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Abstract—Dwelling information is essential for humanitarian
emergency response during or in the aftermath of disasters, es-
pecially in temporary settlement areas hosting forcibly displaced
people. To map dwellings, the integration of very high-resolution
remotely sensed imagery in computer vision models plays a key role.
However, state-of-the-art deep learning models have two known
downsides: 1) lack of generalization across space and time un-
der changing scenes and object characteristics, and 2) extensive
demand for annotated samples for training and validation. Both
could pose a critical challenge during an emergency. To bypass this
problem, this study deals with unsupervised domain adaptation for
instance segmentation using a single-stage instance segmentation
model, namely segmenting objects by location (SOLO). The goal
is to adapt a SOLO model trained on a labeled source domain to
detect dwellings in an unlabeled target domain. In this context,
we study three domain adaptation techniques based on adversarial
learning, domain discrepancy, and domain alignment mapping. We
also propose domain similarity at different levels to understand its
implication on domain adaptation. Experiments are conducted on
very high-resolution satellite images obtained from four tempo-
rary settlement areas located in different countries and exhibiting
various spatial characteristics. Analysis results show that in most
source–target combinations unsupervised domain adaptation im-
proves the performance by a large margin even surpassing a model
trained with supervised learning. There is also an observed per-
formance deviation among implemented strategies and different
source–target dataset combinations. From the in-depth analysis
of domain similarity at the image, object, and deep feature space
levels, the former is more correlated with unsupervised domain
adaptation performance.

Index Terms—Deep learning, domain similarity, dwelling extrac-
tion, humanitarian response, instance segmentation, unsupervised
domain adaptation.
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I. INTRODUCTION

T EMPORARY settlements and shelters host a significant
number of forcibly displaced people (FDP) worldwide.

Given the need for relevant information to monitor FDP settle-
ment areas and synchronize humanitarian emergency response,
remote sensing technology provides spatially detailed and repet-
itive observations from space. The information obtained from
remotely sensed imagery is traditionally used to map camp
expansion [1], [2] and infrastructure development [3], estimate
resident population [4], [5], or assess environmental situations in
FDP settlements [2], [6] using various classification and rule-set
approaches. Similarly, there are studies dedicated to dwelling
extraction from remotely sensed imagery using object-based
image analysis (OBIA) and rule-set approaches [7], [8], [9],
[10], [11].

When frequent monitoring of a specific settlement is required
or when the geographic setting changes, workflows based on
manual digitization and knowledge-based rule sets using the
OBIA approach were challenged to meet the response time
required to generate relevant information. Coupled with the
availability of very high-resolution (VHR) satellite imagery and
advances in computer vision, deep learning models are paving
the way for the automatic building detection. Leveraging this
development, current instance segmentation models are able to
localize and segment individual object instances from 2D- [12]
and 3D-image scenes [13]. Although these developments re-
sulted in the generation of global building footprint datasets [14],
[15], FDP settlements are still less represented in terms of
geographic coverage and provision of information with detailed
spatio-temporal granularity [16]. As a result, recent promis-
ing works have focused on dwelling extraction in temporary
settlements [17], [18], [19], [20], [21], building extraction in
complex urban settings for humanitarian applications [22], and
FDP settlement densification and spatial dynamic analysis [1].

Despite the proven performance of deep learning models for
classification, segmentation, and detection tasks, they also have
known limitations including their demand for bulk annotated
data for training and validation and lack of generalization
in different data distributions caused by changing scene
and object characteristics [23]. In operational emergency
response scenarios, the generation of training annotations is
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Fig. 1. Visualization of interdomain and intradomain variations of dwelling spectral characteristics. For visual quality, images are scaled to 8-b scaling.

time-consuming and sometimes impractical given the time
pressure for immediate emergency response. In postemergency,
FDP settlements are expanding, and dwelling structures
(shelters, tents, facility buildings, tukuls, etc.) are changing in
terms of size, shape, and spectral characteristics either because of
new establishments, natural morphology, and interventions that
change rooftops or seasonal changes. These temporal variations
are bottlenecks for the temporal transferability of trained
models, requiring the generation of annotations for each image
for frequent monitoring. By the same token, across geography,
such settlements exhibit heterogeneous dwelling structures
and background environments. In this regard, Fig. 1, shows
randomly selected images of different settlements. It highlights
the interspectral and intraspectral variations of dwelling objects

and background environment, which cause disparities in
the corresponding feature space as it will be shown later in
Section II-B. This constrains the universal usage of models
trained in one geography to perform similar tasks in datasets
taken from different geographies without further retraining.

To overcome domain shifts caused by variations in a rural
and urban setting [24], geography, season, sensor characteristics
and sensor geometry, sensing domain, and inconsistencies in
object classes [25], various transfer learning strategies have been
devised. Transfer learning from pretrained models with a large
number of natural images [24], [26], [27], and fine-tuning of
models trained with a large number of source data with a small
labeled target set [28] are notable examples. These strategies
still demand a significant amount of annotated data to retrain the
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model. Even with the availability of some samples, sometimes
a finetuned model fails to effectively perform an intended task
on the target datasets [29]. In circumstances where annotations
do not exist during model training (which is also very common
during emergency response operations), unsupervised domain
adaptation strategies [30] could be viable alternatives. Unsu-
pervised domain adaptation leverages labeled source data to
learn representations enabling a model to undertake an intended
task in the target domain without performance degradation. This
is achieved by a joint training approach where representations
are learned by optimizing a model using a combination of
supervised and unsupervised losses. The model learns both
semantically meaningful features on the main task for source
dataset [31] and domain invariant features both for source and
target datasets [32], [33] so that it can be applied to the target
domain [30], [31].

Using remotely sensed imagery, unsupervised domain adapta-
tion has been applied to (pixel and scene) classification and seg-
mentation tasks. For example, hyperspectral image classifica-
tion [34], [35], change detection [36], [37], cloud detection [38],
land cover and scene classification [39], [40], [41], and target
detection and building extraction [42], [43] are recent notable
examples for the application of unsupervised domain adapta-
tion in Earth observation (EO) datasets. As can be understood
from an in-depth review that reveals advances in unsupervised
domain adaptation with EO imagery [25], [44], despite recent
advances in unsupervised domain adaptation [45] in one way
and instance segmentation in another way [12], [13], the combi-
nation of domain adaptation with instance segmentation for EO
datasets is overlooked. Hence, the main emphasis of this article
is to explore unsupervised domain adaptation approaches for
dwelling extraction from VHR satellite imagery with a focus
on EO-based humanitarian emergency response using a state-
of-the-art single-stage instance segmentation model, namely,
segmenting objects by location (SOLO) [46], [47]. Under this
broader objective, the study has the following contributions.

1) Explored unsupervised domain adaptation for the instance
segmentation to learn across space and time for dwelling
extraction. This study was conducted using six VHR EO
images obtained from four FDP settlement areas.

2) Implemented and adapted three unsupervised domain
adaptation strategies—domain adversarial training of
neural network (DANN), maximum mean discrepancy
(MMD), and optimal transport (OT)—for instance seg-
mentation of dwellings from VHR satellite imagery.

3) Conducted a comprehensive analysis of domain similarity
using images, objects, and deep features, along with its
implications for unsupervised domain adaptation transfer
performance. This analysis will empower practitioners in
operational emergency response settings to select a source
dataset that ensures a positive transfer in the target dataset.
A selected source dataset that has better domain similarity
with the target dataset is expected to yield similar decision
boundaries to the target task [48], facilitating a more
effective transfer of learned representations.

Given these contributions, the rest of this article is organized
as follows. Section II details the methodology, while Section III

describes data and provides implementation details about the
experimental setup. In Section IV, results are presented and Sec-
tion V discusses obtained findings. Finally, Section VI concludes
this article and give brief perspectives for followup work.

II. METHOD

In this section, we present the adopted methodology. We first
provide a detailed description of unsupervised domain adapta-
tion for instance segmentation. Then, we propose three strategies
to compute domain similarity at different levels. Finally, we
detail the evaluation metrics used for domain adaptation perfor-
mance in Section III-C.

A. Unsupervised Domain Adaptation for Instance
Segmentation

As justified in Section I, during an emergency sce-
nario we assume the availability of both a source domain
dataset Ds with a set of image and label pairs as Ds =
{(xs

1, y
s
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s
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n)} and a target domain

dataset Dt that contains a set of unlabeled images Dt =
{xt

1,x
t
2,x

t
3, . . . ,x

t
m}. Each image (xs

i and xt
i) is a 3-D patch in

Rd×h×w, where h, w, and d correspond to the height, width, and
the number of spectral channels in the patch. In this study, each
patch has a size of 3 × 256 × 256. The label ysi represents a set
of instance masks, each of dimension h× w. Each individual
instance mask is associated with a category. In this study, it
represents the presence or absence of a dwelling.

The objective is accurate instance segmentation of the target
domain without having access to target labels. Specifically, our
aim is to learn representations that are both domain-invariant
and discriminative to undertake instance segmentation of a target
dataset by joint training from the labeled source and unlabeled
target data [25]. To achieve this objective, we have implemented
unsupervised domain adaptation strategies to serve the instance
segmentation task. We used adversarial training [49] and do-
main discrepancy [33] approaches, which both tried to address
domain adaptation by focusing on deep feature space. We also
explored a domain mapping approach [50], [51], [52], which
tries to close the domain gap by considering both deep feature
and label spaces.

1) Segmenting objects by location: Most unsupervised do-
main adaptation strategies can be adapted with less effort to
different supervised tasks with any deep learning models [31],
including instance segmentation. In this study, we used SOLO-
v2 [47] as a base model, which is a single-stage instance segmen-
tation model. The model is selected mainly for its reported speed,
state-of-the-art performance, and relatively moderate memory
requirement during training and inference phases [46], [47],
which makes the model an ideal candidate for operational use
during emergency response. Recently, Huang et al. [53] also
demonstrated that on a few metrics, SOLO-v2 performs bet-
ter than other models in urban building instance segmentation
tasks. This was also verified in this study from a comparative
analysis undertaken with other single and two-stage instance
segmentation models using one of the datasets studied in this
work, namely, the Minawao June 2016 dataset presented in
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Fig. 2. Schematic representation of overall workflows for unsupervised domain adaptation using SOLO-v2. Elements indicated with orange color are inputs and
ResNet is a shared feature extraction network used for both source and target datasets. Green lines indicate the supervised pipeline for the source dataset where
features from shared feature extractor are fed into the segmentation network, for which category (dice) and mask (focal) losses are calculated. For DANN (gray
arrows), features from ResNet are concatenated batch-wise and fed into a domain classifier where negative log-likelihood (NNL) loss is computed using adversarial
domain labels. Blue lines indicate unsupervised loss computed from feature and label spaces both for MMD and OT unsupervised loss terms.

Section III-A (see Table V in Appendix for results). To the best
of the author’s knowledge, this is the first use of the SOLO-v2
model for dwelling extraction on the one hand and unsupervised
domain adaptation for instance segmentation on the other hand.

The model follows the proposal-free segmentation ap-
proach [54], where the input image is first conceptually divided
into smaller tiles with different scales. The sizes of the objects
to be segmented induce the scales to be taken into account.
Scenes with small objects should be divided into many small tiles
(grids), whereas scenes with large objects require a few larger
tiles. In our application, the model must segment objects (i.e.,
dwellings) of varying sizes and thus consider different scales. In
SOLO-v2, the grid size hyperparameter gives the set of scales to
be studied. For our study, we selected its values by analyzing the
sizes of the dwellings in the different study sites. Section III-B
provides implementation details.

The SOLO-v2 model is composed of a feature extraction
network, a feature pyramid network (FPN) and a segmentation
head. As indicated in Fig 2, an input image of size 3 × 256 × 256
is fed into ResNet-50 [55] feature extractor, where it yields mul-
tilevel features. These multilevel features are fed into FPN [56]
to get high-level semantic features of varying resolutions. To
obtain precise locations of each object, in the deeper levels

of FPN, SOLO-v2 introduced spatially invariant convolution
using the CoordConv algorithm [57], where two extra channels
containing the coordinates of each pixel are added. Note that
these pixel coordinates are relative row and column pixel co-
ordinates (indexes), not absolute geographic coordinates. These
multilevel features are fed into two branches of the SOLO-v2
segmentation head, which are the unified mask branch and
the kernel branch. These branches are decoupled for the sake
of speed and memory optimization. The unified mask branch
produces unified (i.e., fused) features of shape 256 × 64 × 64
at a coarse spatial resolution (1/4 of the input image), whereas
the kernel branch produces categories and kernel predictions at
each grid level.

During the training phase, each ground truth instance mask is
assigned to any tile for which the dwelling’s centre falls within
the tile. Otherwise, it is considered as background (negative
tile) [47]. During inference, the predicted instance masks and
their corresponding labels are obtained in a two-step procedure.
First, the predicted category score is thresholded to determine
a pool of candidate instances. Then, predicted instance masks
are converted to binary instance masks using a mask thresh-
old. Finally, further refinement on the overlapping instance
masks is done using matrix nonmaximum suppression (MNMS),
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which is also reported as computationally lighter than traditional
NMS [46]. MNMS provides a modified category score using the
decay function, which is hereafter renamed as the objectness
score. The objectness score is a score indicating the degree a
candidate mask contains an object of interest, i.e., dwelling.
After sorting predicted instance masks with descending order of
objections score, the first k number of final instances was picked
wherek is the allowed maximum number of detections per scene.
As all the predictions are done at a coarse spatial resolution, the
predicted instance masks are upsampled to the original input
size using bilinear interpolation. In a nutshell, the inference
provides predicted object instance masks with the corresponding
categories (a semantic class) and objectness scores.

During training, the model weights are optimized by min-
imizing a combination of instance mask and category losses
presented in as follows:

LS = LC + λLM (1)

where LS is a total supervised loss, LC is a category loss (here
the focal loss [58]), LM is the instance mask loss (here the
dice loss [59]), and λ is the weighting factor for balancing the
contribution of each loss term. Implementation details of SOLO-
v2 are provided in [46] and [47].

2) Unsupervised domain adaptation: This section presents
the details about implemented unsupervised domain adaptation
strategies used to conduct the different experiments. Alhough
there are many unsupervised domain adaptation approaches,
we opted for three representative approaches that fall under
the broader category of unsupervised deep domain distribution
alignment approaches [30]. It should be noted that our specific
choice for this broader category of domain adaptation is based
on two assumptions. The first is that the intended task (i.e.,
instance segmentation) focuses on the same class of interest in
the two domains (dwellings versus background). There is thus
only a distribution shift due to the changes in scene and object
characteristics. The second is the absence of annotations for the
target domain. Hence, the objective is to use domain adaptation
strategies to reduce the distribution shift, and thus be able to
perform instance segmentation on the unlabeled target dataset.

Therefore, from the stated broader category, we have opted
to implement DANN, MMD, and OT approaches. Our specific
choice of these strategies is mainly because: 1) DANN and MMD
are standard unsupervised domain adaptation approaches that
demonstrate good results in various experiments (classification
and segmentation) so seem appropriate candidates to experiment
for an instance segmentation task, while OT has shown good
performance in computer vision tasks and 2) the strategy fol-
lowed by these three approaches to address the unsupervised
domain adaptation problem differ as it will be explained in
the next paragraphs. This could give us a chance to select the
best-performing domain adaptation strategy for operational use
in the humanitarian emergency response.

The first unsupervised domain adaptation approach tested is
DANN [49]. DANN adversarially trains the feature extractor
to bring source and target data distributions into a relatively
common feature space. This is performed by implementing a
domain classifier module, whose goal is to discriminate the

domain (source or target) from which data are sampled. The fea-
ture encoder parameters are updated to minimize the supervised
loss LS computed on the source data (1) and to maximize the
adversarial domain classifier loss LAD [negative log-likelihood
(NLL)]. This adversarial learning procedure is ensured by the
gradient reversal layer [49], which multiplies the gradients from
the domain classifier layer by a negative constant during the
back-propagation. The overall loss LDANN, provided in (2),
consists of both supervised and domain losses

LDANN = LS + λuLAD (2)

where λu is the weighting factor for the contribution of the
unsupervised loss. The unsupervised adversarial domain loss
LAD is the NLL loss, which is provided as

LAD = −
n+m∑

i=1

(di log d̂i + (1− di) log(1− d̂i) (3)

where di is adversarial domain label (di is equal to 1 if the ith
sample belongs to the target domain, 0 otherwise), while d̂i is
predicted domain label, n and m are the number of samples for
the source and target datasets, respectively.

The second domain adaptation approach tested is MMD [33].
It adds an unsupervised loss, which accounts for inter and
intradomain discrepancy in the deep feature space. Specifically,
the domain discrepancy loss LDANN measures the domain dis-
crepancy between the source (S) and target (T ) deep features
using MMD [60], [61]. This domain discrepancy loss LDD can
be expressed as

LDD(S, T ) =
1

m(m− 1)

m∑
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s
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(mn)
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t
j)) (4)

where g(.) is the feature extractor network (ResNet-50), and
g(xs

i ) (respectively, g(xt
i)) represents the embedding of the ith-

sample in the source (respectively, target) dataset,k is a Gaussian
kernel [defined by (5)], and n (respectively, m) is the number of
source (respectively, target) samples

k(g(xs
i ), g(x

t
j)) = e

−|g(xs
i
)−g(xt

j
)|2

2δ2 (5)

where δ is the standard deviation. Finally, the total loss LMMD

comprises a joint supervised loss LS computed by the instance
segmentation network and the domain discrepancy loss LDD as
provided in (6)

LMMD = LS + λuLDD. (6)

The third and last domain adaptation approach relies on the OT
theory, specifically deep joint distribution optimal transport [50],
[51]. Similar to DANN and MMD, the overall loss LOT is a
combined loss including both supervised and unsupervised OT
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terms

LOT = LS + λuLUOT (7)

where LS is the supervised loss provided in (1) and LUOT is the
unsupervised OT loss. Unlike DANN or MMD, which focus only
on obtaining domain-invariant features, the OT loss also benefits
from aligning the label space. It combines two unsupervised
losses computed on the deep feature space and the label space

LUOT =
∑

i,j

γi,j(α||g(xs
i )− g

(
xt
j

) ||2 + β||ysi − f(g
(
xt
j

)
)||2)

(8)
where g(·) is the feature extractor network as in (4) and f(·) is the
instance segmentation network. The hyperparameters α and β
are the weighting factors for the feature- and label-space losses,
respectively. As the study deals with instance segmentation task,
elements in the second term of (8), ysi and f(g(xt

j)) indicates
reference and predicted dwelling instances, respectively. The
γ(i,j) is the OT coupling matrix [52], which is the key element
for OT. It gives a mapping between source and target data. Its
computation is done using the Python optimal transport pack-
age [62] with default values. We note f(g(x)) corresponds to the
prediction of the SOLO-v2 network, which commonly includes
an instance mask and a semantic category for each detected
instance. In our experiments, as there is only one semantic class
(dwelling), we can thus simplify the label space loss by taking
into account only the instance mask predictions.

B. Domain Similarity Measures

To understand the implication of domain similarity on the per-
formance of unsupervised domain adaptation, the cross-domain
similarity is computed at three levels. These are object level
(size, spacing, and shape complexity), image level (spectral,
radiometric, and tonal variations, such as texture), and deep
feature space levels. In operational humanitarian response, this
information could serve as a catalogue for proper source dataset
selection to undertake joint training and testing between source
and target datasets. Note that compared with image and deep
feature space levels, which do not require annotations, the
object-level comparison requires supervision in both domains.
We still assume, for images with good visual quality, domain
experts in EO could easily make some interpretations on object
similarities.

For object-level domain similarity, following the works
in [63], selected landscape metrics that are suitable to catch
dwelling object geometric and spatial pattern variations across
space are considered. Accordingly, we computed dwelling den-
sity as the number of dwellings per hectare, minimum distance
to the nearest dwelling, and shape index, which is the ratio of
perimeter per dwelling object area across domains. Details on
the conceptual definitions and implementation of these metrics
are provided in [64].

For domain similarity at the deep feature space level, follow-
ing the works in [65], we use both visual (qualitative) and metric
similarities at the feature space level. Accordingly, the visual
analysis and the computation of the similarity metric of deep fea-
tures are done using t-distributed stochastic neighbor embedding

(t-SNE) [66]. To this end, the deep features of each input image
are obtained using a ResNet pretrained with ImageNet dataset.
We opted to use pretrained weights because fine-tuning the
network on actual data demands annotations both in source and
target datasets. In the unsupervised domain adaptation setting,
we assume the nonexistence of annotations for the target dataset.
The deep features of each input image were hooked from the
feature extraction module. Then, their dimensionality is reduced
to two components by setting the principal component as the
initial embeddings given its reported better stability than random
initialization. The fitting of dimensionality reduction in t-SNE
is done using a perplexity value of 50 with 5000 iterations.

Note that as there is no single standard approach for optimiz-
ing perplexity [67], we set this value based on trial and error
with a visual comparison of obtained clustered feature spaces.
As shown in Section IV-B, outputs from t-SNE are visualized in
a 2-D space as a qualitative understanding of domain similarity
at the feature space level. The deep embeddings were also fitted
using a one-class support vector machine (OC-SVM) [68], to
draw a decision boundary that separates inliers and outliers from
provided feature vectors. The implementation of both t-SNE
and OC-SVM is forked from [69]. Following the work of [65],
intersection over union (IoU) between two inlier masks can be
computed to quantify feature space similarity. However, IoU is
limited if the OC-SVM produced nonoverlapping inlier masks
(i.e., IoU is null). Hence, we opted for the generalized inter-
section over union (GIoU) [70] metric, which uses the distance
between the inlier masks. It could provide feature space distance
including for nonoverlapping masks. Its value ranges from -1 for
completely not overlapping features with varying distances and
+1 for perfectly overlapping features. The GIoU formulation is
given by

GIoU =
|Ms ∩Mt|
|Ms ∪Mt| −

|H(Ms ∪Mt) \ (Ms ∪Mt)|
|H(Ms ∪Mt)| (9)

whereMs andMt are the source and target domain inlier masks,
respectively, and H the convex hull function. The proposed
methodology is further described in [70].

Finally, image-level domain similarity is quantified using
the structural similarity index (SSIM) [71]. It accounts for the
luminance, contrast, and structure of images using local and
global statistics. The SSIM is defined by the following:

SSIM(S, T ) =
1

mn

m∑

i=1

n∑

j=1

SSIM
(
xs
i ,x

t
j

)

SSIM(xs
i ,x

t
j) =

(2μsμt + C1)(2σts + C2)

(μ2
s + μ2

t + C1)(σ2
s + σ2

t + C2)
(10)

where xs
i (respectively, xt

j) is the ith (respectively, jth) image
sample in the source (respectively, target) dataset, μ, σ, and
σ2 indicate the mean, standard deviation, and variances of the
source (s) and target (t) images within a given window size
(11 × 11 pixels) and C1 and C2 are constants used for numeric
stability, which are equal to 0.01 and 0.03, respectively. Details
are provided in [71] and its base implementation is forked
from [72]. The higher the SSIM, the higher the similarity of
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Fig. 3. Location map of temporary settlement areas in different geographies. Note that for the purpose of visual quality, the point markers are not to scale.

TABLE I
CHARACTERISTICS OF EO DATASETS USED FOR THE STUDY

the images. A value of +1 (or -1) corresponds to perfectly
(dis)similar images.

III. DATA AND EXPERIMENTAL SETUP

This section presents details about the data and applied pre-
processing operations with overall experimental setups.

A. Data and Preprocessing

The study used multisource, multitemporal VHR satellite
imagery sensed from four FDP settlement areas situated in
different geographical areas—Kutupalong, Minawao, Nduta,
and Nguenygiel. Fig. 3 shows the geographic location of the
study sites, whereas Table I gives further information on the type
of sensor, the acquisition date, and the number of annotations
available.

The selected camps exhibit contrasting spectral, object, and
background characteristics. Minawao is located in a semiarid
climate and consists of oval and round-shaped dwellings built by
the United Nations Higher Commission for Refugees (UNHCR).
This FDP area is dominated by small tukuls with roof material
made from natural leaves, resulting in a low contrast with the

TABLE II
DESCRIPTIVE STATISTICS FOR DWELLING OBJECT SIZES

ground. Sharing object type and size variations (see Table II)
with Minawao, Nduta has well-vegetated green individual trees,
which are posing a major confusion with detached buildings
during inference. Contrary to these two study sites, the dwellings
in Kutupalong occupy a complex and hilly terrain with extreme
spectral and object geometric variations. More importantly, in
some regions of the site, the dwelling density is so high that
individual buildings cannot be separated, even during the visual
interpretation.

The images are obtained from different optical sensors.
Respective annotations were obtained from an in-house
database [73] generated during a long-term engagement in
EO-based humanitarian emergency response. WorldView-2 and
WorldView-3 images were obtained in ortho-ready standard
GeoTIFF format, radiometrically corrected, and projected to
the standard plane [74]. Terrain flattening was made using
the surface radar topographic mission digital elevation model.
For both Pléiades and WorldView images, multispectral and
panchromatic bands were merged using Gram–Schmidt pan-
sharpening [75]. unmanned aerial vehicle (UAV) images with
RGB channels were taken by a sensefly photogrammetry sensor
optimized for drone applications sensor mounted on the eBee
drone series. These images were provided by the International
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Fig. 4. Block-sample strategy scheme implemented to partition image patches
into training (green), validation (blue), and test (red) datasets. Image is par-
titioned into large blocks that consist of 16 image patches, each with a size
of 256 × 256 pixels represented by coloured dots. Example is given for the
Minawao-2016 dataset.

Organization for Migration and shared at open aerial map.
For a fair transfer performance comparison and to reduce the
complexity that comes from sensor variations, all images with
different radiometric resolutions were scaled to an 8-b dynamic
range, enhanced with histogram stretch, and resampled to sim-
ilar pixel sizes. After the preprocessing of images, manually
annotated labels in environmental systems research shapefile
format were converted to binary (dwelling and background)
raster image coregistered with corresponding spectral images.
Beyond testing the domain adaptation performance of instance
segmentation across different geographical areas, we analyzed
the performance of domain adaptation across time for two study
sites (Kutupalong and Minawao) that included additional images
from the same area acquired at different years and seasons. To
use the same model and run a fair comparison with UAV images,
only RGB channels are used for all the satellite datasets.

The images and the related rasterized annotations are divided
into smaller image patches with a size of 256 × 256 pixels each.
The size is intended to accommodate a sufficient number of
objects per patch without compromising computational speed.
The individual patches are partitioned into train, test, and val-
idation sets with a ratio of 70%, 15%, and 15%, respectively.
During the patch partitioning, to account for the existing spatial
heterogeneity of dwellings in each studied site, patches are
selected by block sampling using their geolocation (geographic
extent) as a constraint (see Fig. 4). The camp extent is divided
into larger regular blocks where samples were picked using
systematic sampling. Each block contains a maximum of 16
image patches. This sampling approach is mainly intended to
balance two problems: the first one is model overfitting caused
by the inclusion of mostly similar objects from adjacent tiles
(spatial autocorrelation), and the second one is the reduction

of out-of-distribution samples caused if the image is simply
divided into three regions where each serves training, validation,
and test sets, as implemented in [20]. Then, sampled patches
and raster annotations are converted to the common objects
context (COCO) [76] format, which is suitable for the SOLO-v2
input–output structure. As can be seen from Fig. 4, empty tiles
that did not contain dwelling objects are excluded from all
sample sets to reduce the negative effects of class imbalance
during the training phase.

B. Experimental Setup

As shown in Fig. 4, the samples from each dataset are
partitioned into training, validation, and test sets. The base
model (here a SOLO-v2 with a ResNet-50 feature extractor) is
trained with unsupervised domain adaptation approaches using
labeled source data from the training and validation sets and
unlabeled target dataset taken only from the training set. The
performance of the different strategies is evaluated on the labeled
target test set. We test exhaustively all the possible cross-domain
adaptation scenarios. As there are six datasets, it results in 30
scenarios. Note that we preferred to conduct an extensive study
without considering any temporal constraint, which can lead
to implausible scenarios (e.g., the Minawao image acquired in
2017 is used as the source domain and the 2016 image is used
as the target domain). To better understand the performance of
these unsupervised domain adaptation strategies for dwelling
extraction, two baselines were undertaken. The first baseline
is trained and tested with a fully-supervised approach on each
dataset. It serves as an upper bound, i.e., the maximum accu-
racy to reach. The second baseline is the lower bound, which
corresponds to the nonadaptation case where the source-trained
model is applied to the target domain without any adaptation.

Before running the domain-adaptation experiment, the in-
stance segmentation model SOLO-v2 is first pretrained on the
source domain. To set up the main grid size hyperparameter,
which determines the size of the detected objects by SOLO-v2
(see Section II-A1), we analyze the dwelling sizes. We decided
to use a list of grid scales equal to 6, 12, 24, and 48, which
represent the varying dwelling sizes for the different studied
sites. The λ hyperparameter (1), is used to balance the instance
and semantic losses. Values ranging from 0.1 to 10 are tested,
and the best test performance is obtained for λ equal to 4.

During the inference phase, predicted nondwelling object
candidates were first filtered out using a score threshold, which
is set to 0.3. The MNMS [46], [47] is applied, which provides a
modified category score as a function of decay value [46]. Then,
all predictions are sorted in descending order of modified score
threshold, where only k number of detections were picked. k
is the maximum number of detections per image, which was
set to 200 dwellings. This value is determined by accounting
for the dwelling prevalence statistics per image patch. After
the final inference, if there need to refine prediction results
after qualitative inspection, the category score after MNMS
(objectness score) (see Section II-A1) could also serve as a
postprocessing tool to remove overpredicted dwellings that have
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Fig. 5. Results for unsupervised domain adaptation for instance segmentation (mAP@0.5) using SOLO for dwelling extraction in FDP settlement areas. Title of
each subplot indicates the target dataset, whereas the x-tick label indicates the source dataset. The red dotted horizontal lines shows the performance obtained with
a fully supervised learning strategy, while the dotted black lines indicate the performance obtained by the source network applied without domain adaptation.

small objectness score. This could apply even for scenes with
object predictions of less than 200 dwellings (e.g., see Fig. 12).

In the unsupervised domain adaptation setting, we do not have
access to the annotated target dataset. Hence, the tuning of the
value of the hyperparameter λu through cross-validation is not
possible. We thus use a logarithmic annealing schedule (11)
where in the early phases of the training the contribution from
unsupervised terms is given a lower weight than at the later stages
where equal contribution with source domain loss is given. This
creates a smooth training process by gradually learning from the
unlabeled target data

λu =
2

1 + e−γp
− 1 (11)

where p corresponds to the normalized training step which
ranges from 0 to 1, γ is a constant to determine the initial
minimum value for λu, which is set to 10 [49]. Regarding the
specific hyperparameter of the OT loss [see (8)], we assume an
equal contribution of deep feature space and label space terms,
and thus set up α and β equal to 1.

In all the experiments (pretraining and domain adaptation),
the network is updated with stochastic gradient update for 65
epochs. As in the original implementation of SOLO-v2, the
multistep learning rate decay is adopted with two change points
where the initial learning rate is set to 0.001 and decreased by a
gamma value of 10 of the previous steps. The training is done on
a computer equipped with NVIDIA GeForce RTX 3090 single
GPU.

C. Evaluation Metrics

The performance of each cross-domain scenario is quantita-
tively evaluated using mean average precision (mAP), which

is a commonly used metric in object detection and instance
segmentation tasks [76], [77]. It is computed using the following
equation:

mAP =
1

C

C∑

c=1

APc (12)

where APc is the average precision of class c and C is the total
number of classes. As there is only one class to predict, the
dwelling class, the mAP corresponds in this study to the average
precision of the dwelling class. To determine if a segmented
object matches a ground-truth object, a mean intersection over
union threshold of 0.5 is employed (mAP@0.5). This is used
to compute precision and recall metrics. To understand the
association between transfer performance and domain similarity,
a statistical test is done using the Pearson correlation coefficient
with 90% and 95% confidence intervals. To perform this test,
image and object level metrics are summarized using mean and
mean absolute differences across each transfer, respectively.

IV. RESULTS

In this section, we report results obtained from all unsuper-
vised domain adaptation approaches presented in Section II-A.
In addition, analytical results of domain similarity at the image,
object, and deep feature space levels and its implication for
unsupervised domain adaptation performance are presented in
Section IV-B.

A. Domain Adaptation and Transfer Performance

Fig. 5 displays the mAP@0.5 for the 30 cross-domain transfer
scenarios. Each subplot presents domain transfer made from a
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source dataset (x-ticks label) to a target dataset (which is indi-
cated on the title of each subplot). The black dot lines correspond
to the performance obtained without adaptation (lower bounds),
whereas the red dot lines highlight the performance obtained
by a fully supervised model trained on the target domain (upper
bound). The bar corresponds to the performance obtained by the
UDA approaches: MMD in blue, DANN in orange, and OT in
green. Domain adaptation has performed better than applying a
source pretrained model without domain adaptation. As it can
be seen, in a few source–target combinations, domain adapta-
tion performed even better than supervised training (for exam-
ple in the following transfers: Nguenygiel-2018 → Minawao-
2016, Nguenygiel-2018 → Minawao-2017, Nguenygiel-2018
→ Nduta-2016). Among the three approaches, the OT-based
approach has shown better performance than DANN and MMD
approaches, which have comparable performance. Sometimes,
DANN and MMD results are even lower than the performance
of the source model applied without adaptation, such as for
transfers Kutupalong-2018 → Nduta-2016, Kutupalong-2017
→ Kutupalong-2018, and Kutupalong-2018 → Minawao-2017.
As it will be discussed in the next section, this is particularly
noticeable for transferring between domains that have large
disparities in spectral and object characteristics (for example
transferring from Kutupalong-2018 to Minawao, Nguenygiel,
and Nduta datasets). The performance deviates from a mAP
values ranging from below 0.1 upto approximately 0.6.

We note that the transfer performance decreases when transfer
is done from a dataset with less complex dwelling objects dom-
inated by standard UNHCR tents to the dataset dominated with
most complex dwelling structures with densely populated and
exhibit larger object spectral and size variations. This is observed
for transfers made from Minawao, Nguenygiel, and Nduta to
Kutupalong datasets. Contrary to this, transferring from datasets
with more complex dwelling structures towards less complex
dwelling structures provides better results than transferring from
less complex to more complex sites. This could be attested by
transfer results from Kutupalong-2017 to Minawao, Nguenygiel,
and Ndutda.

As can be seen from predicted spatial plots displayed in
Fig. 6, transfers made without domain adaptation have rela-
tively higher false negative rates since existing dwelling objects
were not segmented, especially in transfers Kutupalong-2017
→ Minawao-2016 and Kutupalong-2017 → Kutupalong-2018
(see Fig. 7 for visible insets). DANN has shown relatively
higher overpredictions and false positives posed by individually
standing trees and bare land features resembling low-contrast
dwellings. These errors could easily be managed during the
postprocessing phase.

B. Transfer Performance as a Function of Domain Similarity

As noted in Section I, the main objective of undertaking
domain similarity analysis is to establish a clue which similarity-
level (image, object, or deep feature) is the most suitable to
explain domain adaptation performance. This could further be
used as a lookup table to select source datasets that could be

easily transferred to the intended target dataset during human-
itarian emergency response. Accordingly, we compare domain
similarities at three levels based on images, objects, and deep
features.

First, we look into image-level domain similarity by com-
puting the SSIM metric provided in (10). As can be seen from
computed similarities presented in Fig. 9, datasets show low to
moderate image-level SSIM values (as indicated in Section II-B,
the value of 1 means perfect similarity). Here, we can observe
three patterns of structural similarity and transfer performance.
The first pattern is where a lower level of structural similarity is
associated with a lower transfer performance (see Fig. 6). One
notable example is MMD and DANN-based transfers where
Kutupalong-2018 is a source dataset (with the exception of
OT-based transfers). With the same token, the second pattern
is where a higher structural similarity is associated with higher
performance. This could be easily noted between SSIM and
transfer performances from Nguenygiel-2018 to Minawao (both
2016 and 2017) datasets. The third pattern is high transfer
performance and relatively moderate structural similarity. This
is vividly seen from transfers made between Kutupalong-2017
and the rest of the datasets except the Kutupalong-2018 dataset
for OT-based transfer. Though Kutupalong-2017 is a dataset
with relatively complex dwelling structures, except for the
Kutupalong-2018 dataset, it has relatively moderate structural
similarity (see Fig. 9) and good transfer performance (see Fig. 6).
Here, it is also noted that for this pattern, transfers from other
datasets to Kutupalong-2017 do not result in the same conclusion
with the exception of Nguenygiel-2018 to Kutupalong-2017
transfers. Although one might expect images taken from the
study site at different time scales to show a higher image-level
similarity, computed SSIM values indicate the opposite. This can
be seen from SSIM between Kutupalong-2017 and Kutupalong-
2018 images and between Minawao-2016 and Minawao-2017
images, which all are a clear indication of the temporal dynamics
of FDP settlements even with a time lag of less than a year.
The minimum SSIM is observed between images taken from
Kutupalong-2017 and Kutupalong-2018. As can be seen from
Fig. 6, a lower transfer performance is also observed in transfers
made from Kutupalong-2018 to other datasets. This pattern is
very common for MMD and DANN-based transfer strategies.

Second, we look into object-level similarity. Fig. 10 presents
object-level domain similarity using selected metrics (shape
index, distance to nearest neighbor, and dwelling density) for
each study site. From object-level domain similarity analysis
presented in Fig. 10, almost all datasets have similar shape
complexity, which is inferred from the shape index. The largest
variations are observed for distance to nearest neighbor and
dwelling density metrics. The smaller distance to the nearest
dwelling could be an indication of a congested spatial place
occupancy pattern. Coupled with larger dwelling density, it is
straightforward to infer the dwellings exhibit a complex pattern.
The distances to the nearest neighbor for the Kutupalong-2017
and 2018 datasets are both lower and almost the same except for
the number of dwellings per hectare. Alhough Kutupalong-2017
and Kutupalong-2018 datasets have relatively similar object-
level metrics, if other things remain constant, in all strategies one
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Fig. 6. Spatial plots of inference made using Kutupalong-2017 as source datasets. Each row represents a different target dataset.

could expect better domain adaptation transfer performance be-
tween these datasets than others. In instance segmentation tasks,
if the dwelling objects are closely spaced or packed together
it poses an inherent challenge to detect individual dwelling
instances, which is commonly prevalent in Kutupalong datasets.
In densely populated complex dwelling structures, not only the
transfer but also instance segmentation with supervised learning
is found difficult (a notable example is the Kutupalong-2018
dataset (except transfers with OT approach) as can be seen from
Fig. 6 with a low supervised performance of about mAP 0.38.
This could be attributed to the difficulty of retrieving individual
dwellings from crowded, spectrally diverse and low contrast
with background environment (see sample patches in Fig. 1 for
Kutupalong dataset).

Finally, we analyze the link between deep feature space simi-
larity and transfer performance. Fig. 8 displays the deep feature
spaces obtained from t-SNE. This decision boundary indicates
the inliers displayed with filled polygons for each dataset to
indicate the deep feature space distances. Table III presents
GIoU as deep feature space level domain similarity. While

TABLE III
GIOU VALUES MEASURE DEEP-FEATURE SPACE-LEVEL SIMILARITY BETWEEN

SOURCE AND TARGET DOMAINS

there is an association between the transfer performance and
image- and object-level similarity metrics of some source–target
combinations, transfer performance and feature space-level do-
main similarity show a rather random pattern. Based on the
results presented in Table III, one could expect a higher trans-
fer performance would be achieved between Kutupalong-2017
and Kutupalong-2018 and Minawao-2016 and Minawao-2017
datasets that have minimal GIoU values. Despite their relatively
better deep feature space similarity than other combinations,
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Fig. 7. Performance of adopted approaches in a complex patch. Examples of transfers made from Kutupalong-2017 to Kutupalong-2018, Nguenygiel-2018,
Minawao-2016 and Minawao-2017 datasets. Except for the Minawawo-2017 dataset, the source-only transfers have visible false negatives.

TABLE IV
SIMILARITY METRICS AND UNSUPERVISED DOMAIN ADAPTATION TRANSFER PERFORMANCE ASSOCIATION TEST

their transfer performance falls short of expectations except
for OT-based transfers from Kutupalong-2017 → Kutupalong-
2018. This random pattern between deep feature space similarity
and transfer performance is observed for other datasets too (see
Fig. 5, Table III, and Fig. 8).

As presented in Table IV, the computed statistical test has
shown three patterns on the association of transfer performance
and domain similarity at different levels. The first pattern is mod-
erate association and statistically significant. This is observed
between image level similarity (SSIM) and transfer results from
source only (NoDA), DANN, and OT strategies. A similar

pattern is also observed between one of the object-level simi-
larity metrics (shape index) and the DANN and OT strategies.
The second pattern is a relatively moderate to small association
but statistically insignificant pattern, which is mostly a pattern
for transfers and object level similarity metrics (number of
dwellings per hectare, mean distance to nearest neighbor and
shape index; except for the OT technique, which is statistically
significant). The correlation coefficient values for object-based
domain similarity metrics are negative (except for the mean
minimum distance to the nearest neighbour with DANN and
MMD transfers). This shows when there is a wider gap in
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Fig. 8. Visualization of inter and intra-deep feature space disparity as qual-
itative feature space level domain similarity. Each individual point represents
a patch. The closer the points are, the more similar the features are. Filled
contours indicate the decision boundaries obtained by OC-SVM between the
patch features from one domain and the others.

object-level domain similarity, it inversely affects the transfer
performance. The third pattern is a very low association and
at the same time statistically insignificant association. This is a
general pattern for deep feature space level domain similarity
(GIoU) and all the transfer scenarios.

V. DISCUSSION

Based on the results presented in Section IV, we provide in
this section a discussion on two main aspects: 1) the performance
of the investigated domain adaptation approaches, and 2) the
link between domain similarity and transfer performance. In
datasets, where dwelling characteristics are extremely contrast-
ing in terms of spatial and spectral patterns, domain adaptation
helped with the accurate segmentation of dwelling objects. In
a few cases (e.g., Kutupalong-2018 as target dataset with the
exception of OT strategy), low performance is observed in both
the supervised setting and the transfer scenarios. The same
pattern is also observed in transfers where Kutupalong-2017
is a target dataset except for transfers Nguenygiel-2018 →
Kutupalong-2017.

It should also be noted that the initial pretraining performance
could have an impact on the transfer performance. As can
be seen from Fig. 5, if the model performance is not good
during the initial pretraining (see the red dashed lines), the
transfer performance is limited (e.g., this can be seen from
transfers where the Kutuplong-2018 dataset served as the source
dataset). On the other hand, if the model performed well during
pretraining on the source dataset (e.g., Nguenygiel-2018 and
Kutupalong-2017 datasets), it achieves good transfer perfor-
mance on target datasets. As observed in Fig. 5, in a few

Fig. 9. SSIM values across the datasets (first column) as a measure of image-
label domain similarity together with transfer performance (second column).
The violin plots were scaled to width.

cases domain adaptation strategies perform lower than transfers
done without any domain adaptation (source-only transfers).
Initial pretraining on the source dataset could yield a learned
representation, which could be far from the target dataset rep-
resentations. Undertaking joint domain adaptation could end
up with different source and target distributions. A negative
transfer could happen if the source domain has a different data
distribution than the target domain. Both situations demand
precaution in the tradeoff between negative transfers [78], [79]
and advantages of pretraining. Even though three of the imple-
mented domain adaptation strategies fall under deep domain
alignment unsupervised domain adaptation strategies, MMD
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Fig. 10. Selected dwelling object characteristics as a measure of object label domain similarity. Violin plots were scaled to width. Outlier values from shape
index and distance to the nearest-neighbor metrics are excluded for visual quality.

Fig. 11. Example of changes in spectral characteristics (color) through time for Kutupalong dataset.

and DANN tackle domain gaps only on feature spaces while OT
includes label space alignment. In this aspect, their performance
has also a clear pattern. DANN and MMD achieved closer
results. Although in most cases, OT approach performed better
than DANN and MMD, in a few cases they achieved better
results than OT. Transfers Nguenygiel-2018 → Kutupalong-
2017, Kutupalong-2017 → Minawao-2016, Nguenygiel-2018
→ Nduta-2016 are notable examples.

From the visual comparison, overpredictions are observed
on outputs obtained from DANN-based transfer. Dismantled
building basements, tree stands, and footpaths are confused
with dwellings. In a nutshell, transfer performance could be
associated with the implemented domain transfer approach,
pretraining, and nature of the source and target dataset [80].

It should also be noted that the evaluation metrics reported
in the study are based on standard COCO evaluation metrics
where false positives are determined using an IoU value of
0.5 on predictions obtained with a score threshold of 0.3. As
can be seen from Fig. 12, overpredictions could contribute
to reported low mAP values, especially on patches dominated

by relatively bigger dwellings with spectrally diverse rooftops
caused by rusting, the use of different materials, and the changes
in the natural morphology of dwellings. For operational use,
postprocessing of overpredictions by using an objectness score
(category score after matrix NMS) could improve the final seg-
mentation product. For multiple predictions of small dwellings
predicted with a large objectness score merging them with bigger
dwellings could helped to refine the final result (see Fig. 12). In
addition to this, nondwelling features, such as footpaths and
small individual trees, were segmented as dwelling objects,
which also increases false positive predictions. In the Nduta
datasets, detached individual standing trees were detected as
dwellings, thus increasing the false positive rate in the prediction
(see Fig. 6). Based on the availability of the near infrared
band, the issue could also be mitigated by using a threshold
on vegetation, such as normalized difference vegetation index
(NDVI). Postprocessing is not easy and comes at the cost of other
errors. While using either objectness score or NDVI thresholds,
caution should also be paid as it would play with tradeoffs of
increasing false negatives.
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Fig. 12. Output sensitivity for modified score threshold (objectness score) and role of postprocessing. Results are taken from transfers Kutupalong-2017 →
Minawao-2017 using the MMD domain approach.

As can be seen from the result section, Kutupalong 2017
and 2018 datasets, which are taken from the same area, have
a relatively small feature space discrepancy (see Fig. 8 and
Table III) and relatively similar object-level domain similarities
(see Fig. 10). Hence, in all strategies, one could expect better
transfer performance between those datasets than others though
the results show the opposite. This clue could be an indication
that image-level similarity has a higher influence on transfer
performance than object and deep feature level similarity. Except
for domain transfers made with the MMD approach, we observe
that image-level domain similarity has a statistically significant
moderate association with domain transfer performance. Even
though there is an extreme influx of settlers which caused camp
expansion and dwelling densification [1], changes in object level
similarity of dwellings are negligible. This is mainly because
new dwellings were built in empty patches at the outer expanses
of the camp without changing the dwelling size (see Table II)
and the space occupancy pattern. Changes are observed in
background environment, rooftop colours because of changes
in the rooftop material, and natural morphology, such as rusting
and dust (see the first two rows of Figs. 1 and 11). This causes
strong image-level domain discrepancy and respective low do-
main adaptation performance. Overall, a better association could
easily be established with image-level similarity than feature
space and selected object-level similarity (shape index) (see
Table IV).

Given that image and dwelling object-level domain similar-
ities have shown meaningful clues on domain transfer perfor-
mance, during emergency response, existing source datasets
could be filtered out using the corresponding similarity metrics
to undertake unsupervised domain adaptation with unlabeled
target dataset. Although not in emergency response operations,
the use of domain similarity information for accurate domain
adaptation is reported in a handful of studies. For example, the
relevance of source dataset selection is explained in [81] using
machine-learning-based domain adaptation for regression tasks
given many remotely sensed source datasets and a single target
dataset. The authors have implemented histogram matching of
spectral features and reported Pearson correlation and Hellinger

distance as effective metrics for domain similarity. In nonEO
datasets, [82] has implemented distance-based metrics in deep
feature space for source selection, while Bascol et al. [83] has
applied domain reweighting based on interdomain similarity
for multisource domain adaptation. Their approach could be
adapted to any kind of domain similarity metrics, e.g., in our
case with image-level similarity. There is a potential to extend
their study for dwelling extraction. Note that compared with
these studies that are based only on spectral features, we con-
sider different domain-similarity metrics, which complement the
former works.

VI. CONCLUSION

To bypass data-intensive training, transferring, and fine-
tuning, three domain adaptation approaches, namely domain ad-
versarial, domain discrepancy, and domain mapping, were tested
for unsupervised instance segmentation of dwelling objects from
VHR satellite imagery using the single-stage instance segmen-
tation model SOLO. Generally speaking, in most source and
target combinations, unsupervised domain adaptation brought
a performance improvement with a large margin compared
with transferring the model without any domain adaptation.
Although this is the general scenario, the under performance
of domain adaptation approaches has also occurred, which is
dataset dependent. While comparing investigated unsupervised
domain adaptation approaches, domain-adversarial (DANN)
and -discrepancy (MMD) adaptation techniques have consis-
tently shown competitive transfer performances. In most cases,
OT has shown better transfer performance than MMD and
DANN strategies. This better performance could be attributed to
the use of label space alignment, other than MMD and DANN,
which only looks at domain similarity in the feature spaces. It
should also be noted that this is the first time that OT was used
for instance segmentation. We have followed a more simplified
label space alignment term that, the label space alignment loss
needs redesigning for even better and robust performance. From
a thorough visual analysis of computed domain similarity and
statistical test for association between domain similarity and
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TABLE V
TEST PERFORMANCE FOR THE MINAWAO-2016 DATASET OBTAINED FOR DIFFERENT INSTANCE SEGMENTATION MODELS ASSOCIATED

WITH DIFFERENT FEATURE EXTRACTORS

transfer performance, image level domain similarity (SSIM) has
shown better associated pattern with unsupervised domain adap-
tation performance. Though object-level similarity has shown
from moderate to low association, except for the shape index on
OT-based transfer, the association is not statistically significant.
For the instance segmentation transferring from datasets with
sparsely populated, regular patterns, and small-sized buildings,
toward dense and mixed spectral characteristics did not provide
good results. It is also found hard to link the domain adaptation
performance with the deep feature space as it shows statistically
insignificant low association statistic and random pattern. As
object-level domain similarity also needs supervision, and thus
labels in both domains, image-level domain similarity could
be an ideal domain similarity metric to select labeled source
datasets for a transfer in an unlabeled target dataset during
humanitarian emergency response. Hence, it is reasonable to
look into domain alignment losses, which could account for
features from early layers of the model and use of image-level
domain similarity as auxiliary information for unsupervised loss
and batch wise loss reweighting during multisource domain
adaptation. As the current study has focused on binary instance
segmentation of dwelling from paired source–target datasets, it
will be extended to multisource and multiclass instance segmen-
tation tasks using either domain reweighting or proper selection
of a few source datasets based on domain similarity.

APPENDIX

In this section, we present test performance from differ-
ent instance segmentation models (one-stage and two-stage)
combined with different feature extractor networks. The main
intention of this analysis was to select an optimal model with
good speed and low memory requirements without compromis-
ing segmentation performance. Table V gives that SOLO-v2
with a ResNet-50 feature extractor meets this objective: it has
high accuracy in a supervised setting without compromising
speed and memory usage.
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