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Pansharpening via Multiscale Embedding and
Dual Attention Transformers
Wensheng Fan , Fan Liu , Member, IEEE, and Jingzhi Li

Abstract—Pansharpening is a fundamental and crucial image
processing task for many remote sensing applications, which gen-
erates a high-resolution multispectral image by fusing a low-
resolution multispectral image and a high-resolution panchromatic
image. Recently, vision transformers have been introduced into
the pansharpening task for utilizing global contextual informa-
tion. However, long-range and local dependencies modeling and
multiscale feature learning are all essential to the pansharpening
task. Learning and exploiting these various information raises a
big challenge and limits the performance and efficiency of ex-
isting pansharpening methods. To solve this issue, we propose
a pansharpening network based on multiscale embedding and
dual attention transformers (MDPNet). Specifically, a multiscale
embedding block is proposed to embed multiscale information of
the images into vectors. Thus, transformers only need to process a
multispectral embedding sequence and a panchromatic embedding
sequence to efficiently use multiscale information. Furthermore,
an additive hybrid attention transformer is proposed to fuse the
embedding sequences in an additive injection manner. Finally, a
channel self-attention transformer is proposed to utilize channel
correlations for high-quality detail generation. Experiments over
QuickBird and WorldView-3 datasets demonstrate the proposed
MDPNet outperforms state-of-the-art methods visually and quan-
titatively with low running time. Ablation studies further verify the
effectiveness of the proposed multiscale embedding and transform-
ers in pansharpening.

Index Terms—Attention mechanism, image fusion, multiscale
embedding, pansharpening, remote sensing, vision transformer
(ViT).

I. INTRODUCTION

MULTISPECTRAL (MS) images are widely used for
various remote sensing applications such as land cover

classification [1], environmental change detection [2], [3], and
agriculture monitoring [4]. Due to physical constraints, there is a
tradeoff between spatial and spectral resolutions during satellite
imaging. The satellite can only provide low-spatial-resolution
(LR) MS images and corresponding high-spatial-resolution
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(HR) PAN images [5]. To obtain HRMS images, image pro-
cessing is needed. Image processing applies procedures to an
image to enhance it or derive valuable information from it [6].
As a remote sensing image processing technique, pansharpening
sharpens LRMS images using their corresponding PAN images
to produce HRMS images. Therefore, pansharpening can im-
prove the performance of remote sensing applications such as
land-use classification [7].

In the past several decades, many pansharpening algorithms
have been developed. They can be roughly grouped into four
main categories: component substitution (CS), multiresolution
analysis (MRA), variational optimization (VO), and deep learn-
ing (DL) [8], [9], [10]. The first three classes are traditional
algorithms that emerged decades ago. The DL-based methods
have arisen recently and achieved promising outcomes.

CS-based algorithms usually transform the up-sampled MS
image into another space to separate out its spatial component,
and then, replace it with the PAN image to enrich spatial details.
Well-known CS algorithms include those exploiting intensity-
hue-saturation (IHS) transform [11], Gram–Schmidt (GS) trans-
form [12], and band-dependent spatial detail (BDSD) [13].
MRA-based methods typically use multiscale decomposition
or high-pass filtering to extract spatial details from the PAN
image and obtain the HRMS image via detail injection. Rep-
resentative MRA approaches include additive wavelet lumi-
nance (AWL) [14], smoothing filter-based intensity modulation
(SFIM) [15], and generalized Laplacian pyramids with modula-
tion transfer function (MTF-GLP) [16]. VO-based approaches
build a model with suitable regularization terms based on certain
priors or assumptions and utilize an effective algorithm to opti-
mize the model. Typical VO-based methods include Bayesian-
based fusion methods [17], [18], sparse representation-based
detail injection [19], and total variation (TV) [20]. There are
also hybrid methods that combine different kinds of traditional
approaches and even combine them with DL techniques to
complement each other [21], [22], [23].

DL techniques are also widely applied to the remote sensing
field and have shown great potential continuously no matter in
specific tasks such as cross-city semantic segmentation [24]
or in universal foundation model development [25]. As for
the pansharpening task, inspired by the image super-resolution
method based on convolutional neural network (CNN) [26],
Masi et al. [27] proposed an efficient three-layer CNN for pan-
sharpening (PNN), which produced promising outcomes in the
pansharpening task. Introducing more domain knowledge, Yang
et al. [28] proposed PanNet, which learns the spatial details to be
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injected into the MS image in the high-pass filtering domain via
residual learning [29], which successfully protects both spatial
and spectral information in the deep network. Based on the
observation that the scale of features varies among different
ground objects, Yuan et al. [30] proposed a multiscale and mul-
tidepth CNN (MSDCNN) and achieved superior pansharpening
performance. The exploration and utilization of multiscale fea-
tures have since become a key concern in developing DL-based
methods. To enhance the fidelity of pan-sharpened images,
generative adversarial network techniques are applied to the pan-
sharpening task [31], [32], [33]. These methods typically design
one or several discriminators to judge the fidelity of pansharp-
ening outcomes. On the other hand, to model the long-range
dependencies in the images, the transformer techniques [34],
[35] are recently applied to the pansharpening task [36]. Zhou
et al. [37] designed a customized transformer for pansharpen-
ing, which enhances the spatial details of the pan-sharpened
image via both hard-attention and soft-attention mechanisms.
DR-NET [38] inserts Swin transformer [39] blocks into a hier-
archical u-shaped architecture to combine the transformer with
a typical multiscale pansharpening scheme, which reduces the
detail loss in the down-sampling process. To mutually rein-
force spatial and spectral features, Zhang et al. [40] propose a
cross-interaction kernel attention network for the improvement
of dynamic convolution-based pansharpening.

The aforementioned methods are designed by following
observations. On the one hand, remote sensing images contain a
large number of repetitive ground objects. Ground objects with
similar spatial and spectral information can be close or far apart.
On the other hand, ground objects in remote sensing images are
in many sizes. Thus, there are several potential drawbacks in
transformer-based methods regarding the following aspects.

1) Long-range and local dependencies modeling and mul-
tiscale feature learning are all essential to pansharpen-
ing. It is difficult for transformer-based method to fully
and efficiently exploit these various information, which
may cause performance limitation and high computational
complexity.

2) The traditional self-attention transformers can only play
the role of long-range feature extraction. They have little
to do with feature fusion. This prevents transformer from
modeling the dependencies between the original LRMS
image and the fusion product and is unfavorable to gener-
ating details complement to the LRMS image.

3) The dependencies along spatial and channel dimensions
are not fully utilized in existing transformer-based meth-
ods. Correlations among both dimensions are crucial to the
spatial and spectral quality of pansharpening outcomes.

To solve these problems, we propose a pansharpening network
based on multiscale embedding and dual attention transformers
(MDPNet) is proposed in this article. Specifically, a multiscale
embedding block is proposed to embed the multiscale infor-
mation of the LRMS and PAN images into two sequences of
vectors. Thus, only processing this pair of multiscale embed-
ding sequences is enough to efficiently realize the utilization
of multiscale features. To fuse the two sequences, a feature
fusion module based on the additive hybrid attention transformer

(AHAT) is proposed considering the long-range dependencies in
the spatial dimension. Finally, a detail generation module based
on channel self-attention transformer (CSAT) is proposed to
generate details for detail injection considering the correlations
among feature channels. Experiments over datasets collected by
QuickBird (QB) and WorldView-3 (WV3) satellites demonstrate
that our MDPNet outperforms state-of-the-art methods, and has
lower running time than other transformer-based approaches.
The main contributions of this article are as follows.

1) We propose a multiscale embedding block to embed the
multiscale information of the LRMS and PAN images
into two sequences of embedding vectors. Then, the trans-
former only needs to process these two sequences without
any down-sampling operations and separate treatments for
efficiency.

2) A feature fusion module based on the AHAT is proposed to
fuse the LRMS and PAN embedding sequences. Consid-
ering domain-specific knowledge, we use additive spatial
information injection in the AHAT to transfer the texture
and structure features from the PAN embedding sequence
to the LRMS one.

3) A detail generation module based on the CSAT is proposed
to generate details considering the correlations among
feature channels. The module enhances the fused feature
maps via interaction along the channel dimension, and
thus improves the quality of resulting details.

The rest of this article is organized as follows. Section II re-
views related works. Section III elaborates the proposed method.
Section IV analyses the experimental results. Finally, Section V
concludes this article.

II. RELATED WORK

A. Additive Detail Injection-Based Methods

Additive detail injection is a unified framework for traditional
CS-based and MRA-based pansharpening methods [41]. CS
approaches typically use linear transformations and only sub-
stitute the spatial component. Thus, the transformation and
substitution process can be recast into an additive detail injection
model as follows [42]:

Hk = L̃k +Gk · (P− IL) (1)

where Hk denotes the kth band of the desired HRMS image.
L̃ ∈ RH×W×B is the interpolated LRMS image at the PAN
scale, where W and H are the width and height of the PAN
image. B is the number of MS bands. Gk denotes the injection
gain matrix. P ∈ RH×W×1 is the PAN image. IL is the intensity
component of L̃. The calculation approaches of IL and Gk dis-
tinguish different CS-based methods. The GSA [43] algorithm
determines the optimal weights to obtain IL via multivariate
regression at the reduced resolution. The BDSD [13] calculates
IL for each MS band separately with different weights.

MRA-based methods typically rely on an iterative decompo-
sition process to obtain the low-pass PAN image PL [9]. And
the difference between P and PL is the detail to be added to L̃.
The general additive detail injection model for MRA approaches
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can be formulated as

Hk = L̃k +Gk · (P−PL) . (2)

The ways to computePL andGk are the main differences among
MRA-based methods. AWL [14] method uses shift-invariant “à
trous” wavelet decomposition to extract the PAN details and
adds them to the intensity component of L̃. MTF-GLP [16] uses
Gaussian filters that match the MS sensor’s MTF to extract PL,
which makes the obtained detail just complement L̃.

The additive detail injection model has also inspired many
DL-based methods and gives them an explicit physical interpre-
tation. Detail injection-based CNN (DiCNN) [44] learns details
in an end-to-end manner, and thus, they can be directly added
to L̃ to avoid separately predicting Gk and PL. FusionNet [45]
uses the difference between the duplicated PAN image and L̃ as
the network input to avoid the calculation of IL or PL, and
thus, overcomes the limitations of traditional CS and MRA
schemes. In remote sensing, addition is also a popular strategy
to fuse distinctive image representations extracted by different
networks. For example, Hong et al. [46] fuse the features ex-
tracted by miniGCNs and CNNs via additive strategy to improve
hyperspectral image classification performance.

B. Multiscale Deep Neural Networks for Pansharpening

Multiscale information contained in the LRMS and PAN
images has proven to be quite useful in the pansharpening
task. MSDCNN [30] extracts such information using parallel
convolutional layers of different kernel sizes, which comple-
ments a fundamental serial CNN and significantly improves
its performance. In addition to using convolutional kernels of
different sizes, image pyramids can also be used to introduce
the multiscale property into DL methods. Laplacian pyramid
pansharpening petwork (LPPN) [47] applies pyramidal decom-
position to both PAN and LRMS images. Then, multiple sub-
networks are utilized to process the pyramid layers separately,
which facilitates the full use of multiscale information.

C. Vision Transformers (ViTs) for Pansharpening

The ViT [35] partitions an image into patches and embeds
them into a sequence of vectors. Thus, the long-range depen-
dencies among patches can be modeled by transformer blocks
via attention mechanisms. With the success of the ViT in image
recognition tasks, many attempts have been made to apply
ViT to high-resolution image processing [39], [48]. In remote
sensing, a group-wise spectral embedding approach is proposed
in SpectralFormer [49] to focus on the spectral characteristics for
accurate hyperspectral image classification. This demonstrates
that a flexible embedding strategy can deeply affect the function
of transformers.

In the pansharpening field, ViTs have also achieved promising
outcomes. Zhou et al. [37] proposed a customized transformer
for pansharpening and put it into a detail injection-based frame-
work to extract long-range features. HyperTransformer [50]
captures multiscale long-range features by using transformer
blocks at different scales of a backbone network. DR-NET [38]

incorporates transformer blocks in the encoder of a Unet-like
CNN [51] to reduce the loss of details during down sampling.

In this article, the proposed method avoids down sampling to
improve spatial detail preservation and efficiency. The utiliza-
tion of multiscale information is carried out by the embedding
process. Furthermore, similarities in both spatial and channel
dimensions are captured by the proposed AHAT and CSAT
blocks to generate high-quality details for detail injection.

III. METHODOLOGY

A. Overall Network Architecture

The overall architecture of the proposed MDPNet is depicted
in Fig. 1, which consists of two multiscale embedding blocks,
a feature fusion module based on the AHAT and a detail gen-
eration module based on the CSAT. L̃ and P are embedded
into multiscale embedding sequences E0

L and EP through two
multiscale embedding blocks, respectively. The embedding se-
quences are fused via two stacked AHAT blocks, one with a
regular window partitioning strategy (W-AHAT) and the other
with a shifted window partitioning strategy (SW-AHAT) [39].
Long-range features along the spatial dimension are captured
through these two blocks. The two stacked AHAT blocks output
fused vector sequence E2

L as follows:

E2
L = SW-AHAT

(
W-AHAT

(
E0

L,EP

)
,EP

)
. (3)

Subsequently, the fused sequenceE2
L is reshaped back to feature

maps F and fed into the CSAT-based detail generation module
to produce residual details D ∈ RH×W×B . The HRMS image
H ∈ RH×W×B is obtained by adding D to L̃ following the
widely used detail injection framework. The detail generation
and injection process can be summarized as follows:

H = L̃+CSAT (F) . (4)

The specific structures of the multiscale embedding block, the
AHAT-based feature fusion module, and the CSAT-based detail
generation module will be elaborated in the following.

B. Multiscale Embedding Block

As shown in Fig. 2, for each pixel in the input image, the
multiscale embedding module split out s different sizes of
patches centered on the pixel and flattens them into vectors.
It is noteworthy that the 1×1 pixel itself is also retained as a
vector to preserve details at the finest scale. All the vectors are
projected to l-dimensional embedding vectors via corresponding
linear layers, respectively. Then, these embedding vectors are
concatenated to form an sl-dimensional multiscale embedding
vector, which represents the multiscale information around the
pixel. Finally, The multiscale embedding vectors for all the
pixels in L̃ andP comprise the multiscale embedding sequences
E0

L ∈ RHW×sl andEP ∈ RHW×sl, respectively. Both the high-
resolution property and multiscale information of L̃ and P
are maintained in the two sequences for long-range feature
extracting and merging.
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Fig. 1. Architecture of the proposed MDPNet. ↑ 4 denotes up sampling the LRMS image by a factor of 4 using bicubic interpolation.

Fig. 2. Schematic diagram of the multiscale embedding block.

C. AHAT-Based Feature Fusion Module

The vanilla transformer block [34] consists of a self-attention
mechanism and a feed-forward network. The self-attention
mechanism can capture self-similarity and extract long-range
features from an embedding sequence. However, in the pan-
sharpening task, there are LRMS and PAN embedding sequences
that need long-range feature extraction and fusion. Besides, in
the additive detail injection framework, both spectral and spatial
information in L̃ and P are useful for detail generation since the
details have a spectral dimension, which has already been proven
in [45]. This inspires us to design a hybrid attention mechanism
that can extract useful spectral and spatial features related to the
up-sampled LRMS image L̃ to prepare for generating comple-
mentary details.

Thus, in the proposed additive hybrid attention (AHA), the
LRMS multiscale embedding sequence Ei

L (E0
L for W-AHAT,

E1
L for SW-AHAT) is linearly projected to the query matrix Q.

Both Ei
L and EP should serve as keys and values to extract

spectral and spatial information related to Q. In the vanilla

Fig. 3. Structure of the (S)W-AHAT blocks. The W-AHAT block uses regular
window partitioning and merging. The SW-AHAT block uses shifted window
partitioning and merging [39].

ViT [35], the positional information of the image patches is
embedded in a position embedding sequence and added to the
patch embedding sequence. Similarly, the information of PAN
patches, i.e., EP, is linearly transformed to PAN keys KP and
PAN valuesVP, and they are separately added to the LRMS keys
KL and LRMS values VL for the injection of PAN information,
as shown in Fig. 3. It is noteworthy that EP mainly contains
spatial information and Ei

L is rich of spectral information. Thus,
the linear layers that transform them into keys and values have
different weights. The calculation of the proposed AHA can be
summarized as follows:

AHA(Q,KL,VL,KP,VP)

= softmax

(
Q (KL +KP)

T

√
d

)
(VL +VP) (5)

where d is the dimension of query vectors in Q.
The goal of the AHA is to extract long-range fused features

from Ei
L and EP. However, the local fine-grained detail features
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Fig. 4. Structure of the CSAT block.

are also vital to the pansharpening task. The convolution layer
is naturally good at local reception. Thus, a convolutional detail
enhancement short cut (DESC) is designed to add local detail
features. Specifically, EP is reshaped back to feature maps and
propagated to the DESC. It has a 3×3 depth-wise convolution
layer between two point-wise convolution layers, which can save
parameters and makes it lightweight [52]. The output of the
DESC is flattened to a vector sequence and added to the output of
AHA. Finally, the output of the AHAT Ei+1

L is obtained through
a standard multilayer perceptron (MLP).

In addition, the computation complexity of the attention is
quadratic to the length of embedding sequences, i.e., HW . To
reduce the computational burden, the shifted window partition-
ing approach in [39] is employed. Specifically, in the W-AHAT
block, regular window partitioning and merging configurations
are used. In the SW-AHAT block, the window partitioning
and merging configurations are shifted half the window size
of the W-AHAT. The rest of the two blocks are exactly the
same.

D. CSAT-Based Detail Generation Module

The AHAT-based feature fusion module only captures
the dependencies along the spatial dimension. However, the
correlations along the channel dimension are not captured,
which will affect the generation of details D. Thus, we pro-
pose a channel self-attention (CSA) in our detail generation
module.

Before input to the CSA, E2
L is reshaped to feature maps

F ∈ RH×W×sl and preconvoluted via a 1×1 convolution. The
CSA learns residuals to enhance the preconvoluted feature maps
FP. Specifically, as shown in Fig. 4, three 3×3 convolution
layers with a stride of 2 are used to squeeze the information
of FP into smaller feature maps. Then, each channel of the
squeezed feature maps is flattened to a vector, which is a channel
descriptor containing the global information of the channel. The
channel descriptors are linearly projected to queries and keys.
Each channel ofFP is directly flattened to a value to avoid spatial
information loss in squeezing and projecting. Subsequently,
through dot-product attention, the self-similarity among FP

channels is captured and the residuals are obtained by a 3×3
convolution layer to enhance FP. Finally, the details D are
generated from the enhanced FP via a 1×1 convolution layer.

IV. EXPERIMENTAL RESULTS

A. Datasets

The experiments are conducted on two datasets collected by
QB and WV3 satellites. The QB data have four MS bands, while
the WV3 data have eight MS bands. Since the real HRMS images
are unavailable, we follow Wald’s protocol [53] to spatially
degrade the LRMS and PAN images by a factor of 4 (the spatial-
resolution ratio between them), and the original LRMS image
can be used as the reference image for supervised learning and
reduced-resolution evaluation. We also perform full-resolution
evaluation with the original LRMS and PAN images, but there
are no reference images for assessment.

All the reduced-resolution and full-resolution images are
randomly cropped into LRMS patches with a size of 32×32
and PAN patches with a size of 128×128. We crop the images
from the top left to the bottom right with a fixed stride that is
greater than the patch size. As a result, 11 216 QB and 11 160
WV3 reduced-resolution patch pairs are extracted. To generate
the training, validation and reduced-resolution testing sets, the
QB and WV3 patch pairs are divided into 8974/1121/1121 and
8928/1116/1116 patch pairs in a ratio of 8:1:1, respectively. For
full-resolution testing, we also crop 1121 QB and 1116 WV3
full-resolution patch pairs.

B. Implementation Details

The proposed method is implemented using the PyTorch
framework and trained with an NVIDIA GeForce RTX 3090
GPU. Our model is trained for 500 epochs by optimizing the �1
loss between the fused image and the reference image. To im-
plement the optimization, we employ an AdamW [54] optimizer
with an initial learning rate of 0.0005, a momentum of 0.9, β1

= 0.9, β2 = 0.999, and a weight decay coefficient of 0.05. The
minibatch size is set to 16.

Considering the tradeoff between computational complexity
and performance, the number of scales is set to s = 5 and the
embedding dimension of each scale is set to l = 12 by default.
Thus, in the AHAT blocks, the dimension of embedding vectors,
queries, keys, and values is sl = 60. The window size in the
shifted window partitioning approach of the AHAT blocks is
set to 8. Since the dimension of embedding vectors sl = 60 is
relatively low, the number of heads of the AHA is set to 2. In
the CSAT, the channel number of feature maps is also set to 60.

C. Compared Methods and Quantitative Metrics

The MDPNet is compared with nine representative methods,
including two CS algorithms: GSA [43], BDSD [13]; one MRA
method: MTF-GLP-FS [55]; one VO-based method: TV [20],
three CNN-based methods: PNN [27], MSDCNN [30], and
PanCSC-Net [56]; and two transformer-based methods: Zhou
et al. [37] and DR-NET [38].

Five widely used metrics are adopted for the quantitative
assessment of the methods. The metrics can be grouped into
four full-reference indicators and one no-reference indicator
according to whether they require a reference HRMS im-
age in their calculations. For reduced-resolution assessment,
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Fig. 5. Visual results on the QB reduced-resolution testing set. (a) Degraded LRMS image. (b) Degraded PAN image. (c) Reference image. (d) GSA. (e) BDSD.
(f) MTF-GLP-FS. (g) TV. (h) PNN. (i) MSDCNN. (j) PanCSC-Net. (k) Zhou et al. [37] (l) DR-NET. (m) MDPNet.

Fig. 6. Residual maps between the results and the reference in Fig. 5. (a) GSA. (b) BDSD. (c) MTF-GLP-FS. (d) TV. (e) PNN. (f) MSDCNN. (g) PanCSC-Net.
(h) Zhou et al. [37] (i) DR-NET. (j) MDPNet.

we measure the four full-reference indexes including spectral
angle mapper (SAM) [57], Erreur Relative Globale Adimension-
nelle de Synthese (ERGAS) [58], spatial correlation coefficient
(sCC) [59], and the Q2n [60], [61] index (i.e., Q4 for four-band
data and Q8 for eight-band data). ERGAS and Q2n evaluate the
overall quality of pansharpening results, SAM estimates spectral
distortions, and sCC measures the quality of spatial details. For
full-resolution assessment, we employ the no-reference index
hybrid quality with no reference (HQNR) [62] with its spectral
distortion component Dλ and spatial distortion component DS

to measure the pansharpening quality in the absence of the
reference HRMS image.

D. Reduced Resolution Assessment

Fig. 5 shows the visual results of the compared algorithms
on a QB reduced-resolution testing patch pair. The red box
area is enlarged in the corner of the image to provide clearer
visual comparison. To highlight the differences, residual maps
between the pansharpening results and the reference image are
visualized in Fig. 6. A pixel with a small mean absolute error
(MAE) is shown in blue and a pixel with a big MAE is displayed
in yellow. From the red buildings in the enlarged view, it can be
observed that the results of GSA and MTF-GLP-FS are lighter
in color than the reference image. In the results of BDSD and
TV, the red buildings appear a little redder and a little pinker,
respectively. The fusion image of the PNN shows an apparent

yellow tint. In the result of the MSDCNN, the reflection of the
sun on the red rooftop is missing and slight blurring effects
appear on the building edges. For the outcomes of PanCSC-Net,
Zhou et al. [37] and DR-NET, the color of the little red building
in the enlarged view is lighter than that of the reference image.
According to the enlarged view in the residual maps, it can also
be found that the residuals of PanCSC-Net, DR-NET, and Zhou
et al. [37] are larger than those of the proposed MDPNet. These
findings prove that our method possesses a better visual effect
and fewer errors than the compared methods.

Fig. 7 displays the visual results of the compared methods
on a WV3 reduced-resolution testing patch pair. Fig. 8 shows
the corresponding residual maps. In the enlarged view of GSA,
BDSD, and MTF-GLP-FS fusion results, the color of the rooftop
is apparently whiter than that in the reference image, which
is an obvious spectral distortion. Also suffering from evident
spectral distortion, the rooftop in the enlarged view of the TV
result appears darker in color than that in the reference image.
According to the enlarged view in the residual maps, it can be
found that the residual maps of PNN and MSDCNN have larger
yellow areas than the transformer-based methods. In the result
of PanCSC-Net, the color near building borders is lighter than
the reference image. Among the transformer-based approaches,
the residual maps of Zhou et al. [37] and DR-NET have more
yellow points with a large MAE than the proposed MDPNet in
the enlarged view, which demonstrates that our method achieves
more accurate prediction.
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Fig. 7. Visual results on the WV3 reduced-resolution testing set. (a) Degraded LRMS image. (b) Degraded PAN image. (c) Reference image. (d) GSA. (e) BDSD.
(f) MTF-GLP-FS. (g) TV. (h) PNN. (i) MSDCNN. (j) PanCSC-Net. (k) Zhou et al. [37] (l) DR-NET. (m) MDPNet.

Fig. 8. Residual maps between the results and the reference in Fig. 7. (a) GSA. (b) BDSD. (c) MTF-GLP-FS. (d) TV. (e) PNN. (f) MSDCNN. (g) PanCSC-Net.
(h) Zhou et al. [37] (i) DR-NET. (j) MDPNet.

TABLE I
AVERAGE VALUES AND STANDARD DEVIATIONS (STD) OF THE QUANTITATIVE COMPARISON ON 1121 QB REDUCED-RESOLUTION TESTING PATCHES

Table I lists the quantitative assessment results of all the com-
pared methods across the 1121 pairs of QB reduced-resolution
testing patches, including the mean value and standard deviation
(STD) on each evaluation index. The best result of each index
is shown in boldface, and the second-best result is underlined.
From the full-reference indicators, it can be found that the
traditional methods generally fall behind the DL-based methods
over the QB reduced-resolution data. Among the DL-based
methods, using deep multiscale features, the MSDCNN yields
much better quantitative results than the simple three-layer PNN.
PanCSC-Net shows better performance than PNN and MSD-
CNN, but is slightly inferior to Zhou et al. [37] and DR-NET. The
transformer-based Zhou et al. [37] and DR-NET slightly surpass
the CNN-based methods on all the metrics, while the proposed
MDPNet achieves better quantitative results than the compared

transformer-based approaches on the QB reduced-resolution
testing data.

Table II reports the quantitative assessment results of all the
compared methods across the 1116 pairs of WV3 reduced-
resolution testing patches. Compared to the QB data with
four MS bands, the WV3 data contain eight MS bands and
are more challenging, especially in spectral preservation. For
the spectral distortion indicator SAM, the DL-based methods
yield obviously better values than the traditional algorithms.
On the other metrics, the DL-based approaches also show
superior performance. The CNN-based PNN and MSDCNN
have close quantitative results in terms of all the indicators
on the WV3 reduced-resolution testing data, and MSDCNN is
slightly better. PanCSC-Net surpasses the classical CNN-based
methods PNN and MSDCNN, and yields results close to Zhou
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TABLE II
AVERAGE VALUES AND STD OF THE QUANTITATIVE COMPARISON ON 1116 WV3 REDUCED-RESOLUTION TESTING PATCHES

Fig. 9. Visual results on the QB full-resolution testing set. (a) LRMS image. (b) PAN image. (c) GSA. (d) BDSD. (e) MTF-GLP-FS. (f) TV. (g) PNN.
(h) MSDCNN. (i) PanCSC-Net. (j) Zhou et al. [37] (k) DR-NET. (l) MDPNet.

et al. [37] and DR-NET. The transformer-based methods slightly
outperform PanCSC-Net on the WV3 reduced-resolution test-
ing data. The proposed MDPNet yields slightly better quan-
titative results than Zhou et al. [37] and DR-NET on all the
metrics.

E. Full-Resolution Assessment

Fig. 9 shows the visual results of the compared approaches on
a QB full-resolution testing patch pair. It can be observed that
the red rooftop in the enlarged view of the GSA fusion result is
obviously lighter in color. The edges of the red rooftop in the
fusion image of the BDSD are oversaturated. The outcome of
MTF-GLP-FS suffers from both lighter colors and oversaturated
edges. In the enlarged view of the TV fusion result, obvious
color artifacts can be found on the rooftops. The red rooftop
in the result of the PNN has a yellowish hue, and that in the
result of the MSDCNN suffers from blurring effects. The shadow
over the red rooftop in the result of PanCSC-Net is so dark that
it looks unnatural. In the outcome of Zhou et al. [37] the red
rooftops present slight color distortion and artifacts. The result
of DR-NET has an oversaturation problem on the edges of the
rooftop. By comparison, it can be found that the fusion result

of the proposed MDPNet presents the best spatial and spectral
fidelity.

Fig. 10 displays the visual results of the compared approaches
on a WV3 full-resolution testing patch pair. Through the en-
larged view, it can be observed that the building in the fusion
results of GSA, MTF-GLP-FS, and MSDCNN has a lighter
color, while that in the fusion image of BDSD is too dark.
The fusion results of TV, PanCSC-Net and DR-NET suffer from
some color artifacts. In the enlarged view of the fusion results
of the PNN and Zhou et al. [37] a small number of pixels with
abnormal colors also appear on the rooftop. The fusion image
of the proposed MDPNet has clear spatial details and higher
spectral fidelity.

Table III lists the quantitative results across the 1121 pairs
of QB full-resolution testing patches. The GSA and TV have
a higher spatial distortion index DS and a higher spectral dis-
tortion index Dλ, respectively. The BDSD shows a balance on
the metrics, and MTF-GLP-FS yields a much better Dλ value
than other traditional methods. On the whole, the traditional
methods fall behind the DL-based methods. The MSDCNN
performs much better on the spectral index Dλ than the PNN.
The transformer-based Zhou et al. [37] and DR-NET slightly
outperform the CNN-based methods on all the metrics and Zhou
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Fig. 10. Visual results on the WV3 full-resolution testing set. (a) LRMS image. (b) PAN image. (c) GSA. (d) BDSD. (e) MTF-GLP-FS. (f) TV. (g) PNN.
(h) MSDCNN. (i) PanCSC-Net. (j) Zhou et al. [37] (k) DR-NET. (l) MDPNet.

TABLE III
AVERAGE VALUES AND STD OF THE QUANTITATIVE COMPARISON ON 1121 QB

FULL-RESOLUTION TESTING PATCHES

TABLE IV
AVERAGE VALUES AND STD OF THE QUANTITATIVE COMPARISON ON 1116

WV3 FULL-RESOLUTION TESTING PATCHES

et al. [37] performs better than DR-NET. Although PanCSC-Net
is inferior to the transformer-based methods on the reduced-
resolution data, it shows better results on the full-resolution QB
data. The proposed MDPNet achieves even better quantitative
results than PanCSC-Net on all three metrics.

Table IV reports the quantitative results across the 1116 pairs
of WV3 full-resolution testing patches. From the no-reference
indicators, it can be found that GSA has unsatisfactory overall

fusion quality. BDSD performs poorly on the Dλ index. MTF-
GLP-FS and TV have much better quantitative results than other
traditional methods and even surpass the CNN-based methods.
The Dλ values of PNN and MSDCNN are relatively poor.
The transformer-based Zhou et al. [37] yields the second-best
spatial distortion index DS and is slightly superior to DR-NET.
PanCSC-Net performs satisfactorily on Dλ and DS indexes, and
has the second-best HQNR value. The proposed MDPNet yields
the second-best Dλ value, while its DS and HQNR values are
better than all the compared methods.

F. Ablation Study

Since the multiscale embedding blocks, AHAT-based feature
fusion module and CSAT-based detail generation module are the
core of the proposed MDPNet, a series of ablation experiments
are conducted to verify their effectiveness. The results of the
ablation experiments will be presented and analyzed in the
following.

1) Multiscale Embedding Blocks: The multiscale embedding
block embeds s = 5 different sizes of image patches centered
on each pixel into a multiscale embedding vector. To test the
effect of each scale and the total number of scales s, a variety of
module settings are tested under the condition that the dimension
of a multiscale embedding vector is kept as sl = 60 for the
fairness of comparison. Specific module settings are reported in
Table V. MDPNet represents the full proposed method. To study
the effect of only using the information at one scale, model
variants with suffixes o1–o5 are tested. To study the effect of
scale number s, model variants with suffixes s4–s2 reduce one
scale per step. Note that MDPNet-o1 is equivalent to MDPNet-
s1, and the proposed MDPNet is equivalent to MDPNet-s5.

Table VI reports the quantitative evaluation results corre-
sponding to the experimental settings in Table V. The SAM,
ERGAS, sCC, and Q4 indexes are measured on 1121 QB
reduced-resolution testing patch pairs. The Dλ, DS, and HQNR
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TABLE V
EXPERIMENTAL SETTINGS ON THE ABLATION STUDY OF THE MULTISCALE

EMBEDDING BLOCKS

TABLE VI
AVERAGE ABLATION STUDY RESULTS OF THE MULTISCALE EMBEDDING

BLOCKS ON THE 1121 QB REDUCED-RESOLUTION AND 1121 QB
FULL-RESOLUTION TESTING PATCHES

indexes are measured on 1121 QB full-resolution testing patch
pairs. From MDPNet-o1 to MDPNet-o5, the fusion performance
on the reduced-resolution data improves slightly in general
as the size of the embedded patch grows larger (i.e., scale
is increased). But the performance on the full-resolution data
fluctuates greatly. This indicates that adopting a larger embedded
patch size makes the embedding vector contain more useful in-
formation in the reduced-resolution case, while the single-scale
embedding tends to be less robust on the full-resolution data.
As for the influence of the number of scales s, compared with
MDPNet-o1, MDPNet-s2 adds the embedding of 3×3 patches,
and the performance is significantly improved at both reduced
and full resolutions. From MDPNet-s2 to MDPNet-s4, the fusion
effect is constantly promoted on the reduced-resolution data as
the embedding of larger patches is added, and the increments are
larger than those from MDPNet-o1 to MDPNet-o5. The results
of MDPNet-s2 are slightly inferior to those of ACPMT-o5.
However, the fusion results of MDPNet-s3, MDPNet-s4, and
MDPNet are far superior to those of MDPNet-o5, which indi-
cates that the performance enhancement brought by multiscale
information is far greater than that by only increasing a single
scale. On the full-resolution data, MDPNet-s2 to MDPNet-s4
show smaller performance fluctuations. Furthermore, the gen-
eral performance of MDPNet-s2 to MDPNet-s4 is slightly better
than that of MDPNet-o1 to MDPNet-o5. The proposed MDPNet
uses five scales to obtain the best fusion results, which proves the
superiority of the proposed multiscale embedding blocks over
standard single-scale patch embedding.

2) AHAT-Based Feature Fusion Module: To verify the ef-
fectiveness of the AHAT-based feature fusion module, a series
of model variants are designed and tested. Fig. 11 shows the

TABLE VII
AVERAGE ABLATION STUDY RESULTS OF THE FEATURE FUSION AND DETAIL

GENERATION MODULES ON THE 1121 QB REDUCED-RESOLUTION AND 1121
QB FULL-RESOLUTION TESTING PATCHES

structural changes that we made in the model variants. As
shown in Fig. 11(a), the model w/o AHAT removes the entire
AHAT-based feature fusion module and directly adds EP to E0

L

for fusion. Table VII lists the quantitative results of the ablation
experiments for the feature fusion module. Among them, the
results of w/o AHAT are far worse than those of the full MDPNet,
which proves the key role that the AHAT-based feature fusion
module plays in our MDPNet. The AHA and the DESC are
two core operations of the AHAT. As shown in Fig. 11(b), the
variant Self-Attention+DESC (SA+DESC) replaces the AHA
with the standard self-attention to verify the superiority of the
AHA. On the other hand, as shown in Fig. 11(c), the model Only
AHA removes the DESC and retains only the AHA to verify the
effectiveness of the DESC. It can be seen from Table VII that
the performances of SA+DESC and Only AHA are significantly
inferior to the full MDPNet, which confirms the importance of
the AHA and the DESC. Adding PAN keys and values to MS
keys and values apparently improves the fusion performance,
and a CNN-based short cut is also helpful for transformers in
feature fusion.

3) CSAT-Based Detail Generation Module: To validate the
CSAT-based detail generation module, two ablation experiments
are conducted. As shown in Fig. 11(d), the variant w/o CSAT
replaces the entire CSAT-based detail generation module with
a simple 3×3 convolution layer to prove the necessity of the
module. Furthermore, as shown in Fig. 11(e), the variant w/o
CSA verifies the significance of the CSA by removing the
CSA from the detail generation module. Table VII lists the
quantitative results of the ablation experiments. It can be found
that the results of w/o CSA are slightly better than those of w/o
CSAT, which proves the positive effect of the CSAT-based detail
generation module. Besides, the performance of w/o CSAT and
w/o CSA on the reduced-resolution data is significantly inferior
to that of the full MDPNet, but on the full-resolution data, w/o
CSAT and w/o CSA yield remarkable performance close to the
MDPNet, especially on the spectral distortion index Dλ. This
indicates that the CSAT tends to improve the spatial quality of
pansharpening outcomes at full resolution. An underlying cause
may be that the spectral preservation is mainly guaranteed by
the skip connection that inject the details D to the up-sampled
LRMS image L̃, while the CSAT is primarily responsible for
refining the detail of features to generate high-quality D.

G. Computational Efficiency

To further evaluate the computational efficiency and model
complexity of the proposed method, the network parameters
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Fig. 11. Structural change diagrams of the model variants in the ablation study for the feature fusion and detail generation modules. (a) W/o AHAT. (b) SA+DESC.
(c) Only AHA. (d) W/o CSAT. (e) W/o CSA.

TABLE VIII
NUMBER OF PARAMETERS (#PARAM.) AND AVERAGE RUNNING TIME OF

DIFFERENT METHODS ON THE 1121 QB REDUCED-RESOLUTION

TESTING PATCHES

and the average running time of all the compared methods on
the 1121 QB reduced-resolution testing images are measured in
Table VIII. The traditional methods are tested on a 2.6-GHz Intel
Core i7-10750H CPU, while the DL-based methods are tested
on an NVIDIA GeForce RTX 2060 GPU. By comparison, it
can be found that the running time of TV is significantly longer
than those of other methods, while the running times of PNN and
MSDCNN are significantly shorter than those of other DL-based
methods due to their simple network architecture. Compared to
other transformer-based methods, the proposed MDPNet has
a much shorter average running time, which demonstrates the

greater efficiency of our MDPNet. As for the number of pa-
rameters, DR-NET has significantly more parameters than other
methods. This is because the quantity of feature maps throughout
the DR-NET is large, which inevitably leads to a large number
of parameters in the network layers. PanCSC-Net has the fewest
parameters, but its running time is relatively long. Note that
the number of parameters is not directly related to the running
time. There could be a lot of time-consuming operations without
parameters in a DL-based method. Although DR-NET has a
large number of parameters, it shows a relatively short running
time. The number of parameters in our MDPNet is acceptable,
much lower than that of DR-NET but higher than those of
MSDCNN and Zhou et al. [37] Although the proposed MDPNet
has more parameters, its running time is relatively short.

V. CONCLUSION

In this article, we propose a pansharpening network based on
multiscale embedding and dual attention transformers, termed
MDPNet. To avoid the inefficiency caused by directly com-
bining the transformer with the classical multiscale network
architecture, we propose the multiscale embedding block to
embed multiscale information of the images into two embedding
sequences. Then, the transformers only need to process these two
embedding sequences to make full use of multiscale information.
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Moreover, considering domain-specific knowledge, we propose
the AHAT, in which the PAN spatial information is added to
the MS keys and values for long-range feature extraction and
information fusion. Finally, the CSAT is proposed to capture the
correlations along the channel dimension and further enhance
the fused feature maps. Experimental results on QB and WV3
datasets demonstrate that the proposed MDPNet outperforms
the different kinds of pansharpening methods in terms of both
visual effects and quantitative metrics, and its running time is
shorter than the compared transformer-based methods. More-
over, ablation studies verified the effectiveness of the multiscale
embedding block, AHAT, and CSAT.

In the future, we will make efforts to reduce the number of
values and keys in the proposed AHAT while maintaining its
effectiveness on the pansharpening task, which might result in
fewer network parameters and higher efficiency. Moreover, there
is bound to be some redundant information among the multiscale
embedding vectors. Efforts will be made to remove redundancy
within the embedding process.
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