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Label-Driven Graph Convolutional Network for
Multilabel Remote Sensing Image Classification
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Abstract—Multilabel classification in remote sensing is very sig-
nificant and plays an important role in extracting valuable infor-
mation from satellite imagery. Ignoring the distinct information
provided by labels in each image or transforming images into
content-aware category representations without considering the
inherent correlation of labels within the dataset can result in the
establishment of improper relationships between images and labels,
ultimately leading to a significant degradation in accuracy. To
address this problem, this article proposes a label-driven graph
convolutional network (LD-GCN) to excavate substantial informa-
tion using the inherent correlation of labels from datasets and build
a strong relationship between labels and images. The framework
consists of two modules, i.e., the label recognition GCN (LRGCN)
and the semantic enrichment module (SEM). The LRGCN module
yields rich and valuable information from the inherent correlation
of labels and builds a strong relationship between images and labels.
The SEM further enriches the semantics obtained from LRGCN.
Experiments conducted on UCM, AID, and DFC15 multilabel
remote sensing datasets illustrate that LD-GCN outperforms the
state-of-the-art methods on key evaluation metrics.

Index Terms—Graph convolutional network (GCN), label-
driven GCN, multilabel image classification, remote sensing.

I. INTRODUCTION

W ITH the rapid advancement of technology, remote sens-
ing images have entered an era characterized by high res-

olution and increasingly complex content. Classifying the satel-
lite images by utilizing the ground object and spatial features
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present in remote sensing images has emerged as a significant
research challenge [1]. The single-label remote sensing image
classification no longer satisfies the need to describe the rich
information inside. Therefore, multilabel remote sensing image
classification is becoming more and more important [2].

Due to advancements in deep learning algorithms, plenty of
work has been done on multilabel classification based on deep
neural network (DNN) [3], [4], [5], [6], [7]. Still, there is a
lack of information inside the labels, which is very important in
multilabel classification and needs to be addressed. Other works
use recurrent neural network (RNN) or long-short term memory
(LSTM) to process the information inside labels [8], [9], [10].
Nevertheless, such methods, only considering the adjacent label,
omit the true relationship within different labels. As compared
to the abovementioned methods, graph convolution network
(GCN) can learn the relationship between nodes and has been
improved by different methods [11], [12], which is more suitable
for multilabel classification. Recently, abundant work has been
done on GCN [13], [14], [15], [16], [17], [18], [19], [20], [21].

However, the works based on GCN have two main problems.
Some of those works [14], [18], [19], [20], [21] only use GCN to
extract labels’ information. They build an improper relationship
between images and labels. Moreover, the inherent correlation
between labels that contains rich information are ignored by
other works [15], [16], [17]. Specifically, inherent correlation
is contained in the labels from remote sensing datasets. For
example, category “tree” and “grass” always appear in the same
image, while “car” and “sea” do not. Ignoring the important
inherent correlation between labels will seriously weaken the
rich information and an appropriate relationship between images
and labels cannot be built by then.

To address those problems, this article proposes a label-driven
graph convolutional network (LD-GCN) for multilabel remote
sensing image classification. The framework of the LD-GCN
consists of two main parts, which are the label recognition
GCN (LRGCN) and the semantic enrichment module (SEM).
The features of each image are first extracted by convolutional
neural network (CNN). Rich information of labels is obtained
by excavating their inherent correlation and a strong relationship
between images and labels are built by the LRGCN module.
Then, the relationship is further consolidated and the semantic
information is acquired through the SEM. The overall frame-
work is proposed to predict the results of each image’s labels.
The main contribution of our work can be summarized as
follows.
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1) The significant contribution is that this article proposes
a novel label-driven graph convolutional network for
multilabel remote sensing image classification, which
builds a strong relationship between labels and images
using inherent correlation of labels.

2) The proposed LRGCN module provides significant infor-
mation from the inherent correlation of labels and estab-
lishes a strong relationship between images and label.

3) The proposed LD-GCN has a better performance than
the state-of-the-art methods on key evaluation metrics.
Specifically, LD-GCN achieves new records on the bench-
mark of mAPs of 97.96%, 83.49%, and 99.08% on three
multilabel remote sensing datasets, i.e., UCM, AID, and
DFC15, respectively.

II. RELATED WORK

In recent years, the advancement of deep learning net-
works has accelerated the improvement of image classification.
As multilabel classification tasks have become increasingly
common, those methods can be categorized into DNN-based,
relation-based, and GCN-based, due to their characteristics.

A. Deep Neural Network-Based Methods for Multilabel
Classification

With the development of CNN, many deep learning networks
are employed in classification tasks. Boutell et al. [3] were the
first scholar who proposed to use independent binary classifiers
for each class when the labels were not mutually exclusive.
Maxime et al. [4] employed the single-label classification on
the ImageNet dataset and transferred the weights to multilabel
classification datasets based on ground-truth bounding boxes,
which highly limited the usage. In the remote sensing field,
Wu et al. [7] proposed S-MAT that used a masked attention
transformer to learn the contents of labels from images. Chen
et al. [22] used a recurrent attention reinforcement learning
framework to discover attention regions and the objects related
to semantic and predict the final results. Gencer et al. [23]
employed RNN to model spatial relationship, K-Branch CNN to
extract image features, and eventually defined multiple attention
scores for local descriptors.

With the emergence of vision transformer [24] and swin
transformer [25] networks, much research has been conducted
with transformer. Specifically, for processing remote sensing
images, Tan et al. [26] used a transformer to extract semantic
attentional regions from image features extracted by a deep
CNN. Kaselimi et al. [27] utilized vision transformer to leverage
the benefits of the self-attention mechanism and obviated any
convolution operations.

B. Relation-Based Methods for Multilabel Classification

To address the issue of DNN-based methods not uncovering
the correlation of labels within each image, some studies have
employed relation-based approaches to highlight dependencies
between labels. Wang et al. [8] proposed a CNN-RNN frame-
work for multilabel image classification tasks, which used RNN

after CNN to learn a joint image-label embedding and predicted
the labels. Yeh et al. [28] derived a deep latent space and a label-
correlation sensitive loss function to relate feature and label
domain data. Hua et al. [29] extracted fine-grained semantic fea-
ture maps through an attention-based convolutional network and
produced structured multiple object labels by the bidirectional
long-short term memory (LSTM) network. Alshehri et al. [30]
performed a network based on multiple loss functions to increase
the similarity between the image with its corresponding labels.
Liu et al. [25] captured the sequence information of the text and
selected the valid features related to labels using bidirectional
gated recurrent unit network (Bi-GRU). Despite considering the
dependencies between labels, these works are unable to fully
learn the complex relationship between images and labels.

C. GCN-Based Methods for Multilabel Classification

With the widespread application of GCN, Lee et al. [13] first
introduced the knowledge graph into the multilabel classification
and accomplished the classification with zero samples. Chen
et al. [14] proposed a multilabel classification model based on
GCN (ML-GCN), which had a profound impact on multilabel
classification tasks. They employed the word embedding of
labels to represent nodes and learned about the interdependent
relationship through GCN. And improvements on MLGCN had
been done by some works [18], [19], [20], [21]. Ye et al. [16]
supposed that ML-GCN trained the labels and images separately
and used a static matrix led to the lack of generality of the
model. Therefore, they proposed an attention-driven dynamic
GCN (ADD-GCN) to dynamically generate a specific graph for
each image. Following ADD-GCN, some improved networks
have also been used to process the remote sensing images [15],
[17]. Experiments show that GCN-based methods do perform
better in multilabel image classification tasks.

Despite considering the dependencies between labels, these
works are unable to fully learn the complex relationship between
images and labels. Relationship-based methods can excavate
information inside labels, however, the relationship between
images and labels still cannot be learned. In order to handle these
problems, the proposed framework inspired by the GCN-based
methods, can utilize the inherent correlation of labels and capture
the relationship between images and labels.

III. METHODOLOGY

The overall architecture of the proposed framework is il-
lustrated in Fig. 1. The framework is composed of two main
module that are label recognition GCN (LRGCN), and semantic
enrichment module (SEM). The details of LRGCN and SEM
will be illustrated in Sections III-B and III-C, respectively. More-
over, the prediction layer and loss function will be presented in
Section III-D.

A. Preliminaries

The multilabel graph convolutional network (ML-GCN) [14],
using GCN to learn the relationship of every label after word
embedding, ignored the fact that images have their distinctive
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Fig. 1. Overall framework of the LD-GCN. The image features are extracted by CNN and sent to LRGCN. The inherent correlation of labels is sent to LRGCN
to excavate rich information fully first. LRGCN builds a strong relationship between images and labels. SEM enriches the profound semantic further.

labels and the fusion of images and labels is very crucial in
multilabel classification tasks and the rich information inside
of images and related labels needs to be learned further. The
attention-driven dynamic graph convolutional network (ADD-
GCN) [16] obtained the content-aware category directly from
image feature and the GCN is only used to learn the content out
of images, which ignored the inherent correlation of labels from
the dataset and did not build a relationship between images and
labels.

After going through these methods, this article proposes a
label-driven graph convolutional network which utilizes the
inherent correlation of labels from dataset and extracts rich
content fully while using GCN to learn the deep relationship
between images and labels. The proposed framework can exca-
vate the profound information inside of labels and build a strong
relationship between labels and images.

B. Label Recognition GCN (LRGCN)

Extracting features from images are essential for the rela-
tionship learning between images and labels. ResNet [31] as an
image feature extraction has a clear advantage. On the basis of
Bottleneck, which is composed of 1× 1 and 3× 3 convolutional

layers, the stage in ResNet also has batch normalization and
a dropout module with residual, which can help the network
build an ultra-deep structure. Therefore, ResNet with 3, 4, 23,
and 3 layers, respectively, is chosen for the feature extraction
stage. When the resolution of an input image is 3 × 448 × 448,
the output feature map from ResNet is 2048 × 14 × 14. This
network can collect global and local features in remote sensing
images.

1) Label Information Extracted: While different images
have distinctive labels, the labels in the dataset have corre-
sponding correlation, which is inherent, especially in the remote
sensing field. For remote sensing images, some labels are always
presented in the same image as they have inherent correlation
like “cars” and “pavement.” While other labels barely emerge in
one image like “cars” and “sea.” The inherent correlation among
the labels can be useful in multiclassification task due to their
probability representation. Therefore, obtaining the inherent
correlation of labels is very crucial.

To learn the inherent correlation of labels, a label-correlation
matrix L ∈ RC×C is constructed, where C denotes the number
of categories. The probability of the occurrence of labelLi when
label Lj appears is demonstrated as the vector lij . To obtain
this probability, the appearing times of label Li in the dataset
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is calculated as Ni, and the occurrence times of Li and Lj is
calculated as Zij . Then, the vector lij is obtained as follows:

lij = Pij = P(Li|Lj) = Zij/Ni. (1)

Through this formulation, the label-correlation matrix can be
obtained.

To fully acquire rich information out of labels, the labels-
correlation matrix needs to be further excavated. To extract more
profound content from the matrix and to excavates the latent
connection between labels and images, the matrix L ∈ RC×C is
transformed to L′ ∈ RM×M , where M = H ×W , H , and W
are the height and width of the image, respectively. After this,
the rich information of labels is fully extracted as matrix L′,
which can be processed with the features of images.

2) GCN-Based Relationship Building: The graph convolu-
tional network (GCN) [32] uses Hl ∈ Rn×d as nodes to de-
note the description of the input feature. The correlation of
nodes is described as the adjacency matrix A ∈ Rn×n. GCN
processes the input nodes Hl ∈ Rn×d by propagating weight
matrix WA ∈ Rd×d and writes the new input nodes as Hl+1.
The new Hl+1 will be learned from the nonlinear function

Hl+1 = σ
(
ÂHlWA

)
(2)

where σ denotes the sigmoid function, and Â ∈ Rn×n is a
symmetrically normalized version of matrix A, which can be
calculated by function

Â = D̃− 1
2 ÃD̃− 1

2 (3)

where Ã = A+ I, I is an identity matrix, and D̃ is the degree
matrix of Ã.

As GCN can learn the relationship between the nodes using
the adjacency matrix, the features of images and the features
of labels extracted from the label-correlation matrix are sent
to GCN. The features of images are seen as nodes of GCN
to learn. The processed label-correlation matrix is used as the
adjacency matrix for nodes. By using label-correlation as the
link of features, the GCN can learn deep information related to
the content of labels. With stacked layers of GCN to excavate
the deep link between images and labels, the strong relationship
between images and labels can be built.

As shown in Fig. 2, the features of images extracted from
ResNet-101 is reshaped as E ∈ RM×D, where M is the mul-
tiplication of the height and width of images, and D denotes
the dimension of images. The adjacency matrix of GCN is the
extracted label-correlation matrixL′ ∈ RM×M . Then the output
Y ∈ RM×D of LDGCN module can be defined as

Y = σ

(
�

L
′
EWl

)
(4)

in which Wl is the weight matrix and
�

L
′
= D̃− 1

2 L̃′D̃− 1
2 (L̃′ =

L′ + I, I is an identity matrix) and D̃ is the degree matrix of L̃′.
After LRGCN module, the rich information about labels is

obtained and the relationship between images and labels is built.

Fig. 2. Details of label recognition graph convolutional network.

C. Semantic Enrichment Module (SEM)

Although the basic relationship between images and labels
has been learned from the LRGCN module, there are still some
limitations. Since the inherent correlation describes the relation-
ship between all the labels in the dataset, the specific semantic
of each image needs to be further extracted. In order to make full
use of the information inside each distinctive image and further
strengthen the connection between images and labels, the SEM
module is proposed.

In order to find the rich representations of image, a kernel of 3
× 3 convolutional operation and an activation function ReLu are
utilized. To avoid overfitting, batch normalization is also used.
The input Y ∈ RM×D is first reshaped as Y′ ∈ RD×H×W and
the process can be described as

Z = ReLu (δ (conv (Y′))) (5)

where conv denotes a convolutional operation with the kernel
of 3 × 3 and δ denotes the batch normalization. To find the
link between the extracted matrix and the final category, the
main focused feature of matrix Z ∈ RD×H×W is first extracted
by adaptive pooling as G ∈ RC×H×W (where C denotes the
number of categories). In order to retain the valuable information
after the pooling, the G is reshaped to G′ ∈ RC×M (where M
denotes the multiplication of height and width of images) and
then multiplied with Z′ ∈ RM×D which is reshaped from Z.
The formulation is written as

F = G′ × Z′ (6)

where G′ is reshaped from G = LeakyReLu(g(Z)), in
which g(·) represents the average pooling operation and the
LeakyReLu is the activation function. After this module, the
enriched semantic information F ∈ RC×D is obtained and can
be sent to the final prediction layer.

D. Prediction Layer and Loss Function

To acquire the original features, which contain significant in-
formation from objects in remote sensing images, the dimension
of feature E ∈ RM×D is reduced to E′ ∈ RC×D and then is
added byF. The final matrix is sent into the binary classification
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to predict a reliable result. The function can be demonstrated as

output = Softmax (fc (E′ + F)) (7)

in which the fc(·) is the fully connected layer and the Softmax
is the activated function.

The loss function is applied to adjust the values of parameters
to obtain an optimal model. Therefore, it is necessary to decrease
the gap between predicted and true values. Therefore, the func-
tion of loss needs to make the gradient of the return proportional
to the difference between the predicted and the true value. The
formulation is illustrated as follows:

L = −
C∑
i=1

[
yi log

(
1

1 + exp (−oi)

)

+ (1− yi) log

(
1− 1

1 + exp (−oi)

)]
(8)

where yi denotes the true labels of the image, oi represents the
predicted labels of the image, C is the number of overall labels
of the image.

IV. EXPERIMENTS

In this section, the extensive experiments and analyses of LD-
GCN are presented on three public datasets. First, the datasets
are demonstrated, following the evaluation metrics and imple-
mentation details. Then, the comparison between LD-GCN with
other state-of-the-art methods is conducted on three different
datasets. Finally, the ablation experiments and the visualization
analyses are presented.

A. Dataset

Plenty of public datasets are used in the multilabel remote
sensing image classification field. Three representative datasets
are chosen: UCM multilabel [33], AID multilabel [34], and
DFC15 multilabel [29]. The details of these three datasets are
illustrated below.

1) UCM Multilabel Dataset: UCM archive was introduced
to the public in 2010 by Yang and Newsam [33]. The overall
dataset was extracted from area images of the National Map of
the U.S. Geological Survey. This dataset contains 2100 images
for 21 categories. Not until Chaudhuri et al. [35] created a
multilabel version of it, did the dataset called UCM multilabel
applied to the multilabel image classification field. The UCM
multilabel dataset has 17 different labels. Each image, with a size
of 3× 256× 256 and a spatial resolution of 0.3 m, is marked with
one or more labels. The examples of UCM multilabel dataset and
their related labels are shown in Fig. 3(a).

2) AID Multilabel Dataset: The AID dataset was created by
Xia et al. [34] from Wuhan University. The aerial images were
collected from Google Earth imagery with sizes of 3 × 600 ×
600 and spatial resolutions ranging from 0.5 to 8 m. In 2020, Hua
et al. [36] selected some images from this dataset and created
an AID multilabel dataset for multilabel classification. The AID
multilabel dataset contains 3000 images which are marked by 17

Fig. 3. Examples of the three multilabel datasets from different scenes.

different labels manually. The examples of the AID multilabel
dataset and their related labels are shown in Fig. 3(b).

3) DFC15 Multilabel Dataset: The DFC15 multilabel
dataset [29], containing 3342 images, is based on the origi-
nal GRSS_DFC_2015 dataset, acquired over Zeebrugge with
an airborne sensor. The original dataset is divided into eight
categories. Each image from the DFC15 multilabel dataset is
600 × 600 pixels with a spatial resolution of 5 cm and is marked
with one or more labels. The examples of DFC15 multilabel
dataset and their related labels are shown in Fig. 3(c).

B. Evaluation Metrics

To fully evaluate the performance of different methods, refer-
ring to some previous works [14], [16], seven evaluation metrics
including the mean average precision (mAP ) and the average
overall precision (OP ), recall (OR), F1-scores (OF1), and
average per-class precision (CP ), recall (CR), and F1-scores
(CF1) are used.

The formulas of the average overall precision, recall, and
average per-class precision, and recall are defined as follows,
respectively:

OP =

∑
i N

c
i∑

i N
P
i

(9)

OR =

∑
i N

c
i∑

i N
g
i

(10)

CP =
1

C

∑
i

N c
i

NP
i

(11)

CR =
1

C

∑
i

N c
i

N
g
i

(12)
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TABLE I
COMPARISONS OF LD-GCN AND THE STATE-OF-THE-ART METHODS ON THE UCM, AID, AND DFC15 MULTILABEL DATASETS

where i denotes the ith label, C denotes the number of labels
in the dataset, N c

i is the number of predicted images which is
correctly predicted for the ith label,NP

i is the number of images
that are predicted for the ith label, and N

g
i is the number of

ground truth images for the ith label.
For F1 metrics, the value is the harmonic mean of precision

and recall and is described as follows:

OF1 =
2×OP ×OR

OP +OR
(13)

CF1 =
2× CP × CR

CP + CR
. (14)

For mean average precision (mAP ), the formula is presented
as

mAP =

∑K
i=1 APi

K
(15)

for K ∈ {1, . . . , C}, where K contains all the categories, and
AP is defined as the average of precision of all categories. It is
suggested that an image contains the label when the prediction
result is greater than 0.5.

C. Implementation Details

During training, to avoid overfitting, data augmentation is em-
ployed: resize the images to 224 × 224 for the UCM multilabel
and DFC15 multilabel datasets with random horizontal flip; crop
and resize the images to 512 × 512 for the AID multilabel
dataset. For the proposed framework, ResNet is used as the
backbone and the model is trained for 50 epochs with a batch
size of 16. Stochastic gradient descent (SGD) with a momentum
of 0.9 and weight decay of 10−4 is chosen as the optimizer of the
proposed model. The learning rate is set up to 0.05 initially for
the whole framework and is reduced by 0.1 at 30 and 40 epoch,

TABLE II
PARAMETERS AND FLOPS OF MODELS ON THE AID MULTILABEL DATASETS

respectively. The overall experiments are conducted based on a
Pytorch platform with NVIDIA GeForce GTX 3090 GPU.

D. Comparisons With State-of-the-Art Methods

To illustrate the performance of the proposed framework,
LD-GCN is compared with other state-of-the-art methods on
three different datasets, which are the UCM, AID, and DFC15
multilabel datasets. The results of the comparison are shown in
Table I, and the best results are marked as bold in the table.
ResNet101 [31] is the baseline. ML-GCN [18] is the framework
that originally employed GCN in multilabel classification tasks.
VAC [37] uses an attention mechanism to classify multilabel
images. ADD-GCN [16] employs the framework with an at-
tention mechanism and GCN. Zhu et al. [38] use dual-level
semantics to guide multilabel classification. RBFNN [6] uti-
lizes data augmentation technique to increase the size of the
dataset. Huang et al. [39] use multiscale feature fusion with
channel-spatial attention learning to achieve classification tasks.
ResNet50-SR-Net [26] is a transformer-driven semantic relation
inference network. MSGM [19] is a spatial pyramid convolu-
tional network.

The comparison results show that LD-GCN is superior at
most evaluation metrics on the UCM multilabel dataset. For
the evaluation metrics like OP and CP , our method surpasses
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Fig. 4. Performance analysis of LRGCN and SEM modules on UCM, AID, and DFC15 datasets. (a) UCM. (b) AID. (c) DFC15.

Fig. 5. Comparisons of the number of GCN layers on UCM, AID, and DFC15 multilabel datasets. Abscissa indicates the number of layers used and ordinate
indicates the performance. The shape of square, rhombus, and triangle in the line chart illustrates mAP , OF1, and CF1, respectively. (a) UCM. (b) AID.
(c) DFC15.

the second highest scores by 1.46% and 2.61%, respectively.
LD-GCN is only lower than the method proposed by Huang
et al. [39] on OR and OF1 scores while surpassing all the other
evaluation metrics. In short, the comparison results demonstrate
that our framework achieves superior performance on UCM
multilabel dataset.

As for the AID multilabel dataset, LD-GCN has the best
results at OP , CP , and mAP scores, which shows the im-
provement over the state-of-the-art results by around 1%. In the
meantime, LD-GCN achieves the second-highest results atOF1
scores. Relatively, LD-GCN has lower results at recall scores,
and thus, has lower performance at F1 scores. It can be inferred
that because LD-GCN considers the correlation of labels, which
is influenced by the occurrence times of two labels, and some
labels hardly emerged in one image may repel each other, it is
harder for LD-GCN to find out all the labels in one complex
remote sensing image. Except for these factors, overall, the
framework has relatively good results on the AID multilabel
dataset.

A bunch of methods using the DFC15 multilabel dataset are
listed for comparison, which are ML-GCN, VAC, ADD-GCN,
Huang et al. [39], ResNet50-SR-Net, MSGM, and baseline
ResNet101. The LD-GCN has a significant performance on this
dataset with only 0.36% lower than ADD-GCN on OP scores.
The performance of the recall is also good on this dataset, which
demonstrates that this dataset has fewer labels for every image
and the proposed framework provides the best results.

As shown in comparison, LD-GCN achieves the best results
at most evaluation metrics on UCM and DFC15 multilabel
datasets, which justifies that the proposed framework performs
an obvious superiority. In the meantime, LD-GCN reaches the
best results on OP , CP , and mAP scores and the second-
highest results on OF1 scores. Therefore, the proposed frame-
work shows the good performance on the AID multilabel dataset.
In summary, the experiments demonstrate the superiority of the
proposed framework—LD-GCN.

To demonstrate the computational space complexity and the
time complexity, the parameters and floating-point operations
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Fig. 6. Sample visualization of training process of LD-GCN compared with ADDGCN on AID multilabel dataset. The visualization results of LD-GCN are
shown on the left and the compared ADD-GCN are shown on the right.

(FLOPs) of the proposed model is compared with some models,
which are the baseline ResNet101, ADDGCN, and the model
proposed by Huang et al. [39].

As can be seen from Table II, while the parameters and FLOPs
of LD-GCN are both higher than ResNet101 and ADDGCN,
the performance of the proposed LD-GCN is far better than
that of these two models. Compared with the model proposed
by Huang et al. [39], the LD-GCN has a higher computational
time complexity with a lower parameter. Despite the higher
FLOPs, the proposed LD-GCN shows the superiority at many
evaluation metrics on three different datasets compared with
Huang et al. [39].

E. Ablation Experiments

The ablation experiments are carried out to further evaluate
the effect of the proposed LD-GCN. Experiments are conducted
on the effects of LRGCN and SEM modules and the number of
GCN layers.

1) Effects of LRGCN and SEM Modules: To find out the
contribution of each module in LD-GCN, and to illustrate the
better performance of our module, the experiments are also
conducted on the baseline. Then, LRGCN module and the SEM
module are added to the framework with the DGCN module
and an attention module for comparison. To investigate the
effect more thoroughly, experiments are made on UCM, AID,
and DFC15 multilabel datasets and the results are conveyed

by the most representative evaluation metric—mAP . All the
comparison results for the three datasets are shown in Fig. 4.

From the comparison results, when the SEM module is added
to the framework, the accuracy improves by 0.15%, 0.18%,
and 0.15% on three datasets, respectively. It demonstrates that
enriching the semantic information does improve the expression
of features. When the compared module DGCN is added to the
framework, the accuracy increases by about 1% on the AID
dataset while rising by only around 0.2% on the UCM and
DFC15 datasets. While adding the proposed LRGCN to the
framework, as shown in the histogram, the performance has
improved a lot from baseline on three datasets. LRGCN also out-
performed DGCN greatly on UCM and AID multilabel datasets,
which can be inferred that the proposed module can demonstrate
complex images with multiple labels better. Applying the inher-
ent correlation of labels into the framework and using GCN to
build the relationship between images and labels does increase
the accuracy significantly. To demonstrate the effectiveness of
SEM on the network, the SEM is compared with an attention
module, which has been used in many multilabel classification
methods. The framework with an attention module can slightly
improve the baseline on the AID and DFC15 datasets. However,
it can damage the accuracy on UCM dataset. It illustrates that
an attention module can cause disorder in the representations
extracted from LRGCN. The framework with SEM is higher
than the framework with the attention module by 0.16%, 0.59%,
and 0.20% on the UCM, AID, and DFC15 datasets, respectively.
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In conclusion, with the module LRGCN and SEM, the network
can achieve the best results on three multilabel datasets.

2) Effect of the Number of GCN Layers: Different numbers
of stacked layers are used in the LRGCN module for comparison,
as shown in Fig. 5. From the line chart, as for mAP scores on
three datasets, it can be inferred that when using one GCN layer,
the performance is not the best because, through only one layer,
the network cannot find the right relationship between the images
and labels, which leads to confused judgment. The accuracy
when stacking more layers is not as good as stacking two layers.
This is because when using many GCN layers, the model takes a
large amount of data and becomes overfitting which badly affects
precision. As for OF1 and CF1 scores, although stacking four
layers is better than three layers on DFC15 multilabel dataset, it
shows that using two GCN layers has the best F1 scores on three
datasets. In summary, the comparison with different layers on
three datasets demonstrates that when using two layers of GCN,
the network can achieve the best performance.

F. Visualization

In this section, the visualization analysis of training of the pro-
posed LD-GCN is conducted. The visualization of ADDGCN
is carried out for comparison. The AID multilabel dataset has
more complex remote sensing images compared to the other
datasets. Therefore, four representative images are chosen from
AID multilabel dataset. As shown in Fig. 6, each row presents the
original image, activation maps with a related label on LD-GCN,
and activation maps with the same label on ADDGCN.

In Fig. 6(a), the labels in this image are “pavement” and
“sea.” These two labels have their own activated areas, which
are clear and noninterference because these two labels have little
correlation. While the label “pavement” has a key-activated area
on “cars,” which is the known label in the dataset. This shows
that the label focused by the proposed LD-GCN contains the
correlation between labels. In Fig. 6(b), the labels of the image
are “court” and “trees.” Those two labels are presented at the
same time in most occasion, therefore, the activated maps have
an overlapped area. In Fig. 6(c) and (d), the images are more
complex and the predicting procedure is more complicated.
For example, the label “airplane” in Fig. 6(c) has a bigger
activated area than the airplane itself, because the semantic
information around the plane is also considered when predicting
the true label. So as the label “field.” Compared with ADDGCN,
LD-GCN always has more activated area for one label and the
activated areas are interference which means that the LD-GCN
considers the inherent correlation of labels while predicting the
final results.

The more complex an image is, the more activated areas will
overlap. It can be seen from the visualization, some of the labels
have complicated correlations with other labels, which also
illustrates the importance of the inherent correlation between
labels.

V. CONCLUSION

In this article, an LD-GCN is proposed for multilabel remote
sensing image classification. The inherent correlation of labels

in images is very crucial for multilabel image classification
and the content inside of labels needs to excavate further.
Therefore, the label-correlation matrix containing the inherent
correlation of labels is learned and sent into the proposed module
LRGCN to obtain the significant information inside the labels.
Moreover, after extracting profound information from labels,
a strong relationship between images and labels is built by
LRGCN. Extensive experiments on UCM, AID, and DFC15
multilabel datasets demonstrate the superiority of the proposed
LD-GCN model. The mAP s of LD-GCN on three datasets
achieved 97.96%, 83.49%, and 99.08%, which are the new
records.

In our future research, we plan to delve deeper into exploring
more effective network backbones to further augment the robust-
ness of multilabel classification in remote sensing applications.
In addition to exploring network architectures, another crucial
aspect of our future work will involve investigating strategies
for incorporating domain-specific knowledge and data augmen-
tation techniques which can potentially enhance the robustness
and generalizability of the classification system.
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