense multiscale link as skip
connection to obtain finer feature information. Ran et al. [51]
presented a fusion network enabling to solve different resolution
augmentation tasks, and incorporated multiscale high-resolution
guidance to yield promising fusion results.

Transformer was initially applied in natural language pro-
cessing. Due to the outstanding performance, it is gradually
introduced to other fields as well [52], [53]. Likewise, many
HSI super-resolution methods-based Transformer has also been
raised [54], [55], [56], [57]. In the beginning, Hu et al. [54]
directly fed the upsampled LRHS image concatenated with
HRMS image to vision Transformer and achieved excellent
results. Wang et al. [55] presented a Transformer-based network
that utilized cross-attention for information fusion and enabled
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Fig. 1. Illustration of the proposed cross dual-branch U-Net. The structures of FEM, upsampling, and downsampling are shown at the bottom right, where k
represents the kernel size, and s presents the stride size. LReLU indicates LeakyReLU.

multilevel feature extraction and aggregation. A novel pyramid
network was proposed based on window self-attention by Deng
et al. [56], they considered information interaction between
patches and solved computational complexity problem by fixing
a smaller window size.

III. METHODOLOGY

In this section, we provide a thorough overview of the pro-
posed network and loss function.

A. Overall Network Architecture

For brevity, the LRHS image is represented byY ∈ Rh×w×C ,
where h× w andC correspond to its spatial resolution and band
number, respectively.Z ∈ RH×W×c indicates the HRMS image,
andH ,W , and c stand for its height, width, and number of bands,
respectively. The HRHS image to be generated is denoted asX ∈
RH×W×C . The primary goal of our method is to generate HRHS
images that share as much spectral information as possible with
the input LRHS images and spatial information with the input
HRMS images.

The proposed network is illustrated in Fig. 1, which mainly
contains four primary modules: feature extraction module
(FEM), SFIM, SSPT, and multiscale fusion module (MFM).
To match the size of two inputs, we first upsample the LRHS

images by commonly used bicubic interpolation. Then, two
FEMs are employed to extract features from the upsampled
LRHS image and HRMS image, where FEM is composed of
two same 3 × 3 convolutional layers with a stride of 1, and
these spectral and spatial features are fused by designed SFIM
to realize cross-modality information interaction. Motivated by
U-Net, we introduce an SSPT as skip connection that allows the
network to capture long-range dependencies and compensate in-
formation loss. Finally, MFM gradually incorporates multiscale
fusion information by continuous stacking and upsampling, the
numbers of channels for each feature map are 64, 96, and 128,
respectively. The proposed network achieves a compromise of
spectral and spatial information, generating accurate and high-
quality HRHS images.

B. Spectral–Spatial Feature Interaction Module

HSIs are considered as integrated data cubes of imagery and
spectrum, both spectral and spatial information are important.
LRHS images have richer spectral information, while HRMS
images contain more spatial information. To integrate these
spectral information and spatial information effectively, we
introduce an SFIM at each scale. The feature maps of LRHS
and HRMS images are denoted as Yi and Zi, respectively. The
details of SFIM are shown in Fig. 2. In SFIM, we first extract
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Fig. 2. Illustration of the SFIM, where ⊕ represents addition.

spectral features from Yi and spatial features from Zi by using a
3× 3 convolution operation. After that, the extracted features are
fused by performing a matrix multiplication to obtain interaction
feature O1

i . The formula of O1
i can be summarized as follows:

O1
i = Matmul(Conv(Yi),Conv(Zi)) (1)

where Matmul represents matrix multiplication.
Notably, considering O1

i as the first-order interaction feature,
we can further obtain the second-order interaction feature by
performing similar operations. Specifically, same convolutional
operations are performed on Yi and Zi again, and then, a matrix
multiplication is performed between the obtained features and
O1

i , resulting Y1
i . In the same way, we can also get Z1

i . At
last, Y1

i and Z1
i are added to generate second-order interaction

feature O2
i . The process of obtaining O2

i is formulated as

Y1
i = Matmul(Conv(Yi),O

1
i ) (2)

Z1
i = Matmul(Conv(Zi),O

1
i ) (3)

O2
i = Y1

i + Z1
i . (4)

Besides,Yi andZi are added together to retain detailed informa-
tion, which enhances the network’s capability to preserve spatial
and spectral information.

C. Spectral–Spatial Parallel Transformer

Transformer is well known for its ability of capturing long-
distance dependencies in spatial locations. Given that spectral
and spatial information are both important for HSIs, we design
a spectral–spatial parallel Transformer, which takes both spatial
global correlations and spectral correlations into consideration.

As we can see in Fig. 3, SSPT includes a spectral self-
attention, a spatial self-attention, and a feedforward network.
Taking the spatial self-attention as an example, the input repre-
sented by Xi ∈ RH×W×C is first projected and reshaped into
P ∈ RHW×C , and then P is projected into K ∈ RHW×C , Q ∈
RHW×C , and V ∈ RHW×C by the linear layers. The spatial
self-attention can be formulated as

P = Reshape&Linear(Xi) (5)

Q = PWQ,K = PWK,V = PWV (6)

Attention = Softmax

(
QKT

√
dk

)
V (7)

Fig. 3. Illustration of the SSPT.

where Q indicates the query matrix, K denotes the key matrix,
and V represents the value matrix, respectively. Their corre-
sponding learnable projection matrices are represented by WQ,
WK , and WV ∈ RC×C .dk corresponds to the dimension of
K.QKT calculates the attention score by dot product.

Multihead attention divides the Q, K, and V into multiple
heads, each of which calculates self-attention and captures
different aspects of information in data. Specifically, the self-
attention is computed h times in parallel with h being the number
of heads, and then, these heads are combined to obtain multihead
attention. The multihead self-attention is formulated as follows:

MultiHead = Concat (head1, . . .,headi)W
O (8)

headi = Attention (QWQ
i ,KWQ

i ,VWQ
i ), i = 1, 2, . . .,h

(9)

where WO is a learnable projection matrix, and h is set to be
4 in experiments.

The spectral self-attention calculates the spectral correlations
among pixels, and the spatial self-attention calculates spatial
correlations among spectral bands. Their calculation processes
are similar, and their corresponding illustrations are shown in
Fig. 4. Different from the spatial self-attention, the three learn-
able projection matrices of spectral self-attention are reshaped
into Q, K, and V ∈ RC×HW .

D. Multiscale Fusion Module

After the above process, we obtained spectral–spatial feature
maps at different scales. The sizes of these feature maps are 64,
32, and 16, respectively. In order to make full use of these feature
maps and generate HRHS image, we adopted a progressive
fusion strategy and designed the MFM whose specific structure
is depicted in Fig. 5.

In the MFM, feature maps from different scales are gradually
upsampled by a block consisting of a 2 × 2 transposed convolu-
tional layer and a 3 × 3 convolutional layer, where their strides
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Fig. 4. Illustration of spectral and spatial self-attention. (a) Spectral multihead self-attention. (b) Spatial multihead self-attention, where ⊗ represents matrix
multiplication.

Fig. 5. Illustration of the MFM.

are set to 2 and 1. The upsampled feature maps are concatenated
to generate HRHS image. This strategy is inspired by Zhang
et al. [58], and we employ transposed convolutional operation for
upsampling and achieve a better super-resolution performance.
In Section IV, we have done ablation experiments with direct
upsampling strategy and demonstrate the effectiveness of this
progressive strategy.

E. Loss Function

We adopt L1 loss as loss function, which is commonly used
to compute the difference of the desired image and fused images
at pixel level. The formula of L1 loss function is as follows:

Loss = ‖X−X′‖1 (10)

where X and X′ denote the reference and fused images, respec-
tively.

IV. EXPERIMENTS RESULTS

In this section, we present the datasets employed in our
work as well as their data processing procedures, and present
general evaluation metrics. In addition, we performed several
ablation experiments and comparative experiments to evaluate
the superiority of our approach.

A. Datasets Introduction

1) CAVE: The CAVE dataset1 includes 32 HSIs, each image
contains 31 spectral bands with resolution of 512 × 512. In this
dataset, the wavelength ranges from 400 to 700 nm, and the
spectral resolution is 10 nm. In our experiments, the former 20
images were assigned to the training set while the rest 12 images
were devoted to the test set.

2) Harvard: The Harvard dataset2 includes 50 different
scenes with a resolution of 1392 × 1040. For every image, there
are 31 spectral bands. Its wavelength ranging from 420 to 720 nm
with a spectral resolution of 10 nm. In our experiments, we
cropped the upper left corner of each image, resulting images
with size of 1360 × 1024. We selected former 30 images as
training set while the rest images were selected as test set.

3) Pavia Center (PC): The PC dataset3 consists of HSIs with
size of 1096× 640 and band number of 115, which was captured
by ROSIS sensors. After removing 13 noisy bands, there are 102
bands left. In our experiments, we cropped 40 nonoverlapping
subimages of size 128 × 128 from the original image. The first
28 subimages were organized as training set, and the rest were
organized as test set.

Three simulated datasets were processed following Ranchin
and Wald’s protocol [59]. Specifically, we performed a Gaussian
filter with a scale factor of 4 on the original HSIs to gener-
ate LRHS images, and the HRMS images were generated via
spectral response function (SRF). For the first two datasets, the
corresponding SRF was derived from a Nikon D700 camera,
while the corresponding SRF was from the IKONOS satellite for
the PC dataset. In our experiments, we cropped image patches of
size 64 × 64 and 16 × 16 from the observed HRMS and LRHS
images as input.

1[Online]. Available: https://www1.cs.columbia.edu/CAVE/databases/mult-
ispectral/

2[Online]. Available: http://vision.seas.harvard.edu/hyperspec/download.
html

3[Online]. Available: https://www.ehu.eus/ccwintco/index.php/Hyper-
spectral_Remote_Sensing_Scenes#Pavia_University_scene

https://www1.cs.columbia.edu/CAVE/databases/mult-penalty -@M ispectral/
https://www1.cs.columbia.edu/CAVE/databases/mult-penalty -@M ispectral/
http://vision.seas.harvard.edu/hyperspec/download.html
http://vision.seas.harvard.edu/hyperspec/download.html
https://www.ehu.eus/ccwintco/index.php/Hyper-penalty -@M spectral_Remote_Sensing_Scenes#Pavia_University_scene
https://www.ehu.eus/ccwintco/index.php/Hyper-penalty -@M spectral_Remote_Sensing_Scenes#Pavia_University_scene
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B. Quantitative Assessment Metrics

1) Spectral Angle Mapper (SAM): SAM is a commonly used
metric that quantifies the image quality in terms of spectral
dimension. The lower SAM value indicates the lower spectral
distortion

SAM(X,X′) =
1

WH

W∑
i=1

H∑
j=1

arccos

(
X(i, j) ·X′(i, j)

‖X(i, j)‖2‖X′(i, j)‖2

)
.

(11)
2) Peak Signal-to-Noise Ratio (PSNR): PSNR is a general

metric to calculate pixel similarities between a pair of images.
Higher values of PSNR indicate better results

PSNR(X,X′) = 10 lg

(
max(X)2

1
HWC‖X−X′‖2F

)
(12)

where max(X) presents the largest pixel value in X.
3) Root-Mean-Squared Error (RMSE): RMSE can access

the average difference between X and X′ in pixel wise. Its value
range is from 0 to 1, and the smaller RMSE value indicates the
better result

RMSE(X,X′) =

√∑C
k=1

∑H
i=1

∑W
j=1 (Xk(i, j)−X′

k(i, j))
2

HWC
(13)

where Xk(i, j) denotes pixel value at position (i, j) of the kth
band of X.

4) Erreur Relative Globale Adimensionnelle De Synthse (ER-
GAS): ERGAS is an evaluation index that is used to assess the
overall quality of image. The higher ERGAS value indicates the
superior fusion quality

ERGAS(X,X′) =
100

r

√√√√ 1

˜C

C∑
k=1

‖Xk −X′
k‖2F

μ2 (Xk)
(14)

where r denotes downsampling factor while μ is a function that
calculates mean value.

5) Structure Similarity Index Measure (SSIM): SSIM eval-
uates the structural similarity between two images. The higher
SSIM value suggests the better quality of fused image

SSIM(X,X′)=
1

C

C∑
k

(
2μXk

μX′
k
+ a1

)(
2σXkX′

k
+ a2

)
(
μ2
Xk

+ μ2
X′

k
+ a1

)(
σ2
Xk

+ σ2
X′

k
+ a2

)
(15)

where a1 and a2 are constants, μXk
and μX′

k
denote the mean

values of Xk and X′
k, respectively, and σXk

and σX′
k

present
the standard value of Xk and X′

k, respectively. σXkX′
k

is the
covariance between Xk and X′

k.

C. Comparison Methods

To thoroughly exhibit the effectiveness of our approach,
we conducted comparisons against eight methods, including
four model-based methods, namely, FUSE4 [30], HySure5 [60],

4[Online]. Available: https://openremotesensing.net/wp-content/uploads/
2017/11/HSMSFusionToolbox.zip

5[Online]. Available: https://github.com/alfaiate/HySure

TABLE I
ABLATION STUDY OF THE SFIM AND SSPT ON THE CAVE DATASET

CNMF6 [13], and GSA4 [61], and four deep learning-based
methods, namely, SSR-Net7 [62], HSRNet8 [63], Guided-
Net9 [51], and MCT-Net10 [55]. For fairness in comparison,
all experiments were implemented using the same training set
and testing set. The four deep learning-based methods were all
executed in a Pytorch framework with a GeForce GTX 3090Ti
24 GB GPU. During the training process, we chose Adam
optimizer and trained for 200 epochs, and learning rate was set
to 0.0001. The four model-based methods were implemented in
MATLAB 2019a. Parameter settings of all comparison methods
were consistent with their respective original papers.

D. Ablation Study

In this section, we conducted multiple ablation experiments
on SSPT and its components, SFIM as well as MFM on the
CAVE dataset. All ablation experiments were conducted under
the same environmental settings.

1) Influence of Components: We investigated the influences
of some important modules in the model by removing them
individually. From the results presented in Table I, we observed
that the quantitative metrics significantly declined when either
SFIM or SSPT was removed. When SSPT was removed, all
metrics went worse, with particularly substantial changes in
PSNR and SAM, which indicates that SSPT served an essential
role in capturing both spatial and spectral information from
a global perspective. Similarly, the absence of SFIM leads to
suboptimal fusion results, which proved that effective cross-
modality information interaction can enhance performance. In
conclusion, SFIM and SSPT are both effective for the proposed
network, and the network performs best when SFIM and SSPT
are employed simultaneously.

2) Influence of Self-Attention: Different attention mecha-
nisms are employed in SSPT. The results were displayed in
Table II. When SSPT only contained a spatial self-attention, the
values of PSNR and SAM both decreased, indicating that the
ability of spectral self-attention for extracting global spectral
features. Similarly, when SSPT only consisted of a spectral
self-attention, the values of PSNR, SAM, and EGRAS show
significant fluctuations, which demonstrated the effectiveness
of spatial self-attention in capturing global spatial feature. The

6[Online]. Available: https://naotoyokoya.com/assets/zip/CNMFMATLAB.
zip

7[Online]. Available: https://github.com/hw2hwei/SSRNET
8[Online]. Available: https://liangjiandeng.github.io/ProjectsRes/

HSRnet2021tnnls.html
9[Online]. Available: https://github.com/Evangelion09/GuidedNet
10[Online]. Available: https://github.com/wxy11-27/MCT-Net

https://openremotesensing.net/wp-content/uploads/2017/11/HSMSFusionToolbox.zip
https://openremotesensing.net/wp-content/uploads/2017/11/HSMSFusionToolbox.zip
https://github.com/alfaiate/HySure
https://naotoyokoya.com/assets/zip/CNMFMATLAB.zip
https://naotoyokoya.com/assets/zip/CNMFMATLAB.zip
https://github.com/hw2hwei/SSRNET
https://liangjiandeng.github.io/ProjectsRes/HSRnet2021tnnls.html
https://liangjiandeng.github.io/ProjectsRes/HSRnet2021tnnls.html
https://github.com/Evangelion09/GuidedNet
https://github.com/wxy11-27/MCT-Net
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TABLE II
ABLATION STUDY OF THE SELF-ATTENTION IN SFIM ON THE CAVE DATASET

TABLE III
ABLATION STUDY OF THE RECONSTRUCTION METHOD ON THE CAVE DATASET

TABLE IV
QUANTITATIVE RESULTS OF THE COMPARISON EXPERIMENTS ON

THE CAVE DATASET

optimal fusion results are obtained when SSPT included both
them.

3) Influence of MFM: Two different image reconstruction
approaches are compared, one is directly upsampling images
to the same size and subsequently fuse, the other is progres-
sively upsampling and fuse. The ablation experiments on the
reconstruction approach were conducted, and the results are
presented in Table III. It is obvious that the direct upsampling
achieves worse fusion results compared with progressive up-
sampling, which indicates that more information is lost during
cross-scale fusion. Therefore, progressive upsampling and fu-
sion were found to be more effective at preserving information
and achieving better fusion results.

E. Results of Comparison Experiments on Simulated Datasets

1) Results on CAVE: Table IV gives the results on the CAVE
dataset, where optimal results are bolded. What we can conclude
is that our method outperforms in all quantitative evaluation
metrics. This suggests that our method could improve spatial
resolution while retaining spectral information. For a more
intuitive representation of the reconstruction results of each
method, we display the fused images and their corresponding
error images on the sponges image in Fig. 6. We have marked
the meaningful areas with red boxes. The error images can
visualize the difference that exists between the reference and
fused images. It is evident that spectral distortion and detail
loss are common problems in HySure, CNMF, SSR-Net, and
Guided-Net, and our method has the optimal fusion quality

TABLE V
QUANTITATIVE RESULTS OF THE COMPARISON EXPERIMENTS ON

THE HARVARD DATASET

TABLE VI
QUANTITATIVE RESULTS OF THE COMPARISON EXPERIMENTS ON

THE PC DATASET

among all comparison methods. The PSNR values of all bands
are plotted in Fig. 7(a), where we can notice that our proposed
method has the highest PSNR values on all bands, demonstrating
the superiority of our method.

2) Results on Harvard: Table V illustrates the results for
all comparison methods on the Harvard dataset. On all quan-
titative evaluation indicators, our network all obtains the best
results, followed by Guided-Net. There are significant differ-
ences between model-based methods and deep learning-based
methods on the Harvard dataset. We pick the imgf1 from
the Harvard dataset for visualization in Fig. 8. What we can
learn from the images is that there exists obvious distortions
of FUSE, Hysure, CNMF, GSA, and MCT-Net, while our
method has the best visualization results with the least amount
of differences. Fig. 7(b) shows the PSNR values of all spec-
tral bands. Although there is an overall decreasing trend in
the PSNR values on the Harvard dataset, the optimal per-
formance is achieved by our method. This suggests that our
method is able to recover in parallel with spatial and spectral
information.

3) Results on PC: The results of all the methods on the PC
dataset are presented in Table VI. From the table, we find that
GSA performs best in terms of PSNR, while CNMF performs
best on SAM metric among the model-based methods. Our
method obtains better values than all the other comparison
methods on five metrics, followed by Guided-Net. Fig. 9 gives
the fused images and their corresponding error images on band
61 of the nine methods. From the visualized results, we can learn
that the model-based methods universally suffer from serious
spectral and spatial distortion, followed by SSR-Net, HSRNet,
and MCT-Net. Guided-Net and our method achieve better fusion
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Fig. 6. Visual results of the CAVE dataset at band 19. (a) FUSE. (b) HySure. (c) CNMF. (d) GSA. (e) SSR-Net. (f) HSRNet. (g) Guided-Net. (h) MCT-Net.
(i) Ours. (j) Ground truth.

Fig. 7. PSNR as a function of spectral band. (a) CAVE dataset. (b) Harvard dataset. (c) PC dataset.

results. Fig. 7(c) provides a comparison of the PSNR on each
spectral band of all methods. The difference between the fusion
quality of model-based and deep learning-based approaches is
obvious. Among deep learning-based approaches, our proposed
method yields better quantitative and qualitative results on the
PC dataset than other methods.

F. Experimental Results on Real Dataset

We performed further experiments on WV2 dataset to
demonstrate the effectiveness of our proposed method in
real-world scenarios. The WV2 dataset consists of an LRHS
image and an RGB image with sizes of 419 × 658 × 8
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Fig. 8. Visual results of the Harvard dataset at band 23. (a) FUSE. (b) HySure. (c) CNMF. (d) GSA. (e) SSR-Net. (f) HSRNet. (g) Guided-Net. (h) MCT-Net. (i)
Ours. (j) Ground truth.

TABLE VII
NUMBER OF PARAMETERS, FLOPS, AND TEST TIME OF THE DEEP

LEARNING-BASED METHODS

and 1676 × 2632 × 3, respectively. In our experiments, we
cropped four sets of nonoverlapping images, where the size of
HRMS images was 512× 512 and the size of LRHS images was
128 × 128. The first three subimages were treated as training set
and the rest one as test set. Since there are no available reference
images, we regenerated experimental data according to Ranchin
and Wald’s protocol [59]. Specifically, we regarded the original
images as reference and generated the HRMS and LRHS images
using filters estimated by HySure [60]. In the training phase, we
cropped HRMS and LRHS images with patch sizes of 32 and
8. In testing phase, we directly fed the original images into the
network.

Fig. 10 illustrates the visualization results on the WV2
dataset. The meaningful regions are zoomed in red boxes.

From the visualization results especially the error images, it is
apparent that our method yields best visual effects in details
and is closest to the original LRHS image. The outperfor-
mance in real scenarios further confirms the contributions of
our method.

G. Computational Efficiency

To provide a comprehensive comparison, it is necessary to
analyze the efficiency and computational cost of deep learning-
based methods. Table VII displays the specific values of the
number of parameters, FLOPs, and the testing time for deep
learning-based methods. From the results in Table VII, we
can learn that the proposed method has a higher num-
ber of parameters than other deep learning-based methods.
The FLOPs of our model are lower than Guided-Net and
slightly higher than HSRNet. Because the proposed model
is composed of multiple SSPTs, which inevitably leads to
suboptimal computational costs. The test time for a sin-
gle image of our method is shorter than that of Guided-
Net and MCT-Net, but longer than that of SSR-Net and
HSRNet.
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Fig. 9. Visual results of the PC dataset at band 61. (a) FUSE. (b) HySure. (c) CNMF. (d) GSA. (e) SSR-Net. (f) HSRNet. (g) Guided-Net. (h) MCT-Net. (i) Ours.
(j) Ground truth.

Fig. 10. Visual results of the WV2 dataset. (a) Real HR-MS image. (b) Real LR-HS image. (c) FUSE. (d) Hysure. (e) CNMF. (f) GSA. (g) SSR-Net. (h) HSRNet.
(i) Guided-Net. (j) MCT-Net. (k) Ours.

V. CONCLUSION

This article proposes a crossed dual-branch U-Net for HSI
super-resolution. The network adopts a dual-branch structure
based on U-Net, focusing on extracting spatial features in HRMS
images and spectral features in LRHS images, respectively.
An SFIM is designed between the two branches to achieve

cross-modality information interaction. Specially, we introduce
an SSPT as skip connection, which can efficiently supple-
ment correlative features and contributes to restore detailed
information in the upsampling process. Finally, we employ a
fusion strategy of progressive upsampling to further enhance the
final fusion quality. Extensive comparison and ablation experi-
ments are conducted on different datasets, where all outcomes
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confirm that our approach is outperforming many advanced
techniques.

Although our method achieved excellent fusion results, the
network contains multiple Transformer modules, resulting in
an excessive amount of parameters and high computational
complexity. In future work, we will strive to achieve the balance
between the performance and computational costs.
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