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FDA-FFNet: A Feature-Distance Attention-Based
Change Detection Network for Remote

Sensing Image
Wenguang Peng , Wenzhong Shi , Min Zhang , and Lukang Wang

Abstract—Convolutional neural networks have demonstrated
remarkable capability in extracting deep semantic features from
images, leading to significant advancements in various image pro-
cessing tasks. This success has also opened up new possibilities
for change detection (CD) in remote sensing applications. But
unlike the conventional image recognition tasks, the performance
of AI models in CD heavily relies on the method used to fuse
the features from two different phases of the image. The existing
deep-learning-based methods for CD typically fuse features of
bitemporal images using difference or concatenation techniques.
However, these approaches often fail tails to prioritize potential
change areas adequately and neglect the rich contextual infor-
mation essential for discerning subtle changes, potentially lead-
ing to slower convergence speed and reduced accuracy. To tackle
this challenge, we propose a novel feature fusion approach called
feature-difference attention-based feature fusion CD network. This
method aims to enhance feature fusion by incorporating a feature-
difference attention-based feature fusion module, enabling a more
focused analysis of change areas. Additionally, a deep-supervised
attention module is implemented to leverage the deep surveillance
module for cascading refinement of change areas. Furthermore,
an atrous spatial pyramid pooling fast is employed to efficiently
acquire multiscale object information. The proposed method is
evaluated on two publicly available datasets, namely the WHU-CD
and LEVIR-CD datasets. Compared with the state-of-the-art CD
methods, the proposed method outperforms in all metrics, with an
intersection over union of 92.49% and 85.56%, respectively.

Index Terms—Attention-based, change detection (CD), deep
learning, deep supervision, multiscale feature.
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I. INTRODUCTION

CHANGE detection (CD) is the process of comparing mul-
tiple raster datasets captured at different time phases to

identify and quantify the extent of changes occurring in a given
area. These changes can vary from anthropogenic landscape
modifications and sudden natural disasters to long-term climate
or environmental shifts. The investigation of CD using remote
sensing images has been a prominent research area within the
field of remote sensing for several years. It has been applied to
diverse fields, such as land use [1], [2], urban expansion [3],
[4], urban planning [2], geologic disaster monitoring (including
floods [5] and landslides [6], [7]), ecological environmental
protection, wetland monitoring [8], and forest protection [9],
[10]. With the rapid development of optical sensors, automatic
CD technology is gaining increasing attention for its potential
to reduce human and material costs in acquisition and analysis
process.

Traditional CD methods can be roughly categorized into three
categories: direct comparison, postclassification comparison,
and direct classification. Among these, the direct comparison
method is the most commonly employed approach. It operates
on the assumption that the spectral features of unchanged areas
in two images should remain consistent or similar over time. By
conducting various operations and transformations on aligned
pixel values from the two bitemporal remote sensing images,
areas of change can be identified. Direct comparison methods en-
compass various techniques, such as the pixel difference method
[11], image regression method [12], and waveband substitution
method. On the other hand, the postclassification comparison
method involves an initial classification of the bitemporal remote
sensing images, followed by a comparison of the classification
results to identify changes. The accuracy of this method relies
on both the classification method’s accuracy and the consistency
of the classification standard used. Therefore, it is crucial to
maintain the consistency between the classification method and
the classification standard. Another category, the direct clas-
sification method, combines the concepts of the image direct
comparison method and the postclassification result comparison
method. Common methods within this category include change
vector analysis (CVA) [13], support vector machine (SVM)
[14], tasseled cap transformation (KT) [15], and multitem-
poral phase combination postclassification methods. However,
these traditional approaches have limitations in capturing spatial
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contextual information and complex visual features. They often
rely on accessing dimensional features after RGB and linear
transformations, which hinders the extraction of deep-level
change features. Additionally, the traditional CD methods typ-
ically require experts with professional knowledge and expe-
rience to perform feature extraction and selection, resulting in
limited efficiency and robustness.

With the continuous advancements in computer vision and
deep learning, convolutional neural networks (CNNs) have
proven to be highly effective in capturing intricate details and
complex texture features in images. They have achieved re-
markable success in various imaging tasks, such as object de-
tection and segmentation. CNN-based models typically follow
an encoder–decoder architecture. The encoder, which includes
popular architectures, such as VGG [16], ResNet [17], DarkNet
[18], MobileNet [19], [46], and others, extracts both deep and
shallow hierarchical information from the input image. The
final recognition result is obtained through a dedicated decoder.
In the context of image segmentation, the decoder usually
employs a stage-by-stage upsampling technique to generate a
probability-based mask map. In object detection, the decoder
typically takes the form of an anchor-free or anchor-based
detector head, generating bounding boxes, various confidence
scores, and confidence levels of objects. Training CNNs usually
requires a large amount of data. Various augmentation methods
are available to increase the dataset size, enhance recognition
accuracy, and improve the robustness of CNNs. These meth-
ods include image blurring, color space transformations, image
flipping, multisample fusion, and Mosaica methods [20]. CNN
models are highly sensitive to both the quantity and quality of
the data. As remote sensing enters the era of big data, CNNs have
proven effective in remote sensing image recognition tasks, such
as building extraction, scene classification, texture evaluation,
and other Earth science applications. Deep-learning methods
have demonstrated their effectiveness in these tasks as well. Over
recent years, deep-learning methods have gradually become the
predominant focus of research in remote sensing imagery due
to their higher accuracy, faster processing speed, and greater
robustness compared with traditional methods.

In the domain of CD, there is a fundamental difference com-
pared with general image research: CD involves the input of
two images, whereas other image domains typically deal with
a single image or video. CNNs have been widely used in the
CD domain due to their weight-sharing property. Among the
CNN architectures, Siamese networks [21] have emerged as
the preferred choice for CD in remote sensing images. They con-
sist of twin encoders and a single decoder, allowing for weight
sharing between the encoders to constrain the feature learning.
These networks employ various designed feature fusion methods
to integrate the features from different time phases. Ultimately,
the fused features are fed into the decoder to obtain the final
change classification results. However, the existing CD models
tend to prioritize to study spatiotemporal changes in images
rather than expending excessive energy on feature extraction of
diachronic images. Moreover, objects in remote sensing images
often exhibit significant variations in scale, requiring a model
with a high level of capability for extracting features at multiple

scales. An efficient and effective model that specifically focuses
on capturing differences becomes necessary. Additionally, the
feature interaction before capturing disparity is significantly
motivated and supported by the uncertainty in the distribution
of changes in bistatic images. It is also important to suppress
task-irrelevant disturbances, such as seasonal turnover and build-
ing remodeling. Furthermore, when addressing the imbalance
between target and background categories, particularly in the
real-world production processes, it is crucial to consider that
many regions of the world have undergone extensive urbaniza-
tion and development. Consequently, there are relatively few
interannual changes in urban landscapes. Therefore, the feature
fusion process should prioritize change regions to enhance the
model’s convergence speed and improve recognition accuracy.

To address the problem above, we propose a feature-
difference attention-based feature fusion CD network (FDA-
FFNet), and we introduce a novel feature fusion module and
a deep-supervised attention mechanism (DSAM). The feature-
difference attention-based feature fusion module (FDA-FFM)
enables a more focused approach toward change areas. Addi-
tionally, we incorporate a DSAM to enhance the utilization of
the deep surveillance module, allowing for cascading refinement
of change areas. Our main contributions are given as follows.

1) A novel CD model is proposed, termed FDA-FFNet,
which focuses on identifying potential changes and pro-
gressively supervising multilevel features using DSAM
for more refined CD.

2) An FDA-FFM is designed to guide the fusion of features
from both deep and shallow levels in the bitemporal im-
ages, and a DSAM is implemented to effectively utilize the
deep surveillance attention module for cascading refine-
ment of change areas. Spatial pyramid pooling fast (SPPF)
is introduced into the model to enhance its capability of
extracting multiscale target features.

3) Comparative experiments and ablation experiments are
conducted on the WHU-CD and LEVIR-CD datasets. The
proposed method performs well on all metrics, achieving
an intersection over union (IoU) of 92.49% and 85.56%,
respectively. Furthermore, side-by-side ablation experi-
ments are carried out to validate the effectiveness of the
proposed feature fusion module.

II. RELATED WORK

A. Traditional CD Methods

In the early stages, the technology of deep learning was
not mature enough. Additionally, due to the limitations in sen-
sor technology, early remote sensing images only had low or
medium spatial resolution. This lack of high-resolution data
hindered the creation of large and high-quality dataset. As a
result, traditional methods, mainly algebra-based methods [10],
[11], [12], [13], [14], dominated the field. Among them, RSCD
techniques were proposed specifically for detecting change in
these types of images. Image algebra-based methods commonly
utilize techniques, such as image differencing, image regres-
sion, CVA, SVM, and KT. These methods typically require
the selection of an appropriate threshold to identify regions of



2226 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

change. Moreover, expert intervention is necessary for feature
extraction and selection, relying on their professional knowledge
and experience.

B. Deep-Learning-Based CD Methods

The full convolutional network (FCN) [22] is an early deep-
learning framework proposed for segmentation. It is considered
a pioneering work in the field of semantic segmentation, as it
was one of the first applications of deep learning in this area.
In FCN, the fully connected layer of the traditional CNN is
replaced by a convolutional layer. This modification enables the
network to generate a heatmap instead of classifying categories.
Additionally, to address the issue of image size reduction caused
by convolution and pooling, an upsampling method is employed
to restore the original image size. CD is often approached as
a pixel segmentation task. FCN is widely used for CD tasks
and is commonly categorized into single-stream and dual-stream
networks.

Single-stream networks, which typically take a concatenation
or difference of two-phase images as input, can be utilized
in conjunction with standard semantic segmentation networks.
In research, it is common practice to customize these net-
works to incorporate specific features. Popular networks used
for semantic segmentation include UNet [23], among others.
The simplest approach to customization involves modifying the
number of input channels in the initial convolutional layer of
the network to align with the number of resulting channels after
operations, such as concatenating or differencing two-phase
images. Daudt et al. [21] first proposed a single branch input
fully CNN structure based on UNet; he directly connects the
image pairs in channel dimension as inputs and completes the
CD by using the underlying UNet network. Zhou et al. [24]
similarly channel-connected inputs the aligned images into the
UNet++ to extract feature maps with high spatial accuracy,
and finally fused the multilateral outputs to obtain the final CD
prediction using superposition; Zhang et al. [25] first establish
the difference pyramid of the input dual-time-phase image, and
then use the difference pyramid as the input of UNet++, and
also use the strategy of fusing different scales of multiple inputs
to complete the CD.

Dual-stream networks leverage the weight-sharing property
of CNNs. These networks typically consist of an encoder with
two feature extraction networks that share weights, along with
a specific decoder to produce the change result. This structure
is widely adopted as the mainstream network structure for CD.
Daudt et al. [21] were the first to propose two fully convolu-
tional two-stream networks in which bidimensional temporal
features are extracted in a Siamese manner. Subsequently, pairs
of features are fused in various ways before being passed to the
decoder to reconstruct the change map. Zhang et al. [26] used a
twin VGG as the backbone network for feature extraction from
two-phase images. These features were then fed into a feature
fusion subnetwork that utilized a combination of channel and
spatial attention, along with a deeply supervised strategy to pro-
gressively refine the change maps. Shi et al. [27] used ResNet as
the backbone network. They computed feature distances based

on the output of the first two layers of ResNet and supervised it
using Dice loss. They obtained the final change map through the
employment of the CBAM module. Zhang et al. [28] proposed a
Siamese network with a hierarchical fusion strategy. Bitemporal
features were hierarchically fused with connectivity options.
Fang et al. [29] proposed a CD network similar to UNet++.
Although the weight-sharing property of the two-stream network
feature extraction network is utilized, the performance of the
features in unchanged areas, across different feature channels,
can still vary considerably. The fusion method for the two-phase
image features is a crucial factor that affects the accuracy of the
image model.

To address this, many researchers have explored difference
fusion methods. Feng et al. [30] divided the encoder into two
segments and incorporated the JointAtt module in the first seg-
ment. This module utilized the two-phase image features output
from the first encoder as input and generated two attentions to
be used in the second encoder. This approach allows the model
to pay more attention to potential change regions; Fang et al.
[31] proposed a feature interaction mechanism that includes
spatial feature interaction and channel feature interaction. These
interactions are used to fuse the two-phase features. Li et al. [32]
used MobileNetv2 as an encoder and designed modules, such
as NAM and PCIM, to enhance the model’s feature extraction
capability from a lightweight perspective, resulting in improved
performance; Zhu et al. [33] used an encoder–decoder Siamese
network to extract features from bitemporal images and select
balanced training samples through a global hierarchical sam-
pling mechanism; in addition, the method also incorporates a
binary change mask in the decoder to attenuate the influence of
the background of the unchanged region on the foreground of the
changed region, which further improved the detection accuracy.

III. METHODOLOGY

A. Overview

The proposed model follows an encoder–decoder structure,
as illustrated in Fig. 1. The encoder is composed of a weight-
sharing twin ResNet, SPPF, and FDA-FFM. On the other hand,
the decoder, known as the change analysis network, utilizes
stepwise upsampling convolutional networks and a DSAM to
obtain the CD results.

In practice, the first four convolutions of ResNet [17] are
utilized as the backbone for feature extraction. Following the
convolutional layer of ResNet, an SPPF module is added to
implement a feather-level fusion of local and global features.
This process results in obtaining deep feature maps with res-
olutions of 1, 1/2, 1/4, 1/8, and 1/16 times of the original
image. The channel numbers for these feature maps are 64, 128,
256, 512, and 512, respectively (referred to as d1, d2, d3, d4,
and d5 in Fig. 1). Among them, the high-level deep features
contain rich semantic information and have a large receptive
field, while the low-level features have a small receptive field but
contain detailed information. To fuse these features effectively,
jump connections are employed to combine the high-level deep
features with the low-level features.
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Fig. 1. FDA-FFNet framework.

Fig. 2. Illustration of the proposed FDA-FFM.

B. Feature-Difference Attention-Based Feature Fusion Module

To enhance the model’s capability to focus on the potential
areas of change in the image, a novel module called FDA-FFM is
proposed. The structure of FDA-FFM is illustrated in Fig. 2. The
module draws inspiration from the concept of calculating feature
differences in machine learning, in which vectors are commonly
employed to represent each sample. The similarity of vectors
can then be calculated to quantify the differences between the
sample vectors. There are three primary methods for measuring
the similarity of vectors: Euclidean distance, cosine distance,
and Hamming distance. Among these methods, Euclidean dis-
tance is considered the most versatile. Normalized Euclidean
distance is an improvement over the shortcomings of Euclidean
distance. The presence of varying scales among the dimensions
of the data can result in different Euclidean distance outcomes,
introducing errors in determining the similarity between vectors.
To address this, each dimension is individually processed using
standardization, which involves adjusting the dimensions to have
a mean of zero and a variance of one. This ensures that each
dimension follows a standard normal distribution. The formula

for calculating the standardized Euclidean distance is given as
follows:

d =

√∑n

k = 1

(
x1k − x2k

Sk

)2

(1)

whereSk represents the standard deviation in the kth dimension,
x1k represents the eigenvalue of the kth dimension of the first
set of vectors, and x2k represents the eigenvalue of the kth
dimension of the second set of vectors.

However, in deep learning, features extracted by the encoder
constitute a set of feature vectors for each pixel point. To
determine the attention of the feature differences, we adopt the
concept of standardized Euclidean distance. Two-period channel
attention [34] is employed to assign weights to the different
channels of the features. After weighting the features of each
channel, the Euclidean distance calculation is performed to
obtain the attention of feature differences. Since the distance
values fall within the range of [0,+�), the sigmoid function
commonly used in the attention mechanism is not suitable.
Instead, we utilize the tanh function within the normalization
function to obtain the differential attention values ranging from
[0,1]

tanh (x) =
ex − e−x

ex + e−x
x ∈ [0,+∞) , Tanh ∈ (0, 1) (2)

Ad= conv

(
tanh

√∑n

k = 1
Ack(F1k − F2k)

2+ exp

)
(3)

where Ack represents the channel attention in the kth dimension
of the feature, F1k represents the feature matrix in the kth
dimension of the first period image, represents the feature matrix
in the kth dimension of the second period image, and the term
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Fig. 3. Illustration of the proposed CCAM.

Fig. 4. Illustration of the proposed DSAM.

“exp” is a very small value, typically set to 0.00001, which is
used to prevent division by 0 during gradient descent.

To ensure consistency in the feature weights of the same
channel across bitemporal images, we make modifications to the
channel attention mechanism (CAM) [34]. In our approach, we
utilize the features extracted from both bitemporal images and
perform max-pooling and avg-pooling operations. The subse-
quent modules of the CAM remain unchanged from the original
implementation.

Considering that the distinguishing features of the bitemporal
images have already been considered in the distance calculation,
we employ a cascade operation for the fusion process. This in-
volves calculating the difference attention and passing it through
another spatial attention module [31]. The calculation process
for obtaining the final fusion features is given as follows:

Fout = As

(
Resblock ∗ 2 (Ad

(
F1+̂F2

)))
(4)

where +̂ represents a concatenation.

C. Deep Supervisory Attention Module

Feature pyramid networks [27] provide a well-established ar-
chitecture, known as coarse-to-fine, for multilevel feature fusion.
This architecture is commonly used in image segmentation net-
work decoders. On top of that, a deep supervision strategy [32]
has been proposed to generate and supervise results at each level.
However, we believe that solely supervising the feature output at
each level does not fully utilize the potential of features at each
level. To address this, we have designed a deeply supervised
attention module (DSAM) that better integrates the multilevel
features and makes use of the deeply supervised features, as
shown in Fig. 3.

D. Spatial Pyramid Pooling Fast

The SPPF module, illustrated in Fig. 5, proposed by Glenn
Jochner [43] as an extension of SPP, offers significantly faster

Fig. 5. Illustration of the proposed SPPF.

Fig. 6. Illustration of the proposed SPPCSPC.

processing speed compared with SPP [36] (2.5 times faster).
In the YOLOV5 model, SPPF is utilized at the encoder end
to implement the feature-map-level fusion of local and global
features. However, in the latest YOLOv7 model [37], Wang et al.
[36] proposed SPPCSPC, which outperforms SPPF in terms of
performance. SPPCSPC draws on the ideas of CSPNet [38] and
adds more residual connections to SPP, thereby improving the
accuracy but also increasing the computation. The structure of
SPPCSPC is illustrated in Fig. 6. Considering that the dataset for
the CD task is typically smaller compared with object detection
datasets, training an overly complex network might not yield
optimal results. Hence, in our model, we utilize SPPF [43] after
a ResNet encoder to extract the multiscale features of the image.

E. Loss Function

In the CD task, the scales of changed regions often vary, lead-
ing to a problem of scale imbalance. To alleviate this issue, we
adopt a hybrid loss function that combines a binary cross-entropy
(BCE) loss [39] and an IoU loss [40]

l = lBCE + lIoU. (5)

The BCE loss function is a pixelwise loss function and is the
most widely used loss in segmentation tasks. It weights all pixels
equally and calculates the loss value for each pixel for the entire
image as follows:

lBCE =

H∑
x=1

W∑
y=1

pxy ln gxy + (1 − pxy) ln (1 − gxy) (6)

where gxy and pxy represent the true and predicted values,
respectively.



PENG et al.: FDA-FFNET: A FEATURE-DISTANCE ATTENTION-BASED CD NETWORK FOR REMOTE SENSING IMAGE 2229

TABLE I
QUANTITATIVE COMPARISONS IN TERMS OF PRE, REC, IOU, AND F1 ON TWO RSCD DATASETS

The IoU loss function , a map-level measure, is integrated to
focus on the overall detection accuracy of the change informa-
tion and the global structural information. Its calculation formula
is given as follows:

lIoU = 1−
∑H

x = 1

∑W
y = 1 (gxy∗pxy) + 1∑H

x = 1

∑W
y = 1 (gxy + pxy − gxy∗pxy) + 1

(7)

where gxy and pxy represent the true and predicted values,
respectively.

When combining these losses, we utilize BCE loss to maintain
a smooth gradient for all pixels while using IoU loss to give more
focus on the foreground.

IV. EXPERIMENTS

A. Dataset

To evaluate the proposed method, we use two benchmark
datasets for RSCD. The detailed information for each dataset
is provided as follows.

1) WHU-CD [41]: A publicly available building CD dataset.
It consists of a pair of optical very high resolution (VHR)
RS aerial images with a size of 32 507 × 15 354 and a spa-
tial resolution of 0.075 m. Similarly, we crop the original
samples into small blocks of size 256×256 pixels. We
randomly divided the dataset into a training set, validation
set, and test set, consisting of 6096, 762, and 762 samples,
respectively.

2) LEVIR-CD [42]: Consists of 637 pairs of Google Earth
image patches with a VHR of 0.5 m/pixel. The size of
each image patch is 1024×1024 pixels. These diachronic
images span a period of 5–14 years and exhibit significant
land use changes, especially related to the growth of
the construction industry. LEVIR-CD covers a variety of
building types, such as villa houses, high-rise apartments,
small garages, and large warehouses. We divided each
image pair into nonoverlapping patches of size 256×256
pixels, resulting in 3167 patches for training, 436 patches
for validation sets, and 972 patches for testing.

B. Experimental Configuration

The proposed network is implemented using the PyTorch
toolbox [44] and trained/inferred on a single Nvidia RTX 3090
GPU. We use Adam optimization [45] with a momentum of 0.9,
weight decay set to 0.0001, and parameters β1 and β2 set to
0.9 and 0.999, respectively. The initial learning rate is set to
0.0005 and the batch size is set to 16. To enhance the robustness
of the model, we leverage data augmentation techniques, such
as random flipping, cropping, and temporal exchanging, to the
input images. However, we disable data augmentation for the
last 20 rounds of training.

C. Overall Comparison

We conducted a comparative analysis of the proposed model
against six state-of-the-art RSCD methods, including seven
CNN-based methods: FC-Diff [21], FC-Cat [21], SNUNet [29],
DSIFN [27], ChangeFormer [31], and A2-Net [32].

Qualitative Evaluation: Table I presents a comparison of the
quantitative evaluation result of the different methods on the
two RSCD datasets, considering metrics, such as IoU, F1,
Recall (Rec), and Precision (Pre). The results consistently
demonstrate that the proposed method outperforms the ex-
isting methods. For example, on the LIVIR-CD dataset, our
method achieves a 0.76% improvement IoU and a 0.41%
improvement in F1. Similarly, on the WHU-CD dataset,
our method achieves a 0.67% improvement in IoU and a
0.36% improvement in F1. Furthermore, the proposed method
with light encoder MobileNetv2 also achieves excellent
performance.

Qualitative Evaluation: The visual comparisons of different
methods on the two RSCD datasets are shown in Fig. 6. We
observe that the proposed method exhibits superiority in the
following aspects.

1) Well-Defined Boundary: Compared with other methods,
the proposed method can more accurately locate the boundaries
of changed objects, and the recognition results have a more
regular shape. In the first three rows of Fig. 6, FC-Cat, FC-
Diff, SNUNet, DSFIN, ChangeFormer, and A2-Net struggle
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Fig. 7. Visual comparisons of the proposed method and the state-of-the-art approaches on the LEVIR-CD and WHU-CD dataset. (a) t1 images. (b) t2 images. (c)
Ground truth. (d) FC-Siam-Conc. (e) FC-Siam-Diff. (f) SNUNet. (g) DSFIN. (h) ChangeFormer. (i) A2-Net. (j) Ours. The rendered colors represent true positives
(white), false positives (red), true negatives (black), and false negatives (blue).

Fig. 8. Validation IoU of the proposed method and the state-of-the-art approaches on the LEVIR-CD in training process. (a) Magnified view of (b) during the
first ten epochs. (b) Validation IoU in training process.

to accurately identify the boundaries of changing buildings,
leading to numerous gaps in the detection results. In contrast,
the proposed method effectively identifies potential change areas
through FDA-FFM and further refines the extraction results at
different levels using DSAM.

2) Better Distinguishing Pseudochanges: In the fourth and
fifth rows of Fig. 7, the same buildings show different colors at
different times, or nonbuilding areas undergo changes. This can
potentially lead to misidentifications. Methods, such as FC-Cat,
FC-Diff, STANet, SNUNet, A2-Net, and others, fail to correctly
identify those erroneous changes. In the sixth row of Fig. 7,

STANet, SNUNet, and DSFIN incorrectly classify the changed
objects as nonbuildings, while other models also struggle to fully
identify the changes. In contrast, the proposed method accurately
distinguishes these pseudochanges.

3) Faster Convergence Speed: We monitor the training pro-
cess of the proposed model and the proposed method and these
state-of-the-art RSCD methods on the LIVIR-CD dataset. As
shown in Fig. 8, the proposed method converges faster than
other methods, achieving 79.34% IoU in just one epoch of
training and an 11.64% improvement than the second method,
A2-Net.
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Fig. 9. Illustration of distance attention obtained by FDA-FFM. (a) t1 images. (b) t2 images. (c) Fusion image with t2 image and distance attention heatmap. (d)
Distance attention heatmap. (e) Ground truth.

TABLE II
QUANTITATIVE COMPARISONS OF THE PROPOSED METHOD WITH DIVERSE SETTINGS IN TERMS OF PRE, REC, IOU, AND F1 ON THREE RSCD DATASETS

D. Ablation Studies

To validate the effectiveness of the components and configu-
rations of the proposed network, we conducted a comprehensive
ablation study on two RSCD datasets.

1) Effectiveness of FDA-FFM: The FDA-FFM aims to en-
hance the model’s focus on potential change areas by calcu-
lating weighted Euclidean distances for features. To validate
the effectiveness of FDA-FFM, we replaced it with a normal
concatenation layer that has the same output channels as FDA-
FFM. We formulated a method termed “Without_FDA” (i.e.,
(a) in Table II). Additionally, we evaluated the impact of using

the sigmoid function instead of the tanh function in FDA-FFM.
In the configuration termed “With_sig” (i.e., (a) in Table II),
we replaced the tanh function with the sigmoid function. The
quantitative comparison results are reported in Table II. As
can be seen, OurNet outperforms OurNet-Without_FDA and
OurNet-With_sig. OurNet-With_sig is only 0.30% over OurNet-
Without_FDA.

The visual representation of the distance attention obtained
by FDA-FFM is shown in Fig. 7. It can be observed that
FDA-FFM effectively guides models to focus more on areas
that likely undergo changes. From the heatmap in Fig. 9, the
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changing buildings and the open spaces around them have been
assigned high weights. Some roads have been assigned medium
weights, while other areas have been given low weights.

2) Effectiveness of DSAM: DSAM aims to utilize the results
of deep-supervised learning to refine CD results on a cascading
basis. To validate the effectiveness of DSAM, we removed this
module and formulated a method termed “Without_DSAM”
(i.e., (b) in Table II). Removing DSAM leads to a degradation
of approximately 1.16% and 0.64% in terms of IoU in the
two datasets, indicating its significant contribution to detection
accuracy.

3) Effectiveness of SPPF: SPPF aims to fuse local and global
features at the feature-map level. To validate its effectiveness, we
performed an ablation study by replacing SPPF with SPPCSPC
and a normal convolutional layer, referred to as “With_CSPC”
and “Without_SPPF.” It can be seen that SPPCSPC actually
decreases the model’s accuracy by 0.33% in LEVIR-CD.

4) Others: We further validated the proposed method using
different backbones, such as ResNet18 and MobileNet. From the
results in Table II, we observed that the network with ResNet34
slightly outperforms the network with ResNet18 and performs
better than the network with MobileNet on the LEVIR-CD and
WHU-CD datasets. We argue that MobileNet is a lightweight
network with poor feature extraction capability, and correspond-
ing modules need to be designed to enhance its feature extraction
capability.

V. CONCLUSION

In this article, we propose a feature-distance attention-based
RSCD network for high-resolution RS image CD. In this
method, we introduce FDA-FFM to enhance the model’s ca-
pability to focus on potential areas of change in the image.
Additionally, we incorporate SPPF to capture multiscale object
information more efficiently, and we leverage DSAM to recon-
struct change results from coarse to fine levels, utilizing deeply
supervised outcomes. The experimental results demonstrate that
the proposed method outperforms the current state-of-the-art
CD methods. The method performs well in multiscale change
information extraction accuracy, boundary extraction, and pseu-
dochanges distinguishing. It has high reliability and practical
application value. This work could serve as a new solution to
feature fusion for RSCD.
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