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Abstract—Deep learning techniques for change detection have
undergone rapid development in the past few years. However, it is
still a challenge how to reduce massive network parameters and
sufficiently fuse bitemporal image features to improve detection
accuracy. Therefore, this work proposes a novel and lightweight
network based on feature interleaved fusion and bistage decoding
(FFBDNet) for change detection. In the encoding stage, considering
the application problems caused by a large number of network
parameters, we use the more efficient EfficientNet as the backbone
to extract the bitemporal image features based on Siamese architec-
ture. To fuse the bitemporal image features and reduce interference
from surrounding objects, we propose a feature interleaved fusion
module, which can interleave the shared feature information and
the difference variance feature information. During the decoding
stage, the fused features are split into two groups, and a novel
bistage decoding framework is proposed to generate the accuracy
change map gradually. Extensive experiments and ablation studies
are validated on three public change detection datasets: WHU-CD,
LEVIR-CD, and SYSU-CD datasets. Compared to state-of-the-art
methods, the experimental results demonstrate that the proposed
FFBDNet produces a better balance between performance and
model parameters. Specifically, the F1 values obtained for these
three datasets are 93.27%, 91.11%, and 80.10%, respectively, and
the model parameters of the network are just 2.85 M.

Index Terms—Bistage decoding, change detection (CD), feature
interleaved fusion, lightweight network, remote sensing images.

I. INTRODUCTION

CHANGE detection (CD) is the process of extracting
and analyzing ground change information by comparing

bitemporal remote sensing images at different times in the same
geographical area [1], [2]. During the procedure, a semantic
label—such as “0” for “unchanged” or “1” for “changed”—
is assigned to each pixel. In short, two different temporal
high-spatial-resolution images that have been accurately reg-
istered [3], [4], [5] are employed to detect changes on the
surface. Acquiring high-spatial-resolution satellite images for
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CD has become more accessible thanks to breakthroughs in
remote sensing imaging techniques over the past few decades.
High-spatial-resolution images provide ample information but
make the CD task more challenging [6]. In a wide range of fields,
including resource surveying [7], urban expansion [8], disaster
assessment [9], and urban green ecosystem [10], [11], CD is one
of the most important applications of remote sensing images.

Depending on whether they require extracting features man-
ually, current CD methods fall into two broad categories: tradi-
tional CD methods and deep-learning-based CD methods [12].
Moreover, based on the adopted basic processing unit, the
traditional CD methods can be divided into pixel-based and
object-based methods [13]. Pixel-based methods usually directly
compare the individual pixels to produce the change result [14].
Researchers have performed a great deal of work on pixel-based
methods, such as image differencing [15], principal compo-
nent analysis [16], and change vector analysis [17]. However,
pixel-based methods concentrate on the spectral change of an
individual pixel and ignore the spatial context information. As
a result, the change maps inevitably exhibit salt-and-pepper
noises [18]. Different from pixel-based methods, the funda-
mental unit employed by object-based methods extends to the
entire object. The object-based methods can capture the homo-
geneous pixels belonging to the same objects using spectral [19],
textural [20], and spatial features [21]. Although object-based
methods can effectively reduce the “salt-and-pepper” noise,
suitable parameters are difficult to choose to extract image
objects in segmentation algorithms, which means that the error
caused by the segmentation would propagate to the predicted
change maps [22]. In addition, these traditional methods tend to
rely on handcrafted features, which lack robustness in complex
scenarios [23]. Therefore, the accuracy of traditional methods is
not satisfactory overall.

Over recent years, deep learning techniques have become
possible due to the emergence of big data and the constant
advances in the performance of computing devices [12], es-
pecially convolutional neural networks (CNNs), which have
excellent multilayer feature extraction abilities and an effective
end-to-end manner [13]; many researchers have incorporated
CNNs into several tasks, such as object detection [24], image
registration [25], and CD [26], [27]. Generally, there are two
main categories of current deep-learning-based CD methods:
patch-based and image-based [14]. The patch-based methods
predict the change category of the central pixel using image
patches (such as 3 × 3 and 5 × 5) as the network input [28].
Gong et al. [29] proposed a novel CD network that takes
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each local neighborhood of a pixel as the network input. Lei
et al. [30] proposed a CD method based on stacked denoising
autoencoders. This method employs the difference image to
estimate the multiscale patch image. To address the problem
of choosing the optimal patch size, Wang et al. [31] proposed
a feature-regularized mask DeepLab and obtained competitive
performance. Although patch-based methods typically do not
need much data to train on, there are still some drawbacks. On the
one hand, the performance of CD is substantially impacted by the
appropriate patch size, which is difficult to establish. Besides, the
patch-based methods use a neighboring patch overlap strategy,
which takes a long time and makes extensive use of memory [32].

To overcome the above limitations, image-based CD methods
have progressively adopted a fully convolutional network to
conduct an end-to-end pixelwise prediction [14]. After achieving
this milestone, numerous CD methods were proposed [23], [33].
For example, by considering two different image input patterns,
Daudt et al. [34] proposed three different CD network models,
namely, FC-EF, FC-Siam-diff, and FC-Siam-conc. To further
obtain more feature information and produce accurate change
maps, Peng et al. [35] designed a multiple side-output fusion
module that can fuse multiscale feature maps and proposed an
MSOFNet based on UNet++ [36]. To overcome the problem of
inaccurate boundary identification, Chen et al. [33] proposed
an edge-guided network that focuses on prior information on
boundaries and the integrity of change region. To filter back-
ground noise and improve the detection accuracy of the change,
a feature hierarchical differentiation (FHD) model for CD was
proposed by Pei and Zhang [37]. In the FHD model, the dual-
branch features are adaptively fused to obtain discriminative
feature information and achieve excellent results.

The attention mechanism has the capability to enhance rel-
evant feature information and suppress background noise in-
formation by weighting the feature maps [38]. Therefore, nu-
merous researchers have introduced the attention mechanism
to CD tasks to obtain the discriminative feature information
of bitemporal images [39], [40]. Jiang et al. [32] proposed an
attention-guided full-scale feature aggregation network that uses
the attention mechanism to alleviate feature redundancy and
achieve accurate results. Chen and Shi [39] proposed a spatial–
temporal attention network (STANet) for CD by analyzing the
spatial–temporal connection and the multiscale attention repre-
sentation. Similarly, Zhang et al. [40] proposed a deeply super-
vised image fusion network (DSIFN) for CD after introducing
channel and spatial attention to fuse feature information from
various domains. Chen et al. [41] designed a method that uses
a dual-attention strategy to obtain more discriminating feature
information to enhance the model’s performance at recognition.
Yang et al. [42] proposed a multiscale attention and edge-aware
Siamese network for CD; in this network, a multiscale attention
module composed of contour channel attention and convolu-
tional block attention is designed to enhance the edges of the
changed regions.

In addition, the Transformer has been introduced into the CD
field in some existing works due to its remarkable performance
in extracting global feature information. For example, Chen
et al. [43] proposed a bitemporal image transformer network
(BITNet) that expresses the bitemporal images into a few tokens

and uses a transformer encoder to model contexts in the compact
token-based space-time. Moreover, considering the advantages
of CNNs and Transformer in feature extraction, Chu et al. [44]
proposed a dual-branch feature guided aggregation network; the
spatial position and semantic features are extracted through the
CNNs and the Transformer branches, respectively. The adaptive
frequency transformer was utilized by Fu et al. [45] to enhance
the differential feature information present in bitemporal im-
ages, and they proposed a CNN–Transformer network for CD.

The methods mentioned above have yielded beneficial effects.
However, there are still some issues. On the one hand, the spatial
details and the semantic information within remote sensing
images become richer as the spatial resolution rises [6]. As a
result, several problems (such as edge details and object in-
tegrity) brought on by influencing factors (like seasonal changes,
illumination changes, and building shadows) get progressively
worse. Therefore, a more effective feature extraction network
and feature fusion strategy should be explored for the CD task.
On the other hand, there are often lots of network parameters
in the most recent deep-learning-based methods from the past.
However, the larger parameter will cause a higher level of
complexity in the network and other unpredictable issues (such
as overfitting) and take a long time in the training stage [46].
Therefore, a more lightweight network is required to meet
practical applications.

To solve the above two problems, a lightweight network based
on feature interleaved fusion and bistage decoding (FFBDNet)
is proposed for the CD task. First, to reduce the parameter redun-
dancy and computational cost of the network, an efficient and
lightweight EfficientNet is employed as the backbone to extract
multiscale features. Subsequently, to get more discriminative
change-related fusion feature, a feature interleaved fusion mod-
ule (FIFM) is designed to fuse the bitemporal features. Then, the
multilevel features are divided into two groups according to the
properties of each level feature. Finally, use the proposed bistage
decoding network to generate an accurate change map step by
step. The main contributions of this work are summarized as
follows.

1) A novel lightweight network with an FIFM and bistage
decoding is proposed for CD. The proposed network de-
signs a bistage decoding module that divides the full-level
features into two groups to generate the accurate change
result step by step.

2) An FIFM is proposed to fuse the bitemporal features
generated from the Siamese network. The proposed FIFM
can achieve more effective feature fusion and generate
more distinguishable fusion features by exploiting the dif-
ference variance information and the shared information
between bitemporal features.

3) Extensive experiments on three challenging CD datasets
are conducted to validate the efficiency of the proposed
method. The results of quantitative and qualitative studies
show that the proposed method has a lower model parame-
ters and outperforms a number of previous state-of-the-art
(SOTA) CD methods.

The rest of this article is organized as follows. In Section II,
we introduce the proposed method in detail. Section III describes
the experiments on different datasets that will be conducted to
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Fig. 1. Framework of the proposed FFBDNet.

validate the proposed FFBDNet. Finally, Section IV concludes
this article.

II. METHODOLOGY

Fig. 1 shows the framework of the proposed FFBDNet, which
is a standard-coded Siamese architecture. First, the Siamese
network’s encoding branch extracts the multilevel features of
the bitemporal images. After that, the bitemporal features are
further fused using the designed FIFM. During this process,
the FIFM can combine the difference variance feature and the
shared feature between bitemporal features to achieve a more
effective fusion. In the decoding stage, to alleviate the semantic
gap between the low-level and high-level features and improve
the accuracy of CD, the fused full-level features are divided
into two groups. Subsequently, the two groups’ split features are
decoded to generate the accurate change map progressively [37].

A. Feature Encoder

In the feature encoder, the input bitemporal images of CD are
compatible with the Siamese network structure [47]. Therefore,

we use a Siamese network design with two weight-sharing
branches to extract multilevel features. As for the backbone,
we use EfficientNet-B4 as the feature encoder. EfficientNets are
a family of models obtained using neural architecture search to
design the new baseline network. Specifically, the EfficientNets
use an effective compound coefficient to balance network width,
resolution, and depth to obtain better performance. Compared to
the Visual Geometry Group Net [48] or Residual Network [49],
the EfficientNets show better accuracy and efficiency on com-
puter vision tasks [50].

As shown in the encoding block of Fig. 1, from left to right, a
pair of bitemporal images I1, I2 ∈ RC×H×W are used as the
input of the Siamese network to extract multilevel features.
C, H , and W represent the number of bands, height, and
width of the input image, respectively. In this article, only
some convolutional stages from the original EfficientNet-B4
have been used to extract features. Specifically, we only use the
first five convolutional stages from the original EfficientNet-B4.
The different scale feature maps that each convolutional stage
makes are represented as layers with different colors in Fig. 1.
As a result, each branch of the Siamese network generates five
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Fig. 2. Structure of the proposed FIFM module.

feature maps, written as f i
1, f

i
2, i ∈ {0, 1, 2, 3, 4}, respectively.

Specifically, the size of f0
1 , f

1
1 , f

2
1 , f

3
1 , and f4

1 are 1/2, 1/2, 1/4,
1/8, and 1/16 of the input image size, respectively, and the same
for f i

2. The channels of the five feature maps are 48, 24, 32, 56,
and 112, respectively.

B. Feature Interleaved Fusion Module

After bitemporal feature encoding, how to fuse the bitemporal
features to obtain the representative features for CD is the core
issue [51]. To merge the bitemporal image features, current
networks usually use the fusion strategy called “concatenation”
or “subtraction” [34], [52]. Even though these fusion strategies
help improve the accuracy of CD results, more effective fusion
methods are needed to explore. To address the fusion problem
of bitemporal features, this article developed a novel FIFM that
can generate more discriminative fusion features. Unlike current
fusion modules, which focus only on single fusion strategies,
the proposed FIFM follows a three-step procedure. First, the
bitemporal image features are enhanced across interleave fusion.
Next, it extracts the shared representation features and differ-
ence variation features from the enhanced bitemporal features.
Finally, the two distinct features are concatenated to generate
discriminative fusion features for CD.

The proposed FIFM module’s structure is shown in Fig. 2;
consider the bitemporal image features f i

1 ∈ RCi×Hi×Wi and
f i
2 ∈ RCi×Hi×Wi . In this example, Ci, Hi, and Wi represent

the channel numbers, height, and width of the ith feature level,
respectively. First, a shared 1 × 1 convolutional layer is used to
project f i

1 and f i
2 into a single feature space. Subsequently, the

two convolution features are fed into a 3× 3 convolutional layer.
In this way, two feature maps are obtained, which can be used
to enhance the feature maps. Formally, the two feature attention
maps are described as follows:{

wi
1 = δ(Conv3(Conv1(f

i
1)))

wi
2 = δ(Conv3(Conv1(f

i
2)))

(1)

where wi
1 and wi

2 are the feature attention maps, δ is the sigmoid
function,Conv1 is a convolution layer with a kernel size of 1×1,

and Conv3 denotes a 3 × 3 convolution layer . Subsequently,
the feature attention maps wi

1 and wi
2 can be used to enhance

their corresponding feature maps f i
1 and f i

2. Moreover, a residual
connection approach is utilized to merge the improved features
with their original features, ensuring the preservation of infor-
mation pertaining to the latter. The cross-enhanced features of
bitemporal images can be written as{

f̄ i
1 = f i

1 + f i
1 ⊗ wi

2

f̄ i
2 = f i

2 + f i
2 ⊗ wi

1

(2)

where f̄ i
1 and f̄ i

2 represent the cross-enhanced features, ⊗ de-
notes elementwise multiplication operations, and wi

1 and wi
2 are

feature attention maps. After getting the cross-enhanced features
f̄ i
1 and f̄ i

2, it is crucial to fuse the bitemporal features with a
robust strategy. Every different fusion method has its benefits
and drawbacks. For example, suppose that the shared feature
information in the bitemporal features is significant, but the
difference information is small. In that case, it is reasonable
to infer that the corresponding areas are unchanged. On the
contrary, if the difference information is significant, but the
shared information is small, we may infer that the corresponding
regions in the bitemporal images have changed. Therefore,
shared feature information and difference feature information
have been integrated into this work. In particular, according to
the two cross-enhanced features f̄ i

1 and f̄ i
2, the shared features

f̄ i
sh and difference variance features f̄ i

di can be computed by{
f̄ i

sh = f̄ i
1 + f̄ i

2

f̄ i
di = abs(f̄ i

1 − f̄ i
2)

(3)

where f̄ i
sh and f̄ i

di are shared features and difference features,
respectively. abs represents the absolute difference between
the two cross-enhanced features. Subsequently, in the channel
dimension, f̄ i

sh and f̄ i
di are further concatenated. At last, the final

fused features are generated by feeding the concatenated features
into a 3 × 3 convolutional layer. This procedure can be denoted
as

F i = Conv3([f̄
i
sh; f̄

i
di]) (4)



WANG et al.: LIGHTWEIGHT CHANGE DETECTION NETWORK BASED ON FEATURE INTERLEAVED FUSION AND BISTAGE DECODING 2561

where F i denotes the fused features at the ith feature level,
Conv3 is the 3 × 3 convolution, which is then followed by a
BN and a ReLU function, and [; ] is the channel dimension’s
concatenation operation.

C. Bistage Decoding

Previous studies [32], [53] have shown that aggregate full-
scale feature information based on the UNet3+ network can
effectively improve the performance of results. However, these
methods based on UNet3+ that directly aggregate the full-scale
features would introduce some issues. The semantic difference
between low-level and high-level features has become com-
monly accepted [54]. This difference is particularly pronounced
when attempting to aggregate features on a full scale, often
leading to discrepancies and confusion within the network. In
particular, the high-level features have rich semantic information
that helps find areas that have changed, while the low-level
features have spatial information that helps refine edge de-
tails [55]. On the other hand, the full-scale skip connection is
characterized by excessive network parameters, which could be
more problematic.

To alleviate these problems, we propose a bistage decoding
strategy that can alleviate the confusion problems caused by the
semantic gap. As shown in Fig. 1, the proposed bistage decoding
module comprises two progressive decoding stages. Specifi-
cally, the fused full-level features are divided into two groups:
high-level groups are labeled Ch(Ch = F 2, F 3, F 4) and low-
level groups are labeled Cl(Cl = F 0, F 1, F 2). It should be
noted that the feature F 2 is contained in two different groups
simultaneously. The reason is that the feature F 2 is generated
from the middle convolution layers. In other words, we argue
that the feature F 2 has both spatially detailed information and
discriminative semantic information, which can alleviate the
semantic gap caused by the direct use of the full-scale skip
connection. Subsequently, the whole network is trained in two
stages using the features of two groups.

In the first decoding stage, the three features (i.e.,F 2, F 3, F 4)
of the high-level groups are progressively integrated to obtain
the initial change result P1. Specifically, the proposed decoding
stage is built similarly to UNet3+. First, features F 2 and F 4 are
resampled to the same scale as the feature F 3. This entails a
downsampling for F 2 and, vice versa, an upsampling for F 4.
A feature set containing the same number of channels as F 3 is
generated through a 3 × 3 convolution operation. Subsequently,
the three same resolution feature maps in the feature set are
concatenated. Then, the fusion featureF 3

D is obtained by a 3× 3
convolution. The entire process is formulated as follows:

Catf = [Conv3(D(F 2));Conv3(F
3);Conv3(U(F 4))] (5)

F 3
D = ReLu(BN(Conv3(Catf ))) (6)

where D and U represent the downsampling and upsampling,
respectively. Conv3 denotes a 3 × 3 convolution function, [; ]
is the concatenation operation, BN is the batch normalization,
and ReLu denotes rectified linear unit function. By analogy,

by replacing F 3 with F 3
D, the fusion feature F 2

D can be ob-
tained through the same operation. By using this approach, the
resulting fusion feature maps not only encompass multilevel
feature information but also exhibit a reduced semantic gap and
require fewer network parameters. The reason for this is that
each feature group, differently from UNet3+, contains only three
levels of features. AfterF 2

D is obtained, a 3× 3 convolution with
a channel size of 1 followed by a sigmoid function is employed
to obtain the initial change map P1, which is formulated as

P1 = δ(Conv3(F
2
D)) (7)

where P1 is the initial change map, δ denotes the sigmoid
function, and Conv3 is a 3 × 3 convolution with a channel
size of 1. Then, the obtained initial change map P1 is used as a
feature attention map to refine the three low-level feature maps,
which are denoted as

F̄ i = F i ⊗ P1 (8)

where F i, i ∈ 0, 1, 2, is the feature in the low-level group, ⊗
denotes the elementwise multiplication operation, and F̄ i rep-
resents the refined features. In the second decoding stage, the
three refined features in the low-level group undergo the same
decoding process as in the first stage, resulting in the generation
of the final change result P2.

D. Loss Function

CD can be interpreted as a task of binary classification with
two labels: “unchanged” and “changed.” Given that the binary
cross-entropy (BCE) function is widely employed in binary clas-
sification tasks and shows good performance, the BCE function
is used as the loss function as follows:

Lbce(t, p) = − 1

N

N∑
i=1

[tilog(pi) + (1− ti)log(1− pi)] (9)

where N represents the total pixel numbers, and t and p repre-
sent the truth label and the predicted change map, respectively.
tn ∈ {0, 1} is the value of position n in t (i.e., ti = 0 and ti = 1
represent unchanged and changed categories, respectively). pn
and 1− pn denote the predicted probabilities of changed cate-
gories and unchanged categories, respectively; pn ∈ [0, 1].

III. EXPERIMENTS AND ANALYSIS

We first provide a detailed illustration of the three challeng-
ing datasets and the evaluation metrics. Then, we present an
overview of eight SOTA CD methods, followed by a description
of the relevant experimental setting. Subsequently, we provide a
comparison and analysis of the results obtained from a series
of experiments. Finally, ablation experiments are conducted
to validate the efficacy of the FIFM and the bistage decoding
module.

A. Datasets

1) WHU-CD [56]: The WHU-CD dataset includes portions
of the region in New Zealand. The bitemporal images
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Fig. 3. Sample images from three datasets, where “T1” and “T2” represent bitemporal images and “Label” represent truth map. (a) WHU-CD. (b) LEVIR-CD.
(c) SYSU-CD.

were captured immediately after the magnitude 6.3 earth-
quake in 2011 and again after it was reconstructed in
2016. This dataset with a spatial resolution of 0.2 m
and 32 507 × 15 354 pixel resolutions. Like previous
studies [26], [44], the original bitemporal images are
divided into 256 × 256 patch size without overlapping
and obtained 6096, 762, and 762 image pairs for training,
validation, and testing, respectively. Fig. 3(a) shows the
sample images of the WHU-CD dataset.

2) LEVIR-CD [39]: The LEVIR-CD dataset is collected from
Google Earth within a time span between 2002 and 2018.
It comprises 637 image pairs with a 0.5-m spatial and
1024 × 1024 pixel resolutions. The LEVIR-CD dataset
focuses on building with different types of changes. It con-
tains numerous pseudo-changes due to light and season,
making it a challenging dataset for CD. Chen and Shi [39]
provided a standard dataset division for the LEVIR-CD
dataset. The original images are cropped into patch size.
The number of image pairs is 7120, 1024, and 2048 for the
training, validation, and test, respectively. Fig. 3(b) shows
the sample images of the LEVIR-CD dataset.

3) SYSU-CD [57]: Shi et al. [57] have recently released
the challenging dataset known as SYSU-CD. This dataset
consists of 20 000 pairs of images with 0.5-m spatial reso-
lution and 256 × 256 spatial size. In contrast to WHU-CD
and LEVIR-CD, which only focus on building CD, the
SYSU-CD dataset contains multiple change types, such
as roads, buildings, ships, and croplands. According to
the official set, the number of pairs for training, validation,
and testing is 12 000, 4000, and 4000, respectively. Some
sample images of the SYSU-CD dataset are shown in
Fig. 3(c).

B. Evaluation Metrics

To conduct a comprehensive analysis of the performance of
the proposed method, four popular evaluation metrics have been
adopted, including precision, recall, F1, and intersection over

union (IoU). To be more specific, precision refers to the ratio
of changed pixels that are successfully detected in contrast to
the total number of changed pixels that are detected. A higher
precision value indicates a lower commission error. The ratio of
changed pixels correctly detected to total ground truth pixels is
expressed as recall. The omission error is lower when the recall
value is larger. F1 metric is a comprehensive evaluation of the
model’s performance that can be calculated from the harmonic
average of precision and recall. IoU is the ratio between the
overlap area of the predicted result and the ground truth and their
union. The metrics described above are formulated as follows:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + TN
(11)

F1 = 2× Precision × Recall
Precision + Recall

(12)

IoU =
TP

TP + FP + FN
(13)

where TP stands for the total number of true positives, FP for
the total number of false positives, and FN for the total number
of false negatives.

C. Comparison Methods

To evaluate the effectiveness of the proposed method, eight
SOTA methods are selected to make a comparison, including FC-
EF [34], FC-Siam-diff [34], FC-Siam-conc [34], STANet [39],
DSIFN [40], SNUNet [52], BITNet [43], and LightCDNet [58].
The details are listed as follows.

1) FC-EF: This model is a UNet-based single-stream
method. First, the channel dimension is used to con-
catenate the bitemporal images. Subsequently, the model
receives the concatenated images as input to obtain the
change map.

2) FC-Siam-diff: The Siamese network has introduced this
model. In particular, the bitemporal features obtained from
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the Siamese network first undergo a subtraction operation
and are then put into the decoder to produce the result.

3) FC-Siam-conc: Similar to FC-Siam-diff, the FC-Siam-
conc extracts bitemporal features using the Siamese net-
work. In contrast, the FC-Siam-conc employs concatena-
tion operations to fuse the bitemporal features.

4) STANet: The STANet presents a spatial–temporal module
that focuses on capturing the spatial–temporal information
between any points on the space-time continuum to obtain
more discriminatory features for CD.

5) DSIFN: The DSIFN proposes a deeply supervised dif-
ference discrimination network (DDN), which can be
improved by introducing change map losses directly to
intermediate network layers. Furthermore, the DSIFN
introduces a hybrid attention mechanism that combines
spatial and channel attention.

6) SNUNet-32: The SNUNet is composed of the NestedUNet
and the Siamese network. The SNUNet utilizes the dense
skip connection strategy to alleviate the loss of informa-
tion. Considering its efficiency and accuracy, the channel
number of the SNUNet is set to 32 in this article.

7) BITNet: The BITNet is a novel method that combines
CNNs and Transformer. The BITNet expresses bitemporal
images as a small number of semantic tokens and model
contexts in a token-based space-time.

8) LightCDNet: The LightCDNet is a lightweight Siamese
network for CD. This method improves the representation
of change information by introducing a multitemporal
feature fusion combining two-stream features.

D. Implementation Details

Our experiment uses an NVIDIA Geforce RTX 3080Ti with
12 GB of memory with the PyTorch framework for model
building and training. AdamW is used as the optimizer, and
its initial learning rate is stated as 1e-3, while its weight decay
is stated as 1e-4. Each of the methods receives training on the
three datasets for a total of 100 epochs. In addition, due to the
GPU’s limited physical memory, the batch size has been fixed
to 8. To ensure fair comparisons, we use their released code
and default parameters to compare all the methods in the same
experiment environment. In addition, following each training
epoch, validation is conducted, and the best validation model is
evaluated on the test sets.

E. Experimental Results

1) On the WHU-CD Dataset: The quantitative results on the
WHU-CD dataset are displayed in Table I. It is evident that pre-
cision, recall, F1, and IoU of the proposed FFBDNet are 93.60%,
92.95%, 93.27%, and 87.39%, respectively, which outperform
the other SOTA methods in all of the metrics. According to
the results of the comparison methods, the results of the three
FC-based methods are relatively low. Specifically, the FC-Siam-
conc yields the lowest F1 and IoU with a value of 61.96% and
44.89%, respectively. Although the three comparison methods
of the STANet, DSIFN, and SNUNet are better than the three
FC-based methods, F1 of these three methods is lower than

TABLE I
QUANTITATIVE EVALUATION OF EXPERIMENTAL RESULTS OBTAINED FROM

DIFFERENT METHODS ON THE WHU-CD DATASET

TABLE II
QUANTITATIVE EVALUATION OF EXPERIMENTAL RESULTS OBTAINED FROM

DIFFERENT METHODS ON THE LEVIR-CD DATASET

89.00%. Moreover, the two comparison methods of the BITNet
and LightCDNet obtain an F1 of over 91.00%. LightCDNet
achieves the best score among these methods, with F1 and
IoU of 91.50% and 84.30%, respectively. Compared to the
second-ranked LightCDNet, the proposed FFBDNet improves
F1 and IoU by approximately 1.77% and 3.09%, respectively.
The quantitative analysis demonstrates that the proposed FFBD-
Net outperforms the other SOTA methods.

Fig. 4 shows the visualization prediction maps of the various
methods on the WHU-CD dataset. To have better readability, TP
(white), FP (red), FN (blue), and TN (black) do a different color
to represent each. Among them, FC-EF, FC-Siam-diff, and FC-
Siam-conc have yielded the worst results, making it difficult for
these three methods to detect building edge shadows effectively.
The results of the STANet are unsatisfactory in the sense that
they show a heavily jagged edge. A large number of misclassified
unchanged pixels and salt-and-pepper noise are present in the
SNUNet’s output. Although BITNet and LightCDNet perform
better than the previously mentioned methods, they still produce
a significant number of false positives at the edges of buildings.
In contrast, our FFBDNet can maintain the shape of changed
regions more accurately, as shown by both the visualization
results and the quantitative analysis in Table I.

2) On the LEVIR-CD Dataset: Table II shows that the pro-
posed FFBDNet achieves optimal performance, with precision,
F1, and IoU values of 92.28%, 91.11%, and 83.67%, respec-
tively. Compared with the second-ranked SNUNet, the proposed
FFBDNet has enhanced F1 and IoU by approximately 1.2%
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Fig. 4. Visual comparison of the different methods on the WHU-CD dataset.

Fig. 5. Visual comparison of the different methods on the LEVIR-CD dataset.

and 2.0%, respectively. While the STANet has the highest recall
value at 91.00%, it is only 0.02% higher than the recall value
achieved by our proposed FFBDNet. Based on the quantitative
results mentioned above, the superior performance of the pro-
posed FFBDNet can be attributed to two factors: the proposed
FIFM, which extracts more discriminative fusion features for
CD, and the designed bistage decoding module, which generates
accurate maps.

As shown in Fig. 5, the LEVIR-CD dataset contains more
minor and more numerous changed buildings compared to the
WHU-CD dataset, and the visualization results are generated
using different methods. In Case I, the changed buildings are
small and densely adjacent. The edge details of the results
of the STANet and DSIFN are stuck together. The results of
the SNUNet and BITNet are improved to some extent, but
they suffer more false positives and false negatives than the
proposed FFBDNet. In Case III, the appearance of similar colors
between the dense buildings and the environment causes severe
disturbance. Except for LightCDNet, all the compared methods
have difficulty detecting small changed buildings accurately. Be-
sides, LightCDNet only partially detects the changed buildings,

leaving ample missed areas. Compared to other methods, the
proposed FFBDNet effectively detects minor changed buildings,
has fewer false positives, and captures edge details more accu-
rately. The results from all cases demonstrate the superiority of
the proposed FFBDNet.

3) On the SYSU-CD Dataset: Table III shows the quantita-
tive results of different methods on the SYSU-CD dataset. It
can be seen that the proposed FFBDNet achieves better results
than the other SOTA methods in terms of precision, F1, and
IoU, except for recall. Among these comparison methods, the
three FC-based methods achieve relatively low results. The
BITNet and LightCDNet perform relatively better than other
comparison methods, but F1 of these two methods is lower than
79.00%. Specifically, the LightCDNet achieves the relatively
best performance among these methods, with F1 and IoU of
78.75% and 66.50%, respectively. Compared with the second-
ranked LightCDNet, the proposed FFBDNet obtains the highest
F1 and IoU of 80.10% and 66.81%, respectively, 1.35% and
1.83% higher than those of the LightCDNet, respectively. It is
essential to point out that although the STANet achieves the
best recall with 82.73%, its F1 and IoU are relatively lower. In



WANG et al.: LIGHTWEIGHT CHANGE DETECTION NETWORK BASED ON FEATURE INTERLEAVED FUSION AND BISTAGE DECODING 2565

Fig. 6. Visual comparison of the different methods on the SYSU-CD dataset.

TABLE III
QUANTITATIVE EVALUATION OF EXPERIMENTAL RESULTS OBTAINED FROM

DIFFERENT METHODS ON THE SYSU-CD DATASET

contrast to precision and recall, F1 and IoU are comprehensive
evaluations of the performance of the network. Therefore, it is
evident that the proposed FFBDNet performs better than other
SOTA methods.

The experimental results of a variety of methods are visualized
in Fig. 6. It is evident that the three FC-based methods obtain the
relatively worst visualization results, which both have a lot of
false detection and negative detection. The reason may be that
the three FC-based methods’ network architecture and fusion
mode is simple, which means they cannot deal with datasets with
multiple change types. Although the two comparison methods
of the SNUNet and BITNet are better than the three FC-based
methods, these two methods are still not satisfactory. Among
these comparison methods, the LightCDNet achieves relatively
better results. However, it can be seen that the proposed FF-
BDNet obtains the best visual results on multiple change types.
Specifically, in the three different cases, the proposed FFBDNet
not only has less false detection but also has a smoother edge
of changed regions. In contrast, the other comparison SOTA
methods have many false positives and negatives. The visual
results demonstrate that the proposed FFBDNet has the best
performance, which is consistent with the quantitative analysis
in Table III.

TABLE IV
MODEL COMPLEXITY COMPARISONS ON THE WHU-CD DATASET

4) Model Complexity: We further evaluate the model com-
plexity of the proposed FFBDNet on the WHU-CD dataset from
two different perspectives: the number of parameters (Params)
and the number of floating-point operations (FLOPs). The values
of Params and FLOPs are directly correlated with the complexity
of a network.

The Params and FLOPs of all compared methods are dis-
played in Table IV. For an intuitive visualization, the scatterplot
of all compared methods is shown in Fig. 7. The FC-EF, FC-
Siam-diff, and FC-Siam-conc networks have fewer Params and
FLOPs due to the network’s straightforward design. However,
their results are not acceptable, so they should not be used in
practice. The DSIFN, SNUNet, and LightCDNet have not only
larger Params and FLOPs but also lower performance than the
proposed FFBDNet. As for the proposed FFBDNet, its Params
are slightly larger than those of the FC-EF, FC-Siam-diff, and
FC-Siam-conc. However, the proposed FFBDNet achieves the
best performance on two challenging datasets. In sum, the results
of the model analyses show that the proposed FFBDNet offers
a better balance between the parameters of the model and its
performance.

F. Ablation Experiments

A series of ablation experiments are conducted on the three
datasets to evaluate the performance of the proposed FIFM and
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Fig. 7. Scatterplot of different methods’ performance. (a) Number of parameters. (b) Floating point of operations.

TABLE V
ABLATION EXPERIMENTAL OF “FIFM” ON THE THREE DATASETS

the bistage decoding module. All of the ablation experiments use
the same training strategies to guarantee accurate comparisons.

1) Ablation Experiment of FIFM: To test the effectiveness
of the proposed FIFM, we replace the FIFM module with other
fusion strategies like difference fusion [34], concatenation fu-
sion [34], and DDN fusion [40]. First, we define the Siamese
encoder based on EfficientNet-B4 without any other module as
the “Baseline.” The difference fusion mode is represented as
“Diff,” the concatenation fusion mode is defined as “Conc,” the
bistage decoding module is represented as “BID,” and the DDN
fusion is denoted as “DDN.”

The results of the ablation investigations that are conducted
on the FIFM module are displayed in Table V. It is clear that
the “Diff” fusion mode produces the poorest results on all three
datasets. The reason may be that the simple “Diff” fusion mode
cannot obtain sufficient fusion information, similar to the FC-
Siam-diff. The “DDN” fusion mode achieves the second-ranked
scores on the SYSU-CD dataset but has worse results than the
“Conc” fusion mode on the WHU-CD and LEVIR-CD datasets.
Specifically, compared to “DDN,” the improvements in F1 of
“Conc” are 0.11% and 0.58% on the WHU-CD and LEVIR-CD,
respectively. The reason might be that the “Conc” fusion mode
can capture more feature information for CD. The proposed
“FIFM” fusion mode obtains the best performance among these
fusion modes. Specifically, compared to the “Conc” fusion
mode, the proposed “FIFM” improves F1 by approximately
2.05% and 0.56% on the WHU-CD and LEVIR-CD datasets. On
the SYSU-CD dataset, compared to the ranked-second “DDN”
fusion mode, the proposed “FIFM” achieves improvements of

Fig. 8. Visual results of ablation experiment of the FIFM.

0.52% in F1. The reason is that the proposed FIFM module can
simultaneously exploit the difference variation feature and the
shared representation feature. Fig. 8 shows the visualization of
the ablation experiment of the FIFM. It is evident that compared
to other fusion modes, the results of the proposed “FIFM” fusion
mode have fewer false negatives.

2) Ablation Experiment of Bistage Decoding: To test the
effectiveness of the proposed bistage decoding module, we
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TABLE VI
ABLATION EXPERIMENTAL OF “BISTAGE DECODING” ON THE THREE DATASETS

Fig. 9. Visual results of ablation experiment of bistage decoding strategy.

replaced it with the full-scale skip connections that are used in
the traditional UNet3+ network. For convenience, “FSD” is the
abbreviation used to denote full-scale skip connection decoding.

The quantitative results of the ablation experiment between
the bistage decoding module and FSD are shown in Table VI. It
is clear that the “BID” decoding mode not only achieves optimal
results on all three datasets but also has fewer parameters.
Specifically, when compared to the “FSD” decoding mode on
the WHU-CD dataset, the improvements reached by the BID are
approximately 1.38% and 2.39% of F1 and IoU, respectively.
On the LEVIR-CD dataset, the “BID” decoding mode achieves
improvements of approximately 0.59% of F1 and 1.02% of IoU.
On the SYSU-CD dataset, the proposed “BID” decoding mode
has enhanced F1 and IoU by approximately 0.36% and 0.49%,
respectively. In addition, the proposed “BID” mode has fewer
parameters compared with the “FSD” decoding mode. Fig. 9
shows the visualization results. It is clear that the “BID” mode
generates more accurate edges than the “FSD” mode and that
its detection results are closer to the label. Therefore, we can
conclude that the proposed bistage decoding module is effective.

IV. CONCLUSION

In this article, a lightweight CD network with a novel FIFM
and bistage decoding was proposed. In the feature encoder
stage, the proposed FFBDNet used the EfficientNet-B4 to extract
bitemporal image features more efficiently. Then, the bitemporal
features were fused using the designed FIFM to obtain more
discriminative fusion features. Finally, a novel bistage decoding
module was proposed in the change map decoding process to
alleviate the semantic gap between high- and low-level features.
Based on the above contributions, a lightweight network based

on FIFM and bistage decoding was proposed for CD. The pro-
posed FFBDNet outperformed eight SOTA CD methods from
the extensive experiments conducted on three challenging public
datasets. The F1 values obtained for these three datasets were
93.27%, 91.11%, and 80.10% on the WHU-CD, LEVIR-CD,
and SYSU-CD datasets, respectively. In addition, the network
surpassed eight SOTA methods in terms of model parameters,
and the ablation experiment established the effectiveness of
the designed FIFM and bistage decoding module. It is worth
noting that although the proposed FFBDNet achieves the best
performance compared to other SOTA methods on all three
datasets, all the methods are supervised-based with extensive
labeled data. In the future, we will focus on weakly supervised
and unsupervised CD algorithms to save labor-intensive and
time-consuming annotated image labels.

ACKNOWLEDGMENT

The authors would like to thank everyone who has contributed
datasets and fundamental research models to the public. The
authors also appreciate the editors and anonymous reviewers for
their valuable comments, which greatly improved the quality of
this article.

REFERENCES

[1] D. Lu, P. Mausel, E. Brondizio, and E. Moran, “Change detection tech-
niques,” Int. J. Remote Sens., vol. 25, no. 12, pp. 2365–2401, 2004.

[2] Z. Lv et al., “Land cover change detection with heterogeneous remote
sensing images: Review, progress, and perspective,” Proc. IEEE, vol. 110,
no. 12, pp. 1976–1991, Dec. 2022.

[3] Y. Ye, B. Zhu, T. Tang, C. Yang, Q. Xu, and G. Zhang, “A robust multimodal
remote sensing image registration method and system using steerable
filters with first-and second-order gradients,” ISPRS J. Photogrammetry
Remote Sens., vol. 188, pp. 331–350, 2022.

[4] B. Zhu, C. Yang, J. Dai, J. Fan, Y. Qin, and Y. Ye, “R2Fd2: Fast and robust
matching of multimodal remote sensing images via repeatable feature
detector and rotation-invariant feature descriptor,” IEEE Trans. Geosci.
Remote Sens., vol. 61, 2023, Art. no. 5606115.

[5] Y. Ye and L. Shen, “HOPC: A novel similarity metric based on geometric
structural properties for multi-modal remote sensing image matching,” IS-
PRS Ann. Photogrammetry, Remote Sens. Spatial Inf. Sci., vol. 3, pp. 9–16,
2016.

[6] K. Jiang, W. Zhang, J. Liu, F. Liu, and L. Xiao, “Joint variation learning of
fusion and difference features for change detection in remote sensing im-
ages,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 4709918.

[7] P. P. De Bem, O. A. de Carvalho Jr., R. F. Guimarães, and R. A. T. Gomes,
“Change detection of deforestation in the Brazilian Amazon using Landsat
data and convolutional neural networks,” Remote Sens., vol. 12, no. 6,
2020, Art. no. 901.

[8] P. Du, S. Liu, P. Gamba, K. Tan, and J. Xia, “Fusion of difference images
for change detection over urban areas,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 5, no. 4, pp. 1076–1086, Aug. 2012.

[9] P. Washaya, T. Balz, and B. Mohamadi, “Coherence change-detection
with Sentinel-1 for natural and anthropogenic disaster monitoring in urban
areas,” Remote Sens., vol. 10, no. 7, 2018, Art. no. 1026.



2568 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

[10] D. He, Q. Shi, X. Liu, Y. Zhong, G. Xia, and L. Zhang, “Generating annual
high resolution land cover products for 28 metropolises in China based on
a deep super-resolution mapping network using Landsat imagery,” GISci.
Remote Sens., vol. 59, no. 1, pp. 2036–2067, 2022.

[11] Q. Shi, M. Liu, A. Marinoni, and X. Liu, “UGS-1 M: Fine-grained urban
green space mapping of 31 major cities in China based on the deep learning
framework,” Earth Syst. Sci. Data, vol. 15, no. 2, pp. 555–577, 2023.

[12] H. Jiang et al., “A survey on deep learning-based change detection from
high-resolution remote sensing images,” Remote Sens., vol. 14, no. 7, 2022,
Art. no. 1552.

[13] L. Song, M. Xia, J. Jin, M. Qian, and Y. Zhang, “SuacdNet: Attentional
change detection network based on siamese U-shaped structure,” Int. J.
Appl. Earth Observ. Geoinf., vol. 105, 2021, Art. no. 102597.

[14] Q. Ding, Z. Shao, X. Huang, and O. Altan, “DSA-Net: A novel deeply
supervised attention-guided network for building change detection in high-
resolution remote sensing images,” Int. J. Appl. Earth Observ. Geoinf.,
vol. 105, 2021, Art. no. 102591.

[15] A. Mondini, F. Guzzetti, P. Reichenbach, M. Rossi, M. Cardinali, and F.
Ardizzone, “Semi-automatic recognition and mapping of rainfall induced
shallow landslides using optical satellite images,” Remote Sens. Environ.,
vol. 115, no. 7, pp. 1743–1757, 2011.

[16] J. Deng, K. Wang, Y. Deng, and G. Qi, “PCA-based land-use change
detection and analysis using multitemporal and multisensor satellite data,”
Int. J. Remote Sens., vol. 29, no. 16, pp. 4823–4838, 2008.

[17] H. Fang, P. Du, X. Wang, C. Lin, and P. Tang, “Unsupervised change
detection based on weighted change vector analysis and improved Markov
random field for high spatial resolution imagery,” IEEE Geosci. Remote
Sens. Lett., vol. 19, 2022, Art. no. 6002005.

[18] Z. Li, C. Yan, Y. Sun, and Q. Xin, “A densely attentive refinement
network for change detection based on very-high-resolution bitemporal
remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 4409818.

[19] K. Tan, X. Jin, A. Plaza, X. Wang, L. Xiao, and P. Du, “Automatic
change detection in high-resolution remote sensing images by using a
multiple classifier system and spectral–spatial features,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 8, pp. 3439–3451,
Aug. 2016.

[20] Z. Lv, F. Wang, T. Liu, X. Kong, and J. A. Benediktsson, “Novel automatic
approach for land cover change detection by using VHR remote sensing
images,” IEEE Geosci. Remote Sens. Lett., vol. 19, 2022, Art. no. 8016805.

[21] M. Wang et al., “Exploiting neighbourhood structural features for change
detection,” Remote Sens. Lett., vol. 14, no. 4, pp. 346–356, 2023.

[22] J. Lei, Y. Gu, W. Xie, Y. Li, and Q. Du, “Boundary extraction constrained
siamese network for remote sensing image change detection,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 5621613.

[23] Q. Shu, J. Pan, Z. Zhang, and M. Wang, “DPCC-Net: Dual-perspective
change contextual network for change detection in high-resolution remote
sensing images,” Int. J. Appl. Earth Observ. Geoinf., vol. 112, 2022,
Art. no. 102940.

[24] Y. Ye et al., “An adaptive attention fusion mechanism convolutional
network for object detection in remote sensing images,” Remote Sens.,
vol. 14, no. 3, 2022, Art. no. 516.

[25] Y. Ye, T. Tang, B. Zhu, C. Yang, B. Li, and S. Hao, “A multiscale framework
with unsupervised learning for remote sensing image registration,” IEEE
Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5622215.

[26] Y. Feng, H. Xu, J. Jiang, H. Liu, and J. Zheng, “ICIF-Net: Intra-scale cross-
interaction and inter-scale feature fusion network for bitemporal remote
sensing images change detection,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 4410213.

[27] S. Zhu, Y. Song, Y. Zhang, and Y. Zhang, “ECFNet: A siamese net-
work with fewer FPS and fewer FNS for change detection of re-
mote sensing images,” IEEE Geosci. Remote Sens. Lett., vol. 20, 2023,
Art. no. 6001005.

[28] Q. Li, R. Zhong, X. Du, and Y. Du, “TransUNetCD: A hybrid transformer
network for change detection in optical remote-sensing images,” IEEE
Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5622519.

[29] M. Gong, T. Zhan, P. Zhang, and Q. Miao, “Superpixel-based differ-
ence representation learning for change detection in multispectral remote
sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 5,
pp. 2658–2673, May 2017.

[30] Y. Lei, X. Liu, J. Shi, C. Lei, and J. Wang, “Multiscale superpixel seg-
mentation with deep features for change detection,” IEEE Access, vol. 7,
pp. 36600–36616, 2019.

[31] Y. Wang et al., “Mask DeepLab: End-to-end image segmentation for
change detection in high-resolution remote sensing images,” Int. J. Appl.
Earth Observ. Geoinf., vol. 104, 2021, Art. no. 102582.

[32] M. Jiang, X. Zhang, Y. Sun, W. Feng, Q. Gan, and Y. Ruan, “AFS-
Net: Attention-guided full-scale feature aggregation network for high-
resolution remote sensing image change detection,” GISci. Remote Sens.,
vol. 59, no. 1, pp. 1882–1900, 2022.

[33] Z. Chen et al., “Egde-Net: A building change detection method for high-
resolution remote sensing imagery based on edge guidance and differ-
ential enhancement,” ISPRS J. Photogrammetry Remote Sens., vol. 191,
pp. 203–222, 2022.

[34] R. C. Daudt, B. Le Saux, and A. Boulch, “Fully convolutional siamese
networks for change detection,” in Proc. IEEE 25th Int. Conf. Image
Process., 2018, pp. 4063–4067.

[35] D. Peng, Y. Zhang, and H. Guan, “End-to-end change detection for high
resolution satellite images using improved UNet,” Remote Sens., vol. 11,
no. 11, 2019, Art. no. 1382.

[36] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet: A nested
U-Net architecture for medical image segmentation,” in Deep Learning in
Medical Image Analysis and Multimodal Learning for Clinical Decision
Support. Cham, Switzerland: Springer, 2018, pp. 3–11.

[37] G. Pei and L. Zhang, “Feature hierarchical differentiation for remote
sensing image change detection,” IEEE Geosci. Remote Sens. Lett., vol. 19,
2022, Art. no. 6514105.

[38] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 30, 2017, pp. 5998–6008.

[39] H. Chen and Z. Shi, “A spatial-temporal attention-based method and a
new dataset for remote sensing image change detection,” Remote Sens.,
vol. 12, no. 10, 2020, Art. no. 1662.

[40] C. Zhang et al., “A deeply supervised image fusion network for change
detection in high resolution bi-temporal remote sensing images,” ISPRS J.
Photogrammetry Remote Sens., vol. 166, pp. 183–200, 2020.

[41] J. Chen et al., “DasNet: Dual attentive fully convolutional siamese net-
works for change detection in high-resolution satellite images,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 1194–1206,
2020.

[42] B. Yang, Y. Huang, X. Su, and H. Guo, “MAEANet: Multiscale attention
and edge-aware siamese network for building change detection in high-
resolution remote sensing images,” Remote Sens., vol. 14, no. 19, 2022,
Art. no. 4895.

[43] H. Chen, Z. Qi, and Z. Shi, “Remote sensing image change detection
with transformers,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5607514.

[44] S. Chu, P. Li, M. Xia, H. Lin, M. Qian, and Y. Zhang, “DBFGAN: Dual
branch feature guided aggregation network for remote sensing image,” Int.
J. Appl. Earth Observ. Geoinf., vol. 116, 2023, Art. no. 103141.

[45] Z. Fu, J. Li, Z. Chen, L. Ren, and Z. Hua, “DAFT: Differential feature
extraction network based on adaptive frequency transformer for remote
sensing change detection,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 16, pp. 5061–5076, 2023.

[46] T. Lei, D. Xue, H. Ning, S. Yang, Z. Lv, and A. K. Nandi, “Local and
global feature learning with kernel scale-adaptive attention network for
VHR remote sensing change detection,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 15, pp. 7308–7322, 2022.

[47] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric dis-
criminatively, with application to face verification,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recognit., 2005, vol. 1, pp. 539–546.

[48] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent., 2015,
pp. 1–14.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[50] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for con-
volutional neural networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 6105–6114.

[51] W. Sun et al., “MLR-DBPFN: A multi-scale low rank deep back projection
fusion network for anti-noise hyperspectral and multispectral image fu-
sion,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5522914.

[52] S. Fang, K. Li, J. Shao, and Z. Li, “SNUNet-CD: A densely connected
siamese network for change detection of VHR images,” IEEE Geosci.
Remote Sens. Lett., vol. 19, 2022, Art. no. 8007805.

[53] X. Xiang, D. Tian, N. Lv, and Q. Yan, “FCDNet: A change detection
network based on full-scale skip connections and coordinate attention,”
IEEE Geosci. Remote Sens. Lett., vol. 19, 2022, Art. no. 6511605.

[54] D. Peng, L. Bruzzone, Y. Zhang, H. Guan, H. Ding, and X. Huang,
“SemiCDNet: A semisupervised convolutional neural network for change
detection in high resolution remote-sensing images,” IEEE Trans. Geosci.
Remote Sens., vol. 59, no. 7, pp. 5891–5906, Jul. 2021.



WANG et al.: LIGHTWEIGHT CHANGE DETECTION NETWORK BASED ON FEATURE INTERLEAVED FUSION AND BISTAGE DECODING 2569

[55] Z. Zheng, Y. Wan, Y. Zhang, S. Xiang, D. Peng, and B. Zhang, “CLNet:
Cross-layer convolutional neural network for change detection in opti-
cal remote sensing imagery,” ISPRS J. Photogrammetry Remote Sens.,
vol. 175, pp. 247–267, 2021.

[56] S. Ji, S. Wei, and M. Lu, “Fully convolutional networks for multisource
building extraction from an open aerial and satellite imagery data set,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 574–586, Jan. 2019.

[57] Q. Shi, M. Liu, S. Li, X. Liu, F. Wang, and L. Zhang, “A deeply supervised
attention metric-based network and an open aerial image dataset for remote
sensing change detection,” IEEE Trans. Geosci. Remote Sens., vol. 60,
2021, Art. no. 5604816.

[58] H. Yang et al., “A lightweight siamese neural network for building change
detection using remote sensing images,” Remote Sens., vol. 15, no. 4, 2023,
Art. no. 928.

Mengmeng Wang received the B.S. degree in sur-
veying and mapping from Henan Polytechnic Uni-
versity, Jiaozuo, China, in 2017, and the M.S. degree
in surveying and mapping from Southwest Jiaotong
University, Chengdu, China, in 2020, where he is cur-
rently working toward the Ph.D. degree in surveying
and mapping science and technology.

His research interests include image processing,
deep learning, and change detection.

Bai Zhu received the B.S. degree in remote sensing
science and technology from the Faculty of Geo-
sciences and Environmental Engineering, Southwest
Jiaotong University, Chengdu, China, in 2019, where
he is currently working toward the Ph.D. degree in
surveying and mapping science and technology.

His research interests include remote sensing im-
age processing, multimodal image matching, image
registration, and feature extraction.

Jiacheng Zhang received the B.S. degree in remote
sensing science and technology from the Southwest
Jiaotong University, Chengdu, China, in 2021, where
he is currently working toward the M.S. degree in re-
mote sensing science and technology with the Faculty
of Geosciences and Environmental Engineering.

His research interests include multimodal remote
sensing image matching and fusion with related high-
level vision tasks.

Jianwei Fan received the B.S. degree in electronic
information science and technology from the Henan
University of Science and Technology, Luoyang,
China, in 2011, and the Ph.D. degree in pattern recog-
nition and intelligent systems from Xidian University,
Xi’an, China, in 2017.

He is currently a Lecturer with the School of Com-
puter and Information Technology, Xinyang Normal
University, Xinyang, China. His main research inter-
ests include remote sensing image processing, image
registration, and feature extraction.

Yuanxin Ye (Member, IEEE) received the B.S. degree
in remote sensing science and technology from South-
west Jiaotong University, Chengdu, China, in 2008,
and the Ph.D. degree in photogrammetry and remote
sensing from Wuhan University, Wuhan, China, in
2013.

He is currently a Professor with the Faculty of Geo-
sciences and Environmental Engineering, Southwest
Jiaotong University. His research interests include
remote sensing image processing, image registration,
change detection, and object detection.

Dr. Ye received the ISPRS Prizes for Best Papers by Young Authors at
23rd International Society for Photogrammetry and Remote Sensing Congress,
Prague, Czech Republic, in 2016 and the Best Youth Oral Paper Award at ISPRS
Geospatial Week 2017, Wuhan, in 2017.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


