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Abstract—Hyperspectral (HS) pansharpening refers to fusing
low spatial resolution HS (LRHS) images with the corresponding
panchromatic (PAN) images to create high spatial resolution HS
(HRHS) images. Most of the existing HS pansharpening methods
overlook the spatial and spectral imbalance of the ground objects
of different types in the observed scenes. To address the dilemma,
in this article we develop a novel tree-structured neural network
(Tree-SNet) to form an adaptive spatial-spectral processing for HS
pansharpening. The Tree-SNet method maps a convolutional neu-
ral network (CNN) onto a hierarchical tree structure, where routing
nodes automatically tune the data distributed to tree paths, which
is adaptive to the local characteristics of the data, while spatial
enhancement (SpatE) and spectral enhancement (SpecE) modules
are dynamically performed in the tree paths to further strengthen
the adaptive processing. The proposed Tree-SNet is evaluated on
several datasets, and the experimental results verify its superiority.

Index Terms—Adaptive data distribution, convolutional
neural network (CNN), dynamic enhancement, hierarchical tree,
hyperspectral (HS) images, pansharpening.

I. INTRODUCTION

ATELLITE remote sensing seeks to provide accurate obser-
S vations of the Earth’s surface with sufficient information.
However, owing to the inherent physical constraints of satellite
sensors, the spatial resolutions and the spectral resolutions of
the connected data have an effect on each other. For example,
a panchromatic (PAN) image is usually composed of only one
band with high spatial resolutions, while a hyperspectral (HS)
image comprises hundreds of bands but often with a low spa-
tial resolution. Considering the fact that the HS data with full
resolution are required for many practical applications [1], [2],
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[3], [4], [5], [6], [7], we have to resort to the HS pansharpening
technique, which has drawn much attention in recent years. It
is able to reconstruct high-resolution HS (HRHS) images by
fusing the matching pairs of low-resolution HS (LRHS) images
and PAN images.

The HS pansharpening technique is originally extended from
traditional multispectral (MS) pansharpening methods [2], [2],
[3], [8], [10], [11], [12], some of which include Gram-Schmidt
(GS) [8], intensity-hue-saturation (IHS) [13], principal compo-
nent analysis (PCA) [14], smoothing filter-based intensity mod-
ulation (SFIM) [15], wavelet transform [16], modulation transfer
function generalized Laplacian pyramid (MTF-GLP) [17] and
its high-pass variant [18], can be approximately categorized
into component substitution (CS) and multiresolution analysis
(MRA). Some of the other pansharpening approaches can be
attributed to the variational optimization (VO)-based processing,
which regards pansharpening as an ill-posed inverse problem by
variation [9][19], [20], [21]. Representative VO-based methods
include matrix factorization [2], [22] and Bayesian estima-
tion [2], [23], [24]. Matrix factorization methods usually decom-
pose low-resolution MS/HS images and high-resolution PANs to
obtain basis matrices and coefficient matrices, respectively, and
then form high-resolution MS/HS images by the multiplication
of the basis matrices and the coefficient matrices. In contrast,
Bayesian estimation methods treat MS/HS pansharpening as
an optimization problem in the Bayesian framework, which is
often regularized by a prior. Since convolutional neural net-
works (CNNs) posed significant potential for enhancing spatial
resolutions of data, CNN-based methods were proposed for
the pansharpening task. CNN-based pansharpening is pioneered
by pansharpening neural network (PNN) [25], which aims at MS
pansharpening and is then followed by some researchers [26],
[27], [28], [29]. An HS image is usually characterized by obvi-
ously higher spectral resolution and contains much more spectral
bands than an MS image. Therefore, CNNs need to be designed
more elaborately to deal with HS pansharpening. Zheng et al.
[32] designed a CNN structure for HS pansharpening that can
make full use of the relationship between spatial information and
spectral information through a residual block. Xie etal. [33] dis-
covered deep priors to predict the HRHS images, which are used
as aminimum constraint during the HRHS image restoration. He
et al. [34], [35] built a spectral prediction structure to enhance
the spectral fidelity [34] and proposed an HS pansharpening
framework that can produce reliable spatial detail through a
physically interpretable skip connection.
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Existing HS pansharpening CNNs have achieved great
progress [25], [26], [30], [31], [32], [33], [34], [35], [36], [42],
which usually accomplish better quality indicators in pansharp-
ening processing than traditional methods. However, the spatial
and the spectral attributes of an HS image and their coupling
may be spatially different in the real-world situation, while most
of the HS pansharpening methods did not explicitly consider
such a spatial varying characteristic of HS data, which may
cause distortion to the pansharpened HRHS image, especially
when large-scale networks are absent. Intuitively, scenes with
more spatial information such as residential areas and scenes
with more spectral information like vegetations should require
variable processing of recovering spatial information or spectral
information. Inspired by this, we propose a novel HS pansharp-
ening CNN to incorporate CNN into a tree structure, where
spectral-spatial processing is automatically adjusted through
different pansharpening paths. Major innovative contributions
of our work can be identified as follows.

1) A tree-structured neural network (Tree-SNet). Tree-SNet
maps a CNN onto a hierarchical tree structure. Routing
nodes automatically tune input data to different paths
corresponding to spatially local characteristic of the data,
fulfilling an adaptive spatial adjustment, while in tree paths
the data go through additional dynamic processings to
reinforce the adaptiveness.

2) A spatial enhancement (SpatE) module and a spectral
enhancement (SpecE) module. SpatE and SpecE modules
are designed in the paths of the tree to further enhance spa-
tial components and spectral components of the data, re-
spectively, with the involvement of dynamic convolutions
along the spatial dimension and the spectral dimension.

3) A patch integration rule connected to the data routing. Af-
ter spatial and spectral processings on tree paths, we design
a self-adjustable integration rule to fuse all the processed
patches from the paths. The rule is associated with the data
routing on the tree and collaboratively accomplishes the
adaptive spatial and spectral processing on the tree.

The rest of this article is organized as follows. Section II
proposes our pansharpening neural network, i.e., Tree-SNet.
Section III shows our experimental results in detail. Finally,
Section IV concludes this article.

II. METHODOLOGY

To handle the spatially varying characteristic of HS data in
the duration of pansharpening, a feasible way is to design a
pansharpening procedure capable of adaptively or automatically
adjusting the spectral-spatial processing. More specifically, in
this section, we seek to exploit an innovative Tree-SNet to deal
with the problem.

A. Overall Design

HS pansharpening CNNs are usually connected to a learning
process to reconstruct HRHS images by fusing LRHS images
and PAN images, which consists of a training stage and a
subsequent inferring stage. The two stages can be formulated as

0P = arg meinl (<I> (ﬁl,f’ﬁ@) ,Ht) (1)
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TABLE I

NOTATION
Symbol  Description
P Observed PAN image
H Observed LRHS image
HT Pre-interpolated version of the observed LRHS image
P Synthetic reduced-resolution PAN image
H Synthetic reduced-resolution LRHS image
HT Pre-interpolated version of the reduced-resolution LRHS image
P PAN image for training phase
H; LRHS image for training phase
P, Synthetic reduced-resolution PAN image for training phase
H, Synthetic reduced-resolution LRHS image for training phase
I?II Pre-interpolated version of the synthetic reduced-resolution
H Pansharpened HRHS image

and
H=o (H', P; ") 2)

respectively, ®(-) represents the CNN panshrapening processing
from a preinterpolated LRHS image and a PAN image to the
pansharpened HRHS image through the CNN parameters
0, I(-) denotes the pansharpening loss in the training stage,
which imposes constraints on the differences between the
pansharpened HRHS image and the referenced ground-truth,
and the meanings of other relative simples can be found in
Table I. In the training stage, the CNN pansharpening learns
pansharpening parameters 0°P', which is applied in the inferring
stage to infer the pansharpened HRHS image.

The overall design of our pansharpening CNN, i.e., Tree-
SNet, is graphically presented in Fig. 1. As shown in the figure,
we utilize a hierarchical tree to guide the construction of Tree-
SNet. The input PAN and preinterpolated LRHS are first stacked
along the spectral dimension and then cropped to form patch
samples for the training stage or the inferring stage. In the tree,
routing nodes are employed to dynamically tune patch data, i.e.,
distribute the data to the paths of different spectral and spatial
processings with adaptive weights. Thus, adaptive tuning of the
pansharpening is achieved. In the practical fulfillment of the
training stage, patch samples of training data are directly used
as samples of adaptive moment estimation (Adam) optimizer,
which trains the pansharpening parameters 8°P* with respect to
a loss; and once 0°F! is determined, the pansharpening model
®(-) with fixed parameters 6°"* would be used to infer the
pansharpening of the test or the incoming data.

B. Routing Nodes

Routing nodes [/\fij ] of the Tree-SNet tree serve as routers to
determine how to distribute input data into paths of the tree. More
specifically, routing nodes would measure spatial components
and spectral components of the observed scene, and accordingly
tune the settlement of the succeeding spatial-spectral processing
with enhancement on tree paths. In such a way, the spatial details
and spectral fidelities of the scene can be enhanced while keeping
them balanced on the whole.
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Fig. 1. HS pansharpening based on the proposed Tree-SNet.
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Structure of a routing node in the proposed Tree-SNet.

Fig. 2.

More specifically, Fig. 2 graphically shows the architecture
of a routing node. The routing node comprises a main path and
two skip paths. The main path is a convolutional path, which
is composed of consecutive convolutional layers, one of which
is a two-stride layer, and followed by a global average pooling,
several full connected (FC) layers and a sigmoid activation. The
final FC layer is connected to a sigmoid activation to produce a
; value in (0, 1). The output of the main path, i.e., ¢;, is used as
a factor to tune the skip paths. Once the convolution parameters
of the main path are determined, the factor ¢; would adaptively
follow the characteristic of the input data of the routing node.
The mathematical representation associated with the main path
is as follows:

01 :F(Wl *Io+b1)
Oy :]:(W4>k]:(W3>k]:(W2*01 +b2)+b3)+b4)
¢l = S (FC(F (FC(AP (04))))) 3)

where Iy denotes the input of the node, O, (d = 1, 2, 3, 4) are the
convolutional outputs of four layers, Wy and by (d = 1,2, 3,4)

represent the parameters of these layers, F and S stand for the
Relu function and the Sigmoid function, respectively, and ¢; is
the output of the routing node. This process for the main path of
the ¢th node can be formulated as

0 =N (Io;0V) )

for brevity, where 8" presents the parameters of all layers in
this process.

Asregards the two skip paths, one skip path directly guides the
input patch data I to multiply the factor ¢, ; while the other skip
path guides the input data I to multiply the factor (1 — ;). The
outputs of two skip paths, i.e., ; - Iy and (1 — ¢;) - Iy, will be
fed into the subsequent spatial enhancement path and the spectral
enhancement path, respectively, which implies adaptively tuning
the spatial and the spectral processings of the local patch. Then,
we have

Fi = Wi - I
Fiza = (1 —¢5) - 1o )]

where Fi,1 and Fy,o are outputs of two skip paths, meanwhile,
denote the inputs of the spatial enhancement path and the spectral
enhancement path, respectively.

C. Spatial Enhancement and Spectral Enhancement Paths

After the adaptive data distribution by routing nodes, we
perform further enhancing of the spatial and the spectral in-
formation. As shown in Fig. 1, in the left downward path of a
node (i.e., a spatial enhancement path), the spatial information
is restored by a spatial enhancement (SpatE) module, while the
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Fig. 3. SpatE module and SpecE module. (a) Overall structure. (b) Spatial dynamic convolution in SpatE. (c) Spectral dynamic convolution in SpecE.
spectral information is restored by two spectral enhancement is as follows:
(SpecE) modules in the right path (i.e., a spectral enhancement
path). The SpatE and the SpecE modules are constructed as Fouze = b+ W s Fipo
follows.
(W,b) = My (Fjpn2;6%) @)

1) SpatE Module: The module aims to enhance the spa-
tial components of observed scenes via automatic spatial
adjustment. We resort to spatially dynamic convolution
to achieve such a spatial adjustment. More specifically,
the proposed SpatE module learns a mapping function
My : Fyp — (W, b) that transforms an input feature
map F'y,; into the weights W's and biases bs of kernels
associated with every pixel. The learned parameters are
then applied to adaptively modulate the upcoming input
feature maps along the spatial dimension to strengthen
spatial details. The related mathematical representation is
of the form

Foutl =b+ W x Finl

(W.b) = My (Fiu; 07) 6)
where 6° denotes the parameters of M. Fig. 3(a) and
(b) shows the structure of the SpatE module and the
implementation of the corresponding spatially dynamic
convolution. In the module, several consecutive convolu-
tional layers with ReLU activations are used to perform
the mapping M, which outputs kernel parameters and
then they are reshaped as weights and biases to fulfill
spatial convolution. Spatial enhancement is conducted by
applying these kernels and biases to the input feature maps
along the spatial dimension in a channelwise and pixelwise
manner, as shown in Fig. 3(b).

2) SpecE Module: In contrast to the SpatE module, the
SpecE module is introduced to improve spectral fidelities
of observed scenes. This module also learns a mapping
function My : Fiys — (WD) that transforms the input
feature maps F'j,o into kernel parameters. But different
from SpatE, SpecE uses these kernel parameters to form
spectral kernels of the spectral convolution operation to
strengthen spectral fidelities. The connected formulation

where 8” presents the parameters of M. Fig. 3(a) and (c)
displays the structure of the SpecE module and the imple-
mentation of its associated spectral convolution. As can
be seen, the SpecE module is built on a similar structure
to the SpatE module, except the dynamic convolution is
performed with 1 x 1 x k spectral kernels.

In the spatial enhancement and the spectral enhancement
paths, SpatE and SpecE modules use spatially and spectrally
dynamic convolutions to lift spatial and spectral information,
which to some degree are also spatially self-adjustable and thus
collaborate with the data distribution by routing nodes and the
connected reconstruction to achieve the spatial adaptiveness of
our Tree-SNet.

D. Final Reconstruction

After the data distribution via routing nodes and the associ-
ated spatial and spectral enhancements on paths, a process of
final reconstruction needs to be fulfilled to achieve the desired
pansharpened HS image. The final reconstruction is composed
of three sequential phases: Path-based spectral reconstruction
(PSR), patch integration (PI), and stitching (as shown in Fig. 1).

In PSR, the output of each path is processed with two
1 x 1 convolutional layers (as shown on the bottom right part of
Fig. 1) to restore the spectral information of each patch to yield
pansharpened patches, which can be formulated as

L =L (Fous:;0") ®)
where £ denotes two convolutional layers that reconstruct the
spectral information and @' represents the parameters of the
above layers. L stands for the final output features of the patch.

PI seeks to integrate a set of patches from all the paths to
form a final patch by a fusion rule, which corresponds to the
data distribution by routing nodes. The associated mathematical
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representation is as follows:
Nouw = 192 - L1 +¢1- (1 —¢2) - Lo
(1 =¢1) @3- Ls+(1—¢1) (1 —p3) L 9

where go{ and N, stand for, respectively, the weight of spatial
enhancement and the final HRHS patch by weighting the final
output features.

Stitching aims at reconstructing the pansharpened HRHS
image by combining all final patches according to their cor-
responding positions, which can be formulated as

Hout = ST(Nout)

where ST denotes the process of stitching by average the sum
of all final patches according to the matching positions. In brief,
the final reconstruction can be formulated as

How = FR(Fou, ¢; 0°)

(10)

an

where F'R represents all the three consecutive operations of
path-based spectral reconstruction, patch integration, and stitch-
ing, which collaboratively fulfill reconstructing the desired
HRHS image. Especially, in the patch integration, we design
a combining rule in a subtle way (as shown in Fig. 1) to
integrate outputs of all paths, which corresponds to the routing
of distributed data on the tree.

E. Summary

Our Tree-SNet maps a CNN on a tree structure, where routing
nodes are responsible for data distribution corresponding to
the spatially local characteristic of the HS image. Meanwhile,
dynamic spatial enhancement and dynamic spectral enhance-
ment are built into the paths of the tree to further strengthen
the adaptiveness of the spatial-spectral processing, and then the
connected reconstruction is designed to form the final pansharp-
ening data. Algorithm II-E outlines the practical implementation
of our Tree-SNet.

III. EXPERIMENTS

In this section, experimental results are presented to verify
the effectiveness of the proposed Tree-SNet.

A. Experiment Setup

We tested our proposed Tree-SNet on four datasets. Table II
shows the rough properties of those datasets.

1) The Pavia University dataset, collected by the Reflective
Optics System Imaging Spectrometer (ROSIS) sensor over the
University of Pavia, Italy, which contains an HS image with the
spatial size of 610 x 340 and 102 spectral bands covering a
spectral range from 0.4-0.9 pym. The bottom left part with the
size 200 x 200, the right part with the size 410 x 340, and the
rest parts are selected for test, train and validate, respectively.
Totally, 7680 training samples and 768 validation samples with
sizes of 20 x 20 are generated by the use of data augmentation
(including rotation and flipping).

2) The Houston University dataset, acquired by the Compact
Airborne Spectrographic Imager-1500 (CASI-1500) sensor over

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Algorithm 1: Tree-SNet.

Input: IA:IIA, P, H, H", P

Output: H
1 while not done do
2 Crop LR-HR ;
3 for n epochs do
4 I, = (H],P,);
5 for each node do
6 ¢ = N(1p;6™);
7 Finl =pX IO7 Foutl =b + W Finl;
8 Fino = (1 —¢) xIy, Fouro = b+ Wk Fjpo;
9 end
10 H,.: = -FR(Foutv @b; OL);
11 Update 6°F" with loss;
12 0"t = (07, 0°,0,0%)
13 end

14 end
5 Obtain model P ;
return H = &(H', P; 9°"")

-
=)

the University of Houston, America, which contains an HS
image with the spatial size of 340 x 1325 and 144 spectral
bands ranging from 0.4—1.0 um. The top left part with the size
200 x 200, the top right part with the size 410 x 340, and the
rest part are selected for test, train and validate, respectively.
Totally, 7680 training samples and 768 validation samples with
sizes of 20 x 20 are produced.

3) The Merced dataset, gathered by the Hyperion spectrometer
and the Advanced Land Imager (ALI) sensor over agricultural
and vegetational areas of Merced, California, which contains
an HS image with the spatial size of 2100 x 180 and 134
spectral bands ranging from 0.4-2.5 pm and an accompanied
PAN image with the spatial size of 6300 x 540. Parts of the HS
data with sizes of 150 x 150, 600 x 150 and 400 x 150, while
the connected PAN data are selected for test, train, and validate,
respectively. Totally, 9600 training samples and 960 validation
samples with sizes of 20 x 20 are produced.

4) The Changping dataset, also acquired by the Hyperion
spectrometer and the ALI sensor, but over an area of Changping,
Beijing, which comprises an HS image with the spatial size of
2900 x 180 and 137 spectral bands ranging from 0.4-2.5 ym and
an accompanied PAN image with the spatial size of 8700 x 540.
Parts of the HS data with the sizes of 180 x 180, 1000 x 180
and 200 x 180, and the connected PAN data, are selected for
test, training, and validate, respectively. Totally, 9600 training
samples and 960 validation samples with sizes of 20 x 20 are
generated for our experiments.

In our experiments, two kinds of datasets are used: real
datasets (including the Merced dataset and the Changping
dataset) and simulated datasets (including the PaviaU dataset
and the Houston dataset). A real dataset means it comprises both
the observed LRHS data and the connected PAN data, whereas a
simulated dataset means it contains only the observed LRHS data
(i.e.,no PAN data). Therefore, for simulated datasets, we have to
use the observed LRHS data to artificially build the PAN data,
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TABLE II
PROPERTIES OF THE DATASETS

Datasets Data size Spectral range  Bands channel Instrument
Pavia University HS 610 x 340 0.4-0.9 pm 102 ROSIS
Houston University HS 340 x 1325 0.4-1.0 ym 144 CASI-1500
Merced HS 2100 x 180 0.4-2.5 pm 134 Hyperion and ALI
Changping HS 2900 x 180  0.4-2.5 pm 137 Hyperion and ALI

whose spatial information is the same as the observed LRHS
data. Then, the observed LRHS images need to be degraded
to a lower spatial resolution to collaborate the relatively high
resolution PAN to perform reduced-resolution experiments. For
real datasets, both the observed PAN data and observed LRHS
data are available, where the PAN images are of the same
spatial resolutions of the target pansharpened images. Then, the
observed PAN images can naturally be used to pansharpen the
observed LRHS images to the spatial resolution of the PANSs, i.e.,
the full-resolution experiment. In addition, the observed PAN
data and the observed LRHS data in real datasets can be degraded
to a lower spatial resolution by involving blurring and down-
sampling, and then also be used to conduct a reduced-resolution
experiment, which is similar to that for the simulated datasets.
Therefore, in our experiments, simulated datasets are usually
only used to perform reduced-resolution experiments, while
real datasets can be used to fulfill not only reduced-resolution
experiments but also full-resolution experiments.

In reduced-resolution experiments, the observed LRHS im-
ages are used as the ground-truth images, which can be then
utilized for calculating evaluation metrics CC, SAM, RMSE,
ERGAS, and Q2n. However, in full-resolution experiments, the
ground-truth images are absent. Therefore, evaluation metrics
CC, SAM, RMSE, ERGAS, and Q2n cannot be obtained. In this
situation, the evaluation metric QNR, which does not require the
involvement of the ground-truth images, is utilized for evaluating
the results of full-resolution experiments.

In our experiments, we utilize Wald’s protocol [37] to arrange
the simulated data of Pavia University and Houston University,
where LRHS images are generated by blurring and downsam-
pling and PAN images are generated by averaging the visible
spectral bands [38], and we also employ Wald’s protocol in the
Merced and Changping data to generate the associated LRHS
images.

Several representative methods are used for comparison in
our experiments, including GFPCA [39], Bayesian Sparse [40],
MTF-GLP [17], GSA [41], SFIM [15], PNN, DRPNN [27], Hy-
perPNN1 [34], HSpeNetl [35], APNN [25], and RHDNet [42].
To facilitate a comprehensive comparison of the pansharpening
methods, we employed five universal evaluation metrics: cross
correlation (CC), spectral angle mapper (SAM) [43], root-mean-
squared error (rmse) [6], erreur relative globale adimensionnelle
de synthse (ERGAS) [44], and the extended universal image
quality index (Q2n) [45].

B. Parameter Setting

We conducted all experiments using an NVIDIA GeForce
RTX 2060 SUPER GPU. The convolutional layer employed
the RELU activation function and rectified linear unit. The

TABLE III
QUALITY METRICS OF DIFFERENT HYPERSPECTRAL PANSHARPENING
METHODS ON PAVIA UNIVERSITY DATASET

CC(1) SAM{) RMSE() ERGAS{) Q2"(1)
MTF-GLP  0.9393  5.2156 0.0353 3.1944 0.9048
GFPCA 0.8372  7.5954 0.0563 6.3472 0.6470
BayesNaive 0.9359  5.4216 0.0353 3.2396 0.9082
GSA 0.9273  5.8870 0.0381 4.0537 0.8738
SFIM 0.9365 5.2783 0.0361 3.5849 0.8813
PNN 0.9507  4.7235 0.0313 3.0095 0.9154
DRPNN 09617  4.1549 0.0278 2.6045 0.9381
HyperPNN1 0.9594  4.2986 0.0286 2.7068 0.9369
HSpeNetl ~ 0.9604 4.1776 0.0281 2.7732 0.9361
APNN 0.9588  4.4997 0.0288 2.7149 0.9290
RHDNet  0.9629  3.9766 0.0275 2.5690 0.9402
Tree-SNet  0.9685  3.7226 0.0252 2.3981 0.9491
SpaE 0.9643  4.0802 0.0269 2.6655 0.94373
SpecE 0.9630  4.1506 0.0273 2.7109 0.9425

The bold numbers in the table denote the best performances under certain
quantitative metrics.

loss function used in the experiment was [1 loss between the
pansharpened data and the ground-truth. The training phase
consisted of 100 000 iterations with a batch size of 64. The
initial learning rate was set at 0.0001, decaying exponentially
every 2000 iterations, and we utilized the Adam optimizer to
minimize the loss function. Additionally, the tree structure of
our Tree-SNet was set to be three layers empirically, considering
the relatively low computational burden.

C. Simulated Image Experiments

These experiments are conducted on the Pavia University
and Houston University datasets. PAN and LRHS images were
generated using the Wald’s protocol, as previously mentioned.

1) Pavia University Dataset: The spatial size of the degraded
HS image is 122 x 68 pixels and the simulated PAN image is
610 x 340 pixels, while their ratio is 5. Table III shows the
quantitative results of all these methods on the Pavia University
dataset. As seen from the table, our proposed Tree-SNet achieves
the best quality metrics among all these methods, with great
improvements on all quantitative assessment results (i.e., CC,
SAM, RMSE, ERGAS, and Q2").

To identify artifacts and distortions in the pansharpened re-
sults. Fig. 4(a)—(o) shows the pseudocolor images achieved by
different methods. Compared with other methods, the pansharp-
ened image of our proposed method exhibits the best visual
performance, with no noticeable artifacts and distortions in the
pansharpened image, as shown in the enlarged area. The image
of GFPCA shows the worst in the spatial preservation with
much blurring. The image of SFIM has a large color difference
compared with the ground-truth image, which means it performs
the worst in the spectral restoration.
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Fig. 4.

HS pansharpening results for the Pavia University dataset (displayed in RGB). (a) Ground-truth. (b) GSA. (c) SFIM. (d) MTF-GLP. (e) GFPCA.

(f) BayesSparse. (g) PNN. (h) DRPNN. (i) HyperPNNI1. (j) HSpeNetl. (k) APNN. (I) RHDNet. (m) Tree-SNet. (n) SpaE. (o) SpecE.

Fig. 5(a)—(0) shows the error images of different methods.
The error image of our method shows smaller error compared
with other error images in the high-frequency area, which means
the pansharpening image of our method is more similar to the
ground-truth image, with good spatial and spectral restoration.

To further demonstrate the effectiveness of the tree structure
mechanism in our method, we graphically illustrate the feature
maps produced by only spatial enhancement path and by only
spectral enhancement path in Fig. 6. Each of the figures is a pseu-
docolor image composited by the three visible-light bands. As
shown in the figure, the feature maps from different enhancement
paths indicate different spatial and spectral characteristics. The
feature map from the spatial enhancement path contains a large
amount of details, e.g., sharp edges and clear structure contours,
but yields bad color restoration compared to the ground-truth [as
shown in Fig. 4(a)] which means obviously spectral distortion.
In contrast, the feature map from the spectral enhancement path
performs well in keeping spectral-fidelity; however, it is blurred,
which contributes to the loss of spatial details. Therefore, it is
verified that the spatial enhancement path tends to extract and
improve spatial information, while the spectral enhancement
path tends to refine spectral information; thus, the validity of
our tree-structure method is further indicated.

2) Houston University Dataset: The spatial size of the de-
graded HS image is 68 x 265 pixels, and the simulated PAN
imageis 340 x 1325 pixels while theirratiois 5. The comparison
of quality metrics for different methods with the Houston Uni-
versity dataset are shown in Table IV, from which our Tree-SNet
performs the best with these scenes for all mentioned metrics.
GFPCA and MTF-GLP obtain much worse performance than
other methods, while BayesSparse and SFIM achieve better
performance among other traditional methods.

TABLE IV
QUALITY METRICS OF DIFFERENT HYPERSPECTRAL PANSHARPENING
METHODS ON HOUSTON UNIVERSITY DATASET

CCM) SAM({) RMSEW{) ERGAS({) Q2"(1)

MTF-GLP  0.8382  6.4266 0.0337 3.6621 0.8131
GFPCA 0.9024  7.8804 0.0333 5.1751 0.6791
BayesSparse  0.8384  5.7959 0.0343 3.7304 0.8248
GSA 0.8620  5.6674 0.0320 3.5376 0.8287
SFIM 0.8381  6.8155 0.0346 3.8582 0.7849
PNN 0.8758  5.1532 0.0289 3.2751 0.8416
DRPNN 0.9071  4.1682 0.0258 2.8050 0.8884
HyperPNN1 0.9041  4.1984 0.0257 2.8387 0.8868
HSpeNetl 09176  3.8101 0.0247 2.6847 0.9012
APNN 0.8977  4.4067 0.0265 2.9410 0.8723
RHDNet 09115  3.9467 0.0254 2.7476 0.8957
Tree-SNet  0.9239  3.6064 0.0235 2.5631 0.9097
SpaE 09168 39184 0.0243 2.6716 0.9024
SpecE 0.9152  3.9866 0.0245 2.6975 0.9004

The bold numbers in the table denote the best performances under certain
quantitative metrics.

To identify the visual performance of different methods,
Fig. 7(a)—(0) shows the pansharpening results of different meth-
ods. From these images, the result generated by our method
exhibits the best performance with no blurring or color dif-
ference in the enlarged area. GFPCA performs worst in the
spatial restoration while SFIM performs worst in the spectral
restoration compared with other methods. In general, traditional
methods exhibit worse performance in both spatial and spectral
restoration compared with CNN methods.

In addition, Fig. 8(a)-(0) shows the error images of differ-
ent methods. The error images show the difference between
pansharpening images and ground-truth images. From Fig. 7,
the pansharpening result of our proposed method obtains the
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Error images of different methods on the Pavia University dataset. (a) Ground-truth. (b) GSA. (c) SFIM. (d) MTE-GLP. (e) GFPCA. (f) BayesSparse.

(g) PNN. (h) DRPNN. (i) HyperPNNI1. (j) HSpeNetl. (k) APNN. (I) RHDNet. (m) Tree-SNet. (n) SpaE. (o) SpecE.

(b)

Fig. 6. Feature maps for the Pavia University dataset produced by (a) spatial
enhancement path and by (b) spectral enhancement path.

best visual performance, which means it is the most similar to the
ground-truth image among these mentioned methods. Generally,
the results of CNN methods achieve much smaller error than
traditional methods.

D. Real Image Experiments

The Merced dataset and the Changping dataset are utilized
to perform evaluation in the real image experiments. Two kinds
of experiments are carried out on the two datasets: the reduced-
resolution experiment and the full-resolution experiment.

1) Merced Dataset: In the reduced-resolution experiment,
the HS and PAN images are downsampled simultaneously and

then fused to yield HRHS images. Similar to the simulated-data
experiment, the original HS images serve as reference images to
evaluate the performance of different methods. The dimension
of the test PAN image is 450 x 450 pixels, and the size of the
experimental HS image is 150 x 150 pixels. Fig. 9(a)—(o) shows
the visual results of all compared pansharpening methods for
simulated Merced dataset, and Fig. 10(a)-(o) shows the error
images compared to the ground-truth image. As observed from
these images, our Tree-SNet obtains the best performance in
both spatial and spectral restorations.

In the full-resolution experiment, the HS and PAN images are
used as the inputs to generate areal HRHS image. The dimension
of the test PAN image is 300 x 300 pixels, and the size of the
experimental HS image is 100 x 100 pixels.

Table V gives the quantitative evaluation results for both
the reduce-resolution experiments and the full-resolution
experiments. CC, SAM, rmse, ERGAS, and Q2" are for
the reduce-resolution experiments; while the quality with
no reference (QNR) protocol [46] is used to evaluate the
full-resolution pansharpening images. As shown in this table,
our proposed Tree-SNet achieves the best performance with
respect to the four quality metrics in the reduced-resolution
experiment, while HSpeNet1 yields better result under the SAM
metric and the QNR metric. HSpeNetl is specifically designed
for recovering spectral information, and the Merced dataset may
tend to comprise relatively less spatial information but relatively
more spectral information. Thus, HSpeNetl performs better
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Fig. 7. HS pansharpening results for the Houston University dataset (displayed in RGB). (a) Ground-truth. (b) GSA. (c¢) SFIM. (d) MTF-GLP. (e) GFPCA.
(f) BayesSparse. (g) PNN. (h) DRPNN. (i) HyperPNNI1. (j) HSpeNetl. (k) APNN. (I) RHDNet. (m) Tree-SNet. (n) SpaE. (0) SpecE.
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Fig. 8. Error images of different methods on the Houston University dataset. (a) Ground-truth. (b) GSA. (c) SFIM. (d) MTF-GLP. (e) GFPCA. (f) BayesSparse.
(g) PNN. (h) DRPNN. (i) HyperPNNI1. (j) HSpeNetl. (k) APNN. (1) RHDNet. (m) Tree-SNet. (n) SpaE. (o) SpecE.
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Fig.9. HS pansharpening results for the reduced-resolution Merced dataset (displayed in RGB). (a) Ground-truth. (b) GSA. (c) SFIM. (d) MTF-GLP. (e) GFPCA.
(f) BayesSparse. (g) PNN. (h) DRPNN. (i) HyperPNNI. (j) HSpeNetl. (k) APNN. (1) RHDNet. (m) Tree-SNet. (n) SpaE. (o) SpecE.
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Fig. 10. Error images of different methods on the reduced-resolution Merced dataset. (a) Ground-truth. (b) GSA. (c) SFIM. (d) MTF-GLP. (e) GFPCA.
(f) BayesSparse. (g) PNN. (h) DRPNN. (i) HyperPNNI1. (j) HSpeNetl. (k) APNN. (I) RHDNet. (m) Tree-SNet. (n) SpaE. (o) SpecE.
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TABLE V
QUALITY METRICS OF DIFFERENT HYPERSPECTRAL PANSHARPENING METHODS ON MERCED DATASET

CC()  SAM({]) RMSE{) ERGAS(]) Q2"(1) QNR(D)

MTF-GLP 09189  3.9391 0.0299 6.9360 0.8314  0.8068
GFPCA 0.8143  7.4520 0.0450 10.7745 0.5477  0.81958
BayesSparse  0.9520  4.6994 0.0270 6.0273 0.8996  0.93832
GSA 0.9570  3.4558 0.0215 5.1404 0.9032  0.90785
SFIM 0.9349  3.7041 0.0265 6.5352 0.8514  0.88546
PNN 0.96733  3.083  0.018322 4.3788 0.93333  0.94768
DRPNN 0.96956 29103  0.017698 4217 0.93698  0.95542
HyperPNN1 0.96886  3.1315  0.018102 4.2647 0.93782  0.94705
HSpeNetl  0.96504  2.7407  0.019425 4.3424 0.93062  0.96259
APNN 0.8977  2.9986 0.0175 4.2948 0.0.9363  0.9481
RHDNet 0.9693  2.7958 0.0179 4.1648 0.9388  0.9610
Tree-SNet 0.9733 2.809  0.016724 3.9202 0.94783  0.94217
SpaE 09691  3.2817 0.0183 4.1484 0.9419  0.9351
SpecE 0.9696  3.2358 0.0181 4.1780 0.9404  0.9381

The bold numbers in the table denote the best performances under certain quantitative metrics.

TABLE VI
QUALITY METRICS OF DIFFERENT HYPERSPECTRAL PANSHARPENING METHODS ON CHANGPING DATASET

CC() SAM() RMSE(]) ERGAS(]) Q2"(T) QNR(T)

MTEF-GLP  0.8577 3.5921 0.0210 5.4895 0.7330  0.6985
GFPCA 0.7797  5.8202 0.0261 6.8325 0.4469  0.8406
BayesSparse  0.9042  3.9398 0.0171 4.5201 0.8212  0.6659
GSA 0.8132  4.1288 0.0251 6.6639 0.6753  0.6594
SFIM 0.8770  3.5933 0.0193 5.0635 0.7553  0.7911
PNN 0.9315  3.8338 0.0144 3.8563 0.8686  0.9047
DRPNN 0.9361  3.4850 0.0139 3.7239 0.8756  0.9101
HyperPNN1 0.9341  3.7778 0.0141 3.7891 0.8759  0.8960
HSpeNetl 09312  3.3058 0.0144 3.8555 0.8653  0.8960
APNN 0.9327  3.7995 0.0142 3.7684 0.8772  0.9075
RHDNet 0.9408  3.3287 0.0134 3.5926 0.8868  0.8743
Tree-SNet  0.9469  3.5102 0.0127 3.4143 0.9016  0.9157
SpaE 0.9327  3.8721 0.0142 3.8374 0.8739  0.8862
SpecE 0.9355  3.8843 0.0140 3.7576 0.8801  0.8737

The bold numbers in the table denote the best performances under certain quantitative metrics.

under SAM, which is a spectral-preserving metric. As regards
the QNR metric, its calculation involves the considerations of
both spectral distortion and spatial distortion. As the Merced
scene may contain relatively less spatial information but
relatively more spectral information, the QNR metric on that
dataset is especially vulnerable to spectral distortion. Therefore,
HSpeNetl tends to achieve high QNR performance on the
Merced dataset. However, considering the experimental results
of all the quantitative quality metrics illustrated in Table V,
our Tree-SNet still achieves overall excellent performance.
Fig. 11(a)—(n) graphically illustrates the pansharpening results
of different methods for the real Merced dataset. The result of
our Tree-SNet achieves better visual performance compared to
the other methods, with less blurring and spectral distortion.

2) Changping dataset: In the reduced-resolution experiment,
the size of the test PAN image is 180 x 180, and the size
of the test HS image is 60 x 60. Fig. 12(a)—(o) shows the
pseudocolor images of all compared pansharpening methods
for reduced-resolution experiment s, and Fig. 13(a)—(0) shows

the error images. Our method exhibits the best performance in
spatial restorations.

In the full-resolution experiment, the original HS and the
connected PAN images are used to yield a real HRHS image.
The size of the test PAN image is 360 x 360, and the size of the
connected HS image is 120 x 120.

Table VI gives the quantitative evaluation results for both
the reduce-resolution experiments and the full-resolution ex-
periments. As shown in this table, our proposed Tree-SNet
achieves the best performance with respect to the five qual-
ity metrics (i.e., CC, rmse, ERGAS, Q2", and QNR). Sim-
ilar to the experimental results on the Merced dataset,
HSpeNetl produces better result under SAM. This may be
also due to that Changping dataset contains relatively less
spatial information but relatively more spectral information.
Fig. 14(a)—(n) gives the visual results of different methods for
full-resolution Changping dataset. The result of our Tree-SNet
exhibits the best visual performance, with least blurring and
spatial distortion.
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(m)

Fig. 11.

(n)

HS pansharpening results for the full-resolution Merced dataset (displayed in RGB). (a) GSA. (b) SFIM. (c) MTF-GLP. (d) GFPCA. (e) BayesSparse.

(f) PNN. (g) DRPNN. (h) HyperPNNI. (i) HSpeNet1. (j) APNN. (k) RHDNet. (1) Tree-SNet. (m) SpaE. (n) SpecE.

E. Ablation Study

In order to further examine the contributions of specific struc-
tures in the proposed Tree-SNet, we conduct ablation studies
on the Pavia University dataset, the Houston University dataset,
the Merced dataset and the Changping dataset. We mainly test
the effectiveness of our Tree-SNet strategy comprising both
spatial enhancement paths and spectral enhancement paths.
In Tables III, IV, V, and VI, the result of removing spectral
enhancement paths and the result of removing spatial enhance-
ment paths are illustrated, where SpaE refers to the situation of
removing spectral enhancement paths, while SpecE denotes the

situation of removing spatial enhancement paths. As observed
from the tables, when the spectral enhancement paths or the
spatial enhancement paths are removed from our Tree-SNet, its
performance drops significantly.

With the removal of the spatial enhancement path or the
spectral enhancement path, the routing nodes in the tree structure
lose the function of dynamic tuning, i.e., the routing nodes are
unable to distribute the data to the paths of different spectral and
spatial processings with adaptive weights. Thus, the adaptively
tuning of the pansharpening is unavailable. In this situation,
individual spatial enhancement or individual spectral enhance-
ment may occur, which leads to spectral/spatial distortion in
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Fig. 12. HS pansharpening results for the reduced-resolution Changping dataset (displayed in RGB). (a) Ground-truth. (b) GSA. (c) SFIM. (d) MTF-GLP.
(e) GFPCA. (f) BayesSparse. (g) PNN. (h) DRPNN. (i) HyperPNNI1. (j) HSpeNetl. (k) APNN. (1) RHDNet. (m) Tree-SNet. (n) SpaE. (o) SpecE.
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Fig. 13.  Error images of different methods on the reduced-resolution Changping dataset. (a) Ground-truth. (b) GSA. (c) SFIM. (d) MTF-GLP. (e) GFPCA.
(f) BayesSparse. (g) PNN. (h) DRPNN. (i) HyperPNNI1. (j) HSpeNetl. (k) APNN. (I) RHDNet. (m) Tree-SNet. (n) SpaE. (o) SpecE.
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Fig. 14.

HS pansharpening results for the full-resolution Changping dataset (displayed in RGB). (a) GSA. (b) SFIM. (c) MTF-GLP. (d) GFPCA. (e) BayesSparse.

(f) PNN. (g) DRPNN. (h) HyperPNNI. (i) HSpeNetl. (j) APNN. (k) RHDNet. (1) Tree-SNet. (m) SpaE. (n) SpecE.

the pansharpening result. Therefore, this experiment indicates
the validity of the structure of Tree-SNet which is composed of
both spatial enhancement paths and spectral enhancement paths.

IV. CONCLUSION

In this article, we develop an innovative Tree-SNet method to
deal with the nonstationary spatial-spectral coupling in HS pan-
sharpening. Our design introduces a hierarchical tree structure
to guide the pansharpening CNN to fulfill the spatial-spectral
adaptiveness. In the tree structure-guided neural network, rout-
ing nodes are employed to automatically tune the data delivered

to tree paths according to the local data characteristic; whereas
SpatE modules and SpecE modules are dynamically run in tree
paths to further reinforce the adaptive spatial-spectral process-
ing. Our method achieves remarkable performance in tackling
the HS pansharpening task.
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