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Abstract—In this article, we propose a method exploiting irreg-
ular and unaligned Sentinel-2 satellite image time series (SITS)
for large-scale land cover pixel-based classification. We perform
end-to-end learning by combining a time and space informed kernel
interpolator with a sparse variational Gaussian processes (SVGP)
classifier. The interpolator embeds irregular and unaligned SITS
onto a fixed and reduced size latent representation. The spatial
information is taken into account by using a spatial positional
encoding. The obtained latent representation is given to the SVGP
classifier and all the parameters are jointly optimized w.r.t. the
classification task. We run experiments with irregular and un-
aligned Sentinel-2 SITS of the full year 2018 over an area of 200 000
km2 (about two billion pixels) in the south of France (27 MGRS
tiles). Such experimental condition exacerbates the irregular and
unaligned issues of SITS. In terms of overall accuracy, with the
learned latent representation instead of linearly interpolated SITS,
the results of the SVGP classifier are improved by about 10 points.
Moreover, with the learned latent representation, the SVGP classi-
fier outperforms the main state-of-the-art methods from the litera-
ture at large scale (e.g., seven points for the multilayer perceptron)
and is robust to the available timestamps used for training and
testing.

Index Terms—Land cover map, large-scale classification,
representation learning, satellite image time-series (SITS),
Sentinel-2, sparse variational Gaussian processes (SVGP).

I. INTRODUCTION

IN MARCH 2023, the final synthesis report of the sixth
assessment report was released by the intergovernmental

panel on climate change. Its main conclusions are that climate
impacts on ecosystems are more intense and widespread than
expected [1]. Among other recommendations, they proposed to
expand the use of digital technology for land use monitoring
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and sustainable land management, which can help to reduce
emissions from deforestation and land-use changes.

Earth observation (EO) satellites provide a huge amount of
raw data of different types (e.g., optical or radar). Extracting
meaningful information from these raw EO data enables the
monitoring of the Earth’s surface changes and therefore can help
to solve the challenges of climate change [2], [3]. For instance,
the Sentinel-2 twin satellites provide free and open-access data
with relevant features: short revisit time (five days) and high
spectral and spatial resolutions (four spectral bands at 10 m, six
at 20 m, and three at 60 m per pixel) [4].

These satellite image time-series (SITS), covering large con-
tinental surfaces with a short revisit cycle, bring the oppor-
tunity of large-scale mapping. For example, land use or land
cover (LULC) maps provide information about the physical and
functional characteristics of the Earth’s surface for a particular
period of time. More precisely, land cover usually refers to the
physical land type (i.e., corn field or grassland), whereas land use
map indicates how people are using the land (i.e., agriculture).
To produce these LULC maps from massive SITS, automatic
methods are mandatory. In the last years, machine learning (ML)
and then deep learning (DL) methods have shown outstanding
results in terms of performance accuracy [5], [6], [7].

A widely used ML algorithm for pixel-wise classification,
with very good performances even in large scale, is the random
forest (RF) [8], [9], [10]. However, this classifier is not able to
take into account the spectro-temporal structure of the SITS. In
recent years, DL methods have been developed and have shown
very accurate results. Indeed, they are able to extract features
(i.e., spatial, spectral, or/and temporal) of the SITS. For example,
a combination of convolutional neural network (CNN) and recur-
rent neural network (RNN) has shown good performances by in-
cluding the spatial information [11]. Temporal CNN, by combin-
ing temporal and spatial features, have also shown satisfactory
results [12]. Recently, methods based on attention mechanisms
were proposed in order to take into account the spectro-temporal
structure of the data [13]. However, DL methods have a huge
number of parameters, which are sometimes difficult to interpret
and to optimize. Recently, we proposed a method based on sparse
variational gaussian processes (SVGP). This method takes into
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account the spatio-spectro-temporal structure of the data through
a covariance function and its parameters are interpretable. It pro-
vides similar classification performance to the state-of-the-art
methods, such as conventional ML or DL methods. However,
we identified two limiting factors: the need of preimputation or
resampling of the data in the temporal domain, like most of the
methods in literature which require data with a constant number
of features per pixel, and the high number of spectro-temporal
features that can perturb the optimization process.

Unfortunately, Sentinel-2 pixel time series are irregularly
sampled in the temporal domain: observations are not equally
spaced in time due to the presence of clouds or shadows. These
time series are also unaligned: observations from two different
satellite swaths have different temporal sampling grids. Prepro-
cessing techniques can be used to transform these irregular and
unaligned time series into regular time series that can be used by
the classifier. For instance, Inglada et al. [9] proposed to linearly
resample the observations onto a common set of latent dates. The
obtained resampled observations from a full year were success-
fully used to produce land cover classification maps at country
scale using SVGP [14]. However, relevant information for the
classification task can be lost when producing these resampled
observations. Indeed, Li et al. [15] showed that an indepen-
dent interpolation method directly followed by a classification
method performed worse than methods trained end-to-end.

In this sense, Constantin et al. [16] proposed to jointly classify
and reconstruct irregular pixel time series. Despite the quality
of the reconstruction, the model did not compete with state-of-
the-art classifiers, such as RF or support vector machine (SVM)
because of too strong statistical assumption. Besides, Petitjean
et al. [17] proposed to use dynamic time warping (DTW). DTW
allows to find the best alignment between two time series, how-
ever, it does not include information on inter- and intraannual
phenological cycles. [18]. Thus, the time-weighted dynamic
time warping (TWDTW) was proposed by introducing time
weight factor, as an extension of the DTW [19]. Later, a parallel
version of the TWDTW was proposed, taking into account the
spatial dimension [20]. Even if it achieved almost linear speed
up, it was not able to deal with very large datasets.

Few DL methods can directly deal with these irregular and
unaligned time series. For example, long short-term mem-
ory (LTSM) [21] can take into account irregular time series,
however, they do not support unaligned time series. In land
cover classification, Ienco et al. [22] used LSTM combined with
linear interpolation in order to deal with missing (i.e., cloudy)
observations. Moreover, LSTM are slow to train because of the
lack of parallelization abilities. Transformer architectures [23],
via the self-attention mechanism, are able to process sequences
in parallel, and dealing with irregular and unaligned time series
is done via temporal positional encoding and padding. Rußwurm
and Körner [24] pioneered the use of self-attention for land cover
mapping using Sentinel-2 SITS. Garnot et al. [13] improved
the approach by reducing the computational complexity with
the lightweight temporal self-attention (LTAE). The method
outperforms most of state-of-the-art time series classification
algorithms. However, these DL methods still require a huge
number of parameters, which are often not interpretable.

To take advantage of the abovementioned SVGP ap-
proach [14], we propose to learn a fixed-size latent represen-
tation as a preprocessing step to the classifier. This strategy was
explored in [25] and [26], where the authors proposed a method
called multi-time attention networks (mTAN), which enables
working with irregular and unaligned time series. By using
end-to-end training, a learned kernel interpolator (the mTAN)
followed by an encoder–decoder task provided accuracies sim-
ilar to or better than the state-of-the-art for a classification
task [26]. Although kernel interpolators have been known for
a long time, the improved learning capacity of mTAN results
from the temporal attention used as the similarity kernel learned
from the data.

In this work, we propose to further elaborate on a learned
kernel interpolator for the classification of irregular and un-
aligned SITS. Our first contribution is to propose a time and
space informed kernel interpolator based on the mTAN for
solving the issues identified in our previous work with SVGP.
This module learns a constant-size latent representation from
irregular and unaligned multivariate time series, in a end-to-end
learning framework with SVGP. The mTAN is modified to

1) take into account the geographic coordinates of the pixel
thanks to a spatial positional encoding,

2) perform a learned spectro–temporal feature reduction.
We also propose a formal interpretation of the resulting kernel

operator: to the best of our knowledge, this is the first time
that such a kernel operator is proposed for the classification of
SITS.

Our second contribution is the evaluation of the proposed
model with existing state-of-the-art methods from the literature
(limited to those that can be used at large scale), on 27 Sentinel-2
tiles in the south of France. Such experimental condition exac-
erbates the irregular and unaligned issues of SITS, which have
scarcely been analyzed in the geosciences and remote sensing
community.

Beyond improved classification accuracy and reduced train-
ing time, the proposed model is versatile w.r.t. the temporal
sampling: during inference it can classify any irregular and
unaligned pixel time series even if its timestamps were not seen
during the training process.

The rest of this article is organized as follows. Section II-A
describes how the learned kernel interpolator (the mTAN) is used
to process irregular and unaligned pixel time series. Section II-B
defines our contributions for large scale land cover classification
with irregular and unaligned SITS. The experimental setup is
detailed in Section III. The results obtained with the end-to-end
trained model (time and space informed kernel interpolator
coupled with SVGP) are provided in Section IV. Comparison
with existing state-of-the-art methods from the literature are
provided in Section V. Latent representation and the similarity
kernel learned by the interpolator are discussed in Section VI.
Finally, Section VII concludes this article.

II. METHODS

This section describes how irregular and unaligned pixel time
series are projected onto a fixed temporal grid in order to be used
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Fig. 1. xi
j and xi′

j are two irregular and unaligned time series for pixels i and
i′, respectively, for the spectral feature j.

by the classifier. First, some notations and definitions, which
are used throughout this article are introduced. Then, the latent
interpolator at the core of the proposed method is presented.
Finally, the last part describes our several contributions.

A. Attention-Based Temporal Interpolator

1) Notations and Definitions: In this article, the ith pixel time
series xi(tk) at time tk is defined by its spectral measurements
{xi1(tk), . . . , xij(tk), . . . , xiD(tk)} with i ∈ {1, . . . , N}, N the
number of pixels and D the number of spectral features. In
addition, two spatial coordinates ψi

1 and ψi
2 are associated to

the pixel xi. Moreover, yi ∈ {1, . . . , C} is the target value (i.e.,
the class label) associated to the pixel xi, with C the number of
classes.

For a pixel i, a spectral feature j is observed at T i
j timestamps:

Ti
j = {tij1, . . . , tijk, . . . , tijT i

j
}, where T i

j is the number of valid

observations (e.g., no clouds or shadows). As discussed in
Section I, because of satellite swaths and weather we usually
have unaligned time series, i.e., Ti

j �= Ti′
j . In this work, we

assume that all spectral features are available for each timestamp,
i.e., Ti

j = Ti
j′ = Ti. This is commonly the case when working

with only one sensor, but the proposed method can be extended
to multisource data straightforwardly. As an illustration, Fig. 1
represents two real irregular and unaligned pixel time series
acquired by Sentinel-2. We define the set of all timestamps T
such as

T =
N⋃
i=1

Ti

= {t1, . . . , tk, . . . , tT }
with T the total number of observations. For each pixel, we
define a mask time series mi ∈ {0, 1}T such as

mi(tk) =

{
1 if tk ∈ Ti

0 otherwise
∀tk ∈ T (1)

which indicates whether the feature j of pixel i at time tk is
observed or not. We further define an augmented pixel time
series xi∗

j as the pixel

xi∗j (tk) =
{
xij(tk) if mi(tk) = 1
0 otherwise

∀tk ∈ T. (2)

Using (1) and (2) will simplify the presentation of the interpo-
lator in the following section.

2) Projection Onto a Regular-Temporal Grid: As previously
described, most of the classifiers are not able to deal with
irregular and unaligned time series. Thus, the core idea is to learn
a mapping of these irregular and unaligned time series onto a reg-
ular temporal grid of R latent dates: R = {r1, . . . , rl, . . . , rR}.
In this work, we focus on the well-established Nadaraya–Watson
kernel smoother [27, Ch. 6], because it leads to an efficient
interpolation as discussed in the next section.

For a given pixel time series x∗
j , the interpolated x̂j at latent

timestamp rl using a kernel smoother is given by:1

x̂j(rl) =

∑tT
tk=t1

K(rl, tk)m(tk)x
∗
j(tk)∑tT

t′k=t1
K(rl, t′k)m(t′k)

(3)

with K some similarity kernel [27, Ch. 6]. Usually, the radial
basis function (RBF) kernel is used K(rl, tk) = exp(d(rl, tk))
with d(rl, tk) = −σ−2(rl − tk)

2. From (3), x̂j(rl) is a convex
combination of original pixel values, whose weights are com-
puted using the kernel applied on the temporal domain. With a
RBF kernel, the similarity is a decreasing function of the distance
between two timestamps, whatever their location in the year. The
parameterσ, learned from the training data, weights the temporal
distance.

The performances of such method are strongly limited by the
hand-crafted similarity kernel. A powerful extension is obtained
using attention and embedding mechanisms, which are able
to build more complex (anisotropic) kernels [28, Ch. 11]. In
the following, the mTAN [26] is discussed as an extension
of the kernel smoother to build the kernel interpolator for the
classification model in our end-to-end training.

3) mTAN: To build the kernel interpolator, Shukla et al. [26]
proposed using attention mechanisms and more precisely the
scaled-dot product attention defined in [23]. First, a learnable
time embedding function (named temporal positional encod-
ing) φ is defined. It maps a given timestamp t onto a higher
dimensional space of size E such as

φ : R → R
E

t �→ φ(t) =

⎡
⎢⎢⎢⎢⎣

ω1t+ α1

sin(ω2t+ α2)
...

sin(ωEt+ αE)

⎤
⎥⎥⎥⎥⎦ (4)

with ωp and αp, p ∈ {1, . . . , E}, the learnable parameters.
Then, this embedding φ is used to construct the similarity

kernel K used in (3) such as

d(rl, tk) =
φ(rl)

	W	
q Wkφ(tk)√
E

with Wq and Wk two learnable matrices of size E × E, the
indices q and k refer to query and key terms in the attention
mechanism framework [23].

1For clarity, we consider only one pixel and we drop the index i in the
remaining of this article.
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Fig. 2. End-to-end learning for the classification of one irregular and unaligned
pixel time series X∗ and its associated representation Z.

Finally, (3) can be rewritten using a masked softmax opera-
tor [28, Ch. 11.3.2] such as

x̂j(rl) = softmax

{(
Φ(T)	W	

kWqφ(rl)
)�√

E

}	
x∗
j

= γ	
rl
x∗
j . (5)

with Φ(T) = [φ(t1), . . . , φ(tT )], the matrix of embeddings of
T and � being the Hadamard product. x∗

j refers to value term
attention mechanism framework [23].

Shukla and Marlin [26] further propose to use multihead
attention, i.e., H matrices of embeddings with ΦH(T) =
{Φh(T)}Hh=1, and also H time embedding functions with
φH(rl) = [φ1(rl), . . . , φH(rl)]. A learnable linear layer βH of
size H is used to produce the interpolated value

x̂j(rl) = β	
HΓH	

rl
x∗
j . (6)

with ΓH
rl

= [γ1
rl
, . . . ,γH

rl
]. This equation can be computed for

every spectral feature j and every latent date rl.
The mTAN, as defined in (6), has extended interpolation flex-

ibility w.r.t. the conventional kernel smoother. Also, it is worth
noting that (6) benefits from the computational efficiency of
attention mechanism (parallel computation) and all parameters
are learnable during the training step.

In [26], the mTAN was used as input and output layers in a
encoder–decoder architecture and a classifier was jointly learned
using feature from the latent-space. The next section describes
how we extend the mTAN to use the spatial information and to
reduce the spectral dimension of the SITS.

B. Spatially Informed Interpolator for Classification

Fig. 2 represents the workflow for the classification of one
irregular and unaligned pixel time series X∗ through its latent
representation Z. In this article, we propose to use end-to-end
learning by combining a spatially informed interpolatorhθ1

with
the SVGP classifier fθ2

defined in [14]. The SVGP classifier
uses kernel functions, i.e., RBF covariance functions, and no
changes were made from [14] (i.e., same loss). Indeed, the loss
L is used to optimize θ1 and θ2 (i.e., the parameters of hθ1

and fθ2
, respectively) and to minimize the error between the

predicted class ŷ and the true class y.
1) Spectro-Temporal Feature Reduction: The mTAN inter-

polation allows to perform feature reduction, in the temporal
domain, in the spectral domain or in both of them. Indeed,
the interpolated feature j is of size R and by taking R < T

we can perform a temporal feature reduction. We propose to
add a linear layer after the interpolation in order to perform
spectral feature reduction. Noting x̂(rl) ∈ R

D the vector of all
interpolated spectral features at timestamp rl, B a matrix of size
D′ ×D with D′ ≤ D, the final latent interpolated pixel z(rl)
can be written as

z(rl) = Bx̂(rl) (7)

The overall spectro–temporal feature reduction can be written
as

Z = BX∗Γ (8)

where Z=[z(r1), . . . , z(rR)]∈R
D′×R, X∗=[x∗(t1), . . . ,x∗

(tT )]∈R
D×T , and Γ=[γr1 , . . . ,γrR ]∈R

T×R.
As defined in (8), the matrixΓ does not depend on the spectral

features and the matrix B does not depend on time. Thus, as
in Constantin et al. [16], the temporal reconstruction does not
depend on the spectral features and the spectral feature reduction
does not depend on the time. This constrained spectro–temporal
structure reduces the complexity (number of parameters) of the
model.

Yet, the spatial information is not taken into account. In
the following section, we discuss how the spatial coordinates
are integrated in the processing by means of spatial positional
encoding.

2) Spatial Positional Encoding: We propose to add the spa-
tial information in the estimation of Z by using a spatial posi-
tional encoding. As in [29], the spatial coordinates (ψ1, ψ2) are
mapped onto a higher dimensional space of dimensionF usingϕ

ϕ : R2 → R
F

(ψ1, ψ2) �→ ϕ(ψ1, ψ2)

=
[
sin(ψ1ν1), cos(ψ1ν1), . . . , cos(ψ2νF/4)

]	
with νq = 10000−(2 l)/F and q ∈ {1, . . . , F/4}. ϕ(ψ1, ψ2)
is then given to a two-layer perceptron with ReLu activation
functions to obtain a vector of sizeD, which is finally duplicated
for each timestamp to get a spatial positional encoding matrix P
of the same shape as X∗ (i.e., D × T ). This matrix is added to
the raw input data X∗ before the spectro–temporal interpolation

X̃∗ = X∗ +P. (9)

The parameters of the perceptron are jointly optimized with
the time and space informed kernel interpolator and the SVGP
during the learning step.

The SVGP classifier fθ2
uses a kernel function over the latent

spectro–temporal representations of two pixels, respectively,
noted Zi and Zi′ defined as

k(Zi,Zi′) = exp

(
−‖Zi − Zi′ ‖2F

2	2

)

with ‖ · ‖F and 〈·, ·〉F the Frobenius norm and inner product
over matrices and 	 the lengthscale parameter of the kernel. The
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TABLE I
DESCRIPTION OF THE TIME AND SPACE INFORMED KERNEL INTERPOLATOR

PARAMETERS θ1 AND THEIR CORRESPONDING SIZES

square Frobenius norm can be written as

‖Zi − Zi′ ‖2F = ‖BXi∗Γi −BXi′∗Γi′ ‖2F︸ ︷︷ ︸
A

+ ‖BPiΓi −BPi′Γi′ ‖2F︸ ︷︷ ︸
B

+ 2 〈B(Xi∗Γi −Xi′∗Γi′),B(PiΓi −Pi′Γi′)〉F︸ ︷︷ ︸
C

.

Terms A and B correspond to the distance between two pix-
els for spectro-temporal latent variables and for spatial la-
tent variables, respectively. Term C corresponds to an inter-
action term between spectro-temporal and spatial latent vari-
ables. By comparison to our previous works [14], the covari-
ance function k(Zi,Zi′) is composed of an additional element:
the interaction term C, and in addition, the spatial distance
is learned. With formulation (9), we have a supplementary
source of information that links spectro-temporal and spatial
terms. In the following section, the complexity of the model is
discussed.

3) Model Complexity: The parameters θ1 of the time and
space informed kernel interpolator hθ1

and their corresponding
sizes are summarized in Table I and the total number of learnable
parameters is given by

2HE(1 + E) +DD′ +H + L1(L2 +D).

As a reminder, the parametersθ2 of the SVGP classifier fθ2
were

highly dependent on the number of spectro-temporal features
T ×D. By using an end-to-end training with the time and
space informed kernel interpolator, this number is significantly
reduced to R×D′ with R < T and D′ < D and therefore the
total number of parameters θ2 is reduced as well. Numbers
of parameters for our dataset are given in the experimental
Section IV-B.

III. DATASET AND EXPERIMENTAL SET-UP

The study area covers approximately200000 km2 in the south
of metropolitan France. It is composed of 27 Sentinel-2 tiles, as
displayed in Fig. 3.

Fig. 3. Location of the 27 studied tiles where a blue square corresponds to one
tile as provided by the Theia Data Center2. Each tile is displayed with its name
in the MGRS nomenclature used for Sentinel-2 products (background map©
OpenStreetMap contributors).

TABLE II
NUMBER OF PIXELS FOR EACH DATASET

A. Irregular and Unaligned Sentinel-2 Time Series

All available acquisitions of level 2 A between January
and December 2018 for the 27 Sentinel-2 tiles were used,
as described in [14]. Surface reflectance time-series and
cloud/shadow masks have been produced using the MAJA pre-
processing chain [30] and were downloaded from the Theia Data
Center.2 All the bands at 20 m/pixel were spatially up-sampled
to 10 m/pixel using bicubic interpolation [31]. A total of 10
spectral bands with three spectral indices [normalized differ-
ence vegetation index (NDVI), normalized difference water
index (NDWI) and Brightness] were used. Compared to [14], no
temporal sampling preprocessing has been used (i.e., no linear
interpolation as in [9] or other types of temporal synthesis).
As described in Section I, the resulting data is irregular and
unaligned. Following the notations defined in Section II-A3,
the union of the acquisition dates of the 27 tiles results in
T = 303 dates. Besides, the spectral dimension is equal to
D = 13.

The reference data used in this work is composed of C = 23
land cover classes ranging from artificial areas to vegetation and
water bodies constructed with different data sources as described
in [14]. The nomenclature of the 23 land cover classes can be
found in Table III.

Pixels were randomly sampled from polygons over the full
study area (i.e., 27 tiles) to create three spatially disjoint data
subsets: training, validation, and test. The polygons are disjoint
between the three datasets. The three datasets are class-balanced:

2[Online]. Available: https://www.theia-land.fr/en/products/

https://www.theia-land.fr/en/products/
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TABLE III
LAND COVER CLASSES USED FOR THE EXPERIMENTS WITH THEIR

CORRESPONDING COLOR CODE

4000 pixels per class in the training dataset, 1000 pixels per
class in the validation dataset, and 10 000 pixels per class in
the test dataset. The total number of pixels for each dataset
is provided in Table II. Classification metrics such as overall
accuracy (OA) or F-score were computed for each model using
the test dataset with nine runs with different random pixel sam-
plings. Standardization was performed for the valid acquisitions
dates. Mean and standard deviation were estimated for each
spectral band and for each spectral index on the training dataset
and then used to standardize the other datasets (validation,
test) [32].

B. Competitive Methods

Linearly interpolated data was feed into a simple SVGP
classifier called Gapfilled-SVGP model and is used as base-
line to compare with the extended mTAN combined with the
SVGP, called mTANe-SVGP model. Two other classifiers are
also compared in terms of classification accuracy and processing
time:

1) Multi-layer perceptron (MLP) with the same setup as
in [14].

2) Lightweight temporal self-attention (LTAE) described
in [13].

The end-to-end trained models are called mTANe-SVGP,
mTANe-MLP, and mTANe-LTAE, respectively.

Unlike SVGP or MLP classifiers, the LTAE classifier uses
attention mechanisms. It may be redundant to use attention
mechanisms both in the time and space informed kernel interpo-
lator and in the LTAE. Therefore, the LTAE classifier was also
studied without the extended mTAN (mTANe) and this method is
called raw-LTAE. However, the LTAE classifier was not defined
to deal with the irregular and unaligned time series pixels. Thus,
the mask was used as an additional feature. Besides, the spatial

TABLE IV
AVERAGED OVERALL ACCURACIES (OA) FOR THE MTANE-SVGP AND

GAPFILLED-SVGP MODELS (MEAN % ± STANDARD DEVIATION COMPUTED

WITH NINE RUNS)

positional encoding matrix P was also used in this classifier, as
defined in (9).

The optimizer parameters (i.e., number of epochs, learn-
ing rate, and batch size) for each model were found by trial
and error and are described in Table VIII in Appendix A.
To train all models, one NVIDIA Tesla V100 GPU was
used.

IV. MODEL EVALUATION

This section presents the different results obtained by the
mTANe-SVGP model. First, a comparison with linear inter-
polation is provided. Then, the influence on the classification
accuracy and processing time of latent representation sizes as
well as the use of the spatial positional encoding matrix are
investigated. Finally, the influence of the number of inducing
points is studied.

A. Comparison With Linear Interpolation

First, the mTANe-SVGP was implemented with a vector of
latent dates R defined with a regular sampling of τ = 10 days
and a total number ofR = 37 dates.3 The number of latent spec-
tral features was equal to the number of spectral features such
as D′ = D = 13. The latent representation Z obtained using
the extended mTAN is described by R×D′ = 481 spectro–
temporal features. The Gapfilled-SVGP model was implemented
with the same number of spectro–temporal features. A detailed
evaluation of the Gapfilled-SVGP model was done in [14].

The comparison in terms of OA between the Gapfilled-SVGP
and mTANe-SVGP models is given in Table IV. The F-score,
recall, and precision per class for both models are represented in
Appendix C. As shown in Table IV, the mTANe-SVGP model is
10 points above the Gapfilled-SVGP model in terms of classifi-
cation accuracy. The learned latent representation Z obtained by
the time and space informed kernel interpolator contains more
meaningful information for the classification task for the SVGP
classifier compared to the linearly interpolated data.

B. Spectral and Temporal Feature Reduction

Figs. 4 and 5 represent, respectively, the averaged OAs and
the averaged training times computed with different number of
latent dates R = {5, 7, 13, 15, 19, 25, 37} and different number
of latent spectral features D′ = {4, 6, 9, 10, 11, 12, 13}. It can

3Experiments were also made with random irregular sampling and with
selected dates from histogram of available dates. As modifying the positions
of the latent dates do not have any influence on the performances, the simplest
method was selected: regular sampling.
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Fig. 4. Averaged overall accuracies (OA) for H = 1 (mean in % computed
over nine different runs) with R the number of latent dates and D′ the number
of latent spectral features.

Fig. 5. Averaged training times in seconds for H = 1 (mean computed over
nine different runs) with R the number of latent dates and D′ the number of
latent spectral features.

be seen that it is possible to reduce the number of parameters θ2

by a factor four (i.e., from 584 200 to 165 600 parameters) and
the training times by a factor two, while reaching the same OA.
Indeed, as shown in Fig. 4, reducing R from 37 to 13 and D′

from 13 to 9 has a negligible effect on the OA (i.e., from 77.44
to 77.23).

In addition, the number of heads H has a little impact on the
classification performances as shown in Fig. 14 in Appendix B.
Besides, from H = 1 to H = 3, the training time can be in-
creased by a factor of two as shown in Fig. 15 in Appendix B.

C. Spatial Positional Encoding

The spatial information used to compute the positional en-
coded matrix P is composed of the spatial coordinates (northing
ψ1 and easting ψ2) in meters in the Lambert 93 projection. The

TABLE V
AVERAGED OVERALL ACCURACIES (OA) WITH AND WITHOUT THE SPATIAL

POSITIONAL ENCODED MATRIX P IN OUR ATTENTION-BASED INTERPOLATOR

FOR THE MODEL MTANE-SVGP (MEAN % ± STANDARD DEVIATION

COMPUTED WITH NINE RUNS)

TABLE VI
AVERAGED OVERALL ACCURACIES (OA) (MEAN %± STANDARD DEVIATION)

AND AVERAGED TRAINING TIMES (IN SEC) FOR THE MTANE-SVGP WITH

R = 13 LATENT DATES, D′ = 9 LATENT SPECTRAL FEATURES, H = 1 HEAD

AND THE SPATIAL POSITIONAL ENCODED MATRIX P FOR DIFFERENT NUMBER

OF INDUCING POINTS M (COMPUTED OVER NINE RUNS)

number of neurons in the first and second layers are, respectively,
L1 and L2 and were found by trial and error: L1 = 16 and
L2 = 14.

As shown in Table V, the use of the spatial positional encoding
in the extended mTAN for the mTANe-SVGP model increased
by nearly 1.5 points the OA. Besides, by using the spatial
information through a spatial covariance function in [14], the
OA was increased by nearly two points which is comparable
to the results we obtained with the spatial positional encoding.
The metrics per class for both models (without and with spatial
positional encoding) are represented in Appendix C.

Fig. 6 represents the value of P for the features number 4
and number 12. This value was computed using different spatial
coordinates on a regularly spaced grid over the 27 tiles. Fig. 6(a)
and (b) exhibits smooth spatial transitions and anisotropric spa-
tial similarity [see (9)].

D. Influence of the Number of Inducing Points

Fig. 7 represents the number of learnable parameters θ2 based
on the number of latent spectro–temporal features R×D′ and
the number of inducing points M . The reduction of the number
of latent spectro–temporal from 481 (R = 37, D′ = 13) to 117
(R = 13, D′ = 9) results in a significant reduction of the number
of learnable parameters θ2 as shown in Fig. 7, with no loss
in terms of classification accuracy (see previous discussion in
Section IV-B). Furthermore, it is possible to double the number
of inducing points from 50 to 100, while keeping the number of
parametersθ2 withR = 13, D′ = 9 lower than with 50 inducing
points and R = 37, D′ = 13.

It is known that the learning capacity of SVGP is strongly
influenced by the number of inducing points, and a tradeoff
should be found between the computational complexity and the
learning capacity [33]. By benefiting of a reduced computational
load thanks to the dimension reduction, we perform several
experiments with increasing number of inducing points M =
{100, 150, 200}. Table VI represents averaged OAs and training
times computed with different number of inducing points. With
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Fig. 6. Spatial positional encoding P computed over a regular grid of spatial coordinates (background map© OpenStreetMap contributors) (EPSG:2154).
(a) Feature 4. (b) Feature 12.

Fig. 7. Number of learnable parameters θ2 based on the number of inducing
points M and the number of spectro–temporal features R×D′.

M = 200, the OA is increased by almost one point compared to
M = 50. Training time is only slightly affected by this increase
in the number of inducing points, i.e., 834 s to 967 s. Hence,
spectro–temporal reduction made possible to use higher number
of inducing points and thus to increase the performances, while
maintaining a reduced computational load.

V. COMPARISON WITH COMPETITIVE METHODS

This section presents a comparison of the mTANe-SVGP
model with different models: mTANe-MLP, mTANe-LTAE, and
raw-LTAE. First, the performance results are studied quantita-
tively and qualitatively.

In the following, from the results obtained in the previously in
Section IV, the interpolator is set-up with R = 13 latent dates,
D′ = 9 latent spectral features, H = 1 head, spatial positional
encoding matrix P and M = 200 inducing points. As the raw-
LTAE model is the only one not using the interpolator, no spectral
or temporal reduction was implemented in this model.

Fig. 8. Boxplots of the OA for each model (mTANe-SVGP, mTANe-MLP,
mTANe-LTAE, and raw-LTAE) computed over nine runs.

TABLE VII
AVERAGED TRAINING TIMES (IN SEC) COMPUTED OVER NINE RUNS AND

NUMBER OF TRAINABLE PARAMETERS FOR EACH MODEL (MTANE-SVGP,
MTANE-MLP, MTANE-LTAE, AND RAW-LTAE)

A. Quantitative Results

Classification accuracies are given in Fig. 8. From the results,
the SVGP model took greater advantage of the interpolator than
the MLP or the LTAE models. Indeed, the OA of the mTANe-
SVGP model is seven points above the mTANe-MLP model and
around four points above the mTANe-LTAE model. On the other
hand, the mTANe-SVGP model is in average two points below the
raw-LTAE model. The F-score, recall, and precision per class for
the mTANe-SVGP, mTANe-MLP, mTANe-LTAE, and raw-LTAE
are represented in Figs. 16, 17 and 18 in Appendix C.



2988 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

The number of trainable parameters and the training times
for each method are summarized in Table VII. The mTANe-
SVGP model has more trainable parameters that the raw-LTAE
model. However, the training time of the mTANe-SVGP model
is about 1.3 times shorter than the raw-LTAE as shown in
Table VII. By using a spectro–temporal reduction with our
interpolator, the number of trainable parameters for the mTANe-
SVGP is just over 2.5 times lower than the simple SVGP
(i.e., 1 005 675 versus 2 680 075), as described in Fig. 7. The
number of parameters of the raw-LTAE is also very large be-
cause it is not able to deal with unaligned time series and
therefore has to combine all the dates. By using our inter-
polator, for the LTAE, the number of trainable parameters is
reduced by four. However, as shown in Fig. 8, the OA of
the mTANe-LTAE model is seven points below the raw-LTAE
model.

B. Qualitative Results

Land cover maps have been produced for each model
(mTANe-SVGP, mTANe-MLP, mTANe-LTAE, raw-LTAE) using
the iota2 processing chain [34] on two different tiles: 31TCJ
and 31TDJ. Inference was performed using the model trained
on the 27 tiles with the best OA over the nine runs. The re-
sults obtained by, respectively, the mTANe-SVGP and raw-LTAE
are shown in Fig. 9. The results obtained on this agricultural
area on the 31TCJ tile showed that the main structures of the
map are clearly represented (i.e., crop field border). Indeed,
the classification map does not exhibit rounded borders as it
is often the case with CNN model [35]. The mTANe-SVGP
takes into account spatial information without spatial over-
smoothing. Fig. 10 also represents land cover maps obtained
with the mTANe-SVGP and raw-LTAE but in a mountainous
area (“Montagne noire”). These maps clearly show some er-
rors in predictions. Indeed, WAT class was predicted instead
of GRA class for raw-LTAE. Moreover, STC and COR were
predicted instead of WOM, for mTANe-SVGP and raw-LTAE,
respectively. There are several reasons for these errors. First,
there are no pixels from the training or test dataset in this area.
Moreover, this area has a fairly high relief, at an altitude of
850 meters. All the generated land cover maps are available for
download.4

VI. DISCUSSION

In this section, the latent representation and the similarity
kernel learned by the interpolator are discussed. Moreover, an
additional comparative study is made between the mTANe-
SVGP and the raw-LTAE to evaluate the temporal sampling
robustness.

A. Latent Representation

It is possible to visualize the learned latent representation x̂j .
Fig. 11 represents the comparison of three NDVI time series
profiles from one pixel labeled as “CORN”: the raw data, the

4DOI: https://doi.org/10.5281/zenodo.8033902

Fig. 9. Land covers maps in an agricultural area. (a) Sentinel-2 true color
composition, (b) Classification map obtained with mTANe-SVGP, (c) Classifi-
cation map obtained with raw-LTAE and (d) the class color map (see Table III
for correspondence).

gapfilled data (i.e., linearly interpolated) and the learned latent
representation obtained by our time and space informed kernel
interpolator.

The latent representation obtained in Fig. 11 clearly does not
minimize the reconstruction error of the original time series. For
instance, the second minimum of the NDVI observed around
the day of the year 280 is not reconstructed. Yet, this is the
representation that minimizes the classification loss function of
the SVGP.

https://doi.org/10.5281/zenodo.8033902
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Fig. 10. Land covers maps in an agricultural area. (a) Sentinel-2 true color
composition with referenced polygons, (b) Classification map obtained with
mTANe-SVGP and (c) Classification map obtained with raw-LTAE. The class
color map is represented in Fig. 9 (see Table III for correspondence).

B. Versatility of the Similarity Kernel

As defined in Section II-A3, by using attention and embedding
mechanisms, the similarity kernel is able to adapt to the pixel
temporal sampling. The versatility of the similarity kernel can
be shown by computing the attention value γrl defined in (5) for
different latent dates rl and for different sets of observed dates
T. In Fig. 12, two different latent dates are studied rl = 181 and
rl = 361.5 For each latent date rl, two different sets of observed
dates T are considered. First, the attention value was computed
with a regular set of observed dates: T = {1, . . . , 365} with an

5The attention value plotted was normalized (cf Fig. 12) in order to have the
same vertical scale.

Fig. 11. NDVI time series profiles for a pixel labeled “CORN”. Blue points
• correspond to the raw data, the outlier values have been removed in order to
have a comprehensive plot. Red points • correspond to the value obtained with
a linear interpolation with an interval of 10 days for a total of 37 dates. Green
points • correspond to the latent representation x̂j with j = NDVI obtained
from the mTANe-SVGP model, before the spectral reduction (D′ = 9).

Fig. 12. Normalized attention values γn
rl

=
γrl

max(γrl
)

computed on two

different latent dates rl = 181 and rl = 361. − corresponds to γn
rl

computed
with T = {1, . . . , 365} with a regular interval of τ = 1 day. Blue points •
correspond to γn

rl
computed with T = Ti for a random pixel i.

interval of τ = 1 day (in red in Fig. 12). Then, the attention value
was computed with a random set of observed dates from a pixel
i with T = Ti (in blue in Fig. 12).

From Fig. 12, we can see that contrary to conventional RBF
kernel, the learned kernel is not centered on the latent date.
It thus adapts itself according to the latent date rl and the
available observations. Moreover, for the set of observed dates
T = {1, . . . , 365} (i.e., continuous red line), the bandwidth
is larger for the latent date rl = 361 than for the latent date
rl = 181. Such property is referred to as a variable-bandwidth
kernel in the statistical literature [36]. While it has shown to
perform well on several cases, such kernel was difficult to
optimize with standard statistical models. Using the proposed
framework, the optimization is efficient, scales well and can
handle any timestamp.
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Fig. 13. Boxplots of the OA for the mTANe-SVGP and raw-LTAE models
computed with the test data set only on the 31TCJ tile over nine runs. The models
were trained and validated on the all 27 tiles. The acquisition dates T for the test
data set were artificially shifted with different values: δ = {0, 1, 2, 3, 5} days.

C. Robustness to the Temporal Sampling

In Section V-A, the raw-LTAE showed better classification
performances. However, to compute the inference on a specific
area (e.g., on a specific Sentinel-2 tile), the raw-LTAE required
having seen the whole set of observed dates during the training
step. Thus, each possible temporal feature should have been
encoded by the raw-LTAE during the training step in order to
be able to classify a given area at inference time. This is not the
case for our proposed model which is able to process pixels with
any set of observed dates.

This can make the time encoding of raw-LTAE not robust
to variations of the temporal sampling between the train and
test sets, with a possible overfit on the training dates. To in-
vestigate this possible issue, dates not seen during the training
step and used only for the inference were artificially created.
They correspond to the original acquisition dates T from the
training dataset that have been slightly shifted for the test data
set. Different values for the shift were studied: δ = {0, 1, 2, 3, 5}
days. Five days correspond to the maximum number of days
between acquisition dates for pixels on two adjacent orbits. The
OA was computed only on test samples from 31TCJ tile for two
models mTANe-SVGP and raw-LTAE both trained on the 27 tiles.

From Fig. 13, we can say that the OA of the mTANe-SVGP
model is not affected by this temporal shift δ. However, the OA
of the raw-LTAE model is drastically impacted by the temporal
shift δ. For a shit of one day, the OA is reduced by almost 3
points and it is almost divided by 1.5 with δ = 5 days. The
use of a time and space informed kernel interpolator makes the
mTANe-SVGP model more robust to this shift than the raw-
LTAE model which uses spectro–temporal attention mechanisms
but no interpolation. We conclude that the raw-LTAE is more
sensitive to dates seen during the training step and may therefore
be likely to over-fit.

VII. CONCLUSION

This work introduces an approach to classify massive irregu-
lar and unaligned Sentinel-2 SITS. To deal with irregular and
unaligned pixel time series, an end-to-end interpolation and
learning strategy is proposed. A first module, a time and space
informed kernel interpolator, enables to map irregular and un-
aligned SITS onto a fixed and reduced size latent space. Tempo-
ral reconstruction and spectral reduction were performed jointly
but independently. This constrained spectro–temporal structure
enables to reduce the complexity of the classifier. Indeed, the
representation obtained is given to a SVGP classifier and all the
parameters are jointly optimized during the optimization of the
classifier. The spatial information is taken into account in the
learned representation through a spatial positional encoding.
Experiments were conducted on 27 Sentinel-2 tiles of the full
year 2018 in the south of France.

In terms of accuracy, the end-to-end learning mTANe-SVGP
model outperformed the simple SVGP classifier with linearly in-
terpolated data (Gapfilled-SVGP). The significant reduction for
the spectro-temporal features has allowed to use more inducing
points while keeping the same complexity, resulting in improved
classification performance. Moreover, the mTANe-SVGP model
is above the mTANe-MLP and mTANe-LTAE models in terms of
accuracy. While the proposed mTANe-SVGP does not outper-
form the raw-LTAE model, our model does not require for the
inference the common temporal grid used during the training
step. Besides, our result showed that the raw-LTAE model is
sensitive to the set of available dates during inference, contrary to
the proposed mTANe-SVGP, which showed stable performances.
The mTANe-SVGP is therefore more likely to generalize well to
large-scale scenario where irregular and variable sampling dates
are prominent.

In this article, the potential of the multihead attention has
not been fully taken into account. Indeed, only one head was
usedH = 1 and the performances with an increasing number of
heads were not satisfying. A perspective of this work could be to
inform the different heads with the spatial information: the linear
layer βH in (6) could be replaced by the output of a perceptron
using the spatial positional encoding. This could help the heads
to specialize spatially and differentiate themselves.

Another perspective of this work is to combine multimodal
time series. Adding a radar sensor (i.e., Sentinel-1) or other type
of optical sensors (i.e., Landsat 8 with its thermal bands) could
improve the representation for the classification task. The ability
of the interpolator to process unaligned time series would make
the fusion of multisensor data straightforward. Moreover, in
addition to spatial data (i.e., longitude and latitude), topographic
data can be used to construct the spatial positional encoding in
order to take better account of climatic, geographical, and other
differences.

In the interest of reproducible research, the implementa-
tion of all the models (mTANe-GP, mTANe-MLP, mTANe-
LTAE and raw-LTAE) is made available in the follow-
ing repository:https://gitlab.com/Valentine-Bellet/land_cover_
southfrance_mtan_gp_irregular_sits.

https://gitlab.com/Valentine-Bellet/land_cover_southfrance_mtan_gp_irregular_sits
https://gitlab.com/Valentine-Bellet/land_cover_southfrance_mtan_gp_irregular_sits
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APPENDIX A
SOLVER PARAMETERS FOR EACH MODEL

TABLE VIII
PARAMETER VALUES FOR THE ADAM OPTIMIZER FOR THE MODELS: GAPFILLED-SVGP, MTANE-SVGP, MTANE-MLP, MTANE-LTAE, AND RAW-LTAE

APPENDIX B
INFLUENCE OF THE SPECTRAL AND TEMPORAL REDUCTION FOR DIFFERENT H HEADS

Fig. 14. Averaged overall accuracies (OA) (mean in % computed over nine different runs) with R the number of latent dates, D′ the number of latent spectral
features and H the number of heads.

Fig. 15. Averaged training times in seconds (mean computed over nine different runs) with R the number of latent dates, D′ the number of latent spectral features
and H the number of heads.
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APPENDIX C
METRICS PER CLASS

Fig. 16. Averaged F-score per class. mTANe-SVGP1: H = 1,D′ = 13, R = 37,M = 50; mTANe-SVGP2: H = 1,D′ = 9, R = 13,M = 50; mTANe-
SVGP3: with P and H = 1,D′ = 9, R = 13,M = 50; mTANe-SVGP4: with P and H = 1,D′ = 9, R = 13,M = 200.

Fig. 17. Averaged recall per class. mTANe-SVGP1: H = 1,D′ = 13, R = 37,M = 50; mTANe-SVGP2: H = 1,D′ = 9, R = 13,M = 50; mTANe-
SVGP3: with P and H = 1,D′ = 9, R = 13,M = 50; mTANe-SVGP4: with P and H = 1,D′ = 9, R = 13,M = 200.

Fig. 18. Averaged precision per class. mTANe-SVGP1: H = 1,D′ = 13, R = 37,M = 50; mTANe-SVGP2: H = 1,D′ = 9, R = 13,M = 50; mTANe-
SVGP3: with P and H = 1,D′ = 9, R = 13,M = 50; mTANe-SVGP4: with P and H = 1,D′ = 9, R = 13,M = 200.
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