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A Two-Stream LSTM-Based Backscattering Model
at L-Band and S- Band for Dry Soil Surfaces Under

Large Roughness Conditions
Dong Zhu , Peng Zhao, Qiang Zhao , Qing-Liang Li, Yu-Shi Zhang, and Li-Xia Yang , Member, IEEE

Abstract—In this article, we report for the first time two radar
measurements (Ji Mo 2008 and Min Qin 2009) on natural soil
surfaces under large roughness, which were conducted by the
China Research Institute of Radiowave Propagation. The desired
HH and VV polarization backscatter data were measured by
a truck-mounted scatterometer, which operates at L-band and
S-band (i.e., 1.34 and 3.2 GHz, respectively). Simultaneously to
radar acquisitions, the ground-truth data related to the rms height,
the correlation length, and the dielectric constant were collected.
Discrepancies between the simulations of the advanced integral
equation model (AIEM) and the radar data have indicated the
inadequacy of the AIEM model under large roughness condi-
tions. To address this limitation, a new two-stream long short-term
memory–based network was developed to receive the radar and
surface parameters, termed radar-surface network (RSNet). The
proposed network was trained on a hybrid dataset consisting of
1) a simulated dataset generated based on the AIEM under a
wide range of conditions and 2) the radar data reported in Ji Mo
2008 and Min Qin 2009 combined with those simulated to make
the dataset more relevant to natural conditions. After training,
extensive experiments were performed to evaluate the performance
of the proposed backscatter model. Comparisons demonstrate that
the predictions of RSNet are generally in good agreement with both
simulations and measured data, in terms of magnitude and trend,
thus demonstrating that the proposed model can yield trustworthy
and high-quality backscatter estimations at L-band and S-band for
dry soil surfaces under large roughness conditions.
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I. INTRODUCTION

UNDERSTANDING and modeling radar backscatter from
bare soil surfaces play a significant role in target detection,

ground classification, and remote sensing data interpretation.
Radar measurements are the most straightforward and effective
way to obtain backscatter data. Over the past few decades, many
researchers have conducted various radar campaigns over bare
soil surfaces. For example, Ulaby et al. [1] carried out two radar
measurements on bare surfaces at Texas State University and
Lawrence, Texas, during 1974–1975. These two experiments
measured the backscattering coefficients from bare fields, with
the incidence angles ranging from 0° to 80° at 1–8 GHz, and
contributed significantly to the study of the surface scattering
problems. In research work [2], Oh et al. made the polarimetric
radar measurements for bare soil surfaces under a wide range
of roughness and moisture conditions at L-band, C-band, and
X-band with incidence angles varying from 10° to 70°. In recent
years, the China Research Institute of Radiowave Propagation
(CRIRP) has carried out radar measurements on various types
of terrains (e.g., bare surfaces, grassland, and sea ice), and then
accumulated a large amount of experimental data.

It is well known that radar data are essential for developing
an accurate backscatter model. However, to create a database
that is representative of all available conditions of natural soil
surfaces using different radar configurations would require a
huge time and manpower investment [10]. Thus, various models
have been introduced to accurately analyze and interpret the
backscatter behavior from bare surfaces [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11]. Looking through the outcomes of these
studies, two principal groups of models have emerged. The first
is theoretical models, such as the physical optics model, the
geometrical optics model, and the small perturbation model.
Reportedly, their applicability is limited [4], and they are not
sufficient for most natural surfaces [6]. Afterward, with the
objective of expanding their validity region, the integral equation
model (IEM) [3], [4], and its derivatives improved IEM [7] and
advanced IEM (AIEM) [8] were developed. Because of the high
precision and low computational cost, those IEM-based models
bring a new perspective to the simulations of surface scattering
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problems [12], [13], [14], [15], [16]. However, the geometric
properties of natural surfaces are rather difficult to characterize
accurately with statistical models. On the other hand, limiting
assumptions are more or less applied in the derivation of those
theoretical models. For all these reasons, estimations of radar
backscatter from natural surfaces are still not adequate when
using theoretical models.

The second group is empirical (semi-empirical) models. Oh
model [2] is considered to be the most widely used one. This
model was developed with the objective of reproducing the
backscatter from the soil surface and retrieving the surface
parameters of interest. Good agreements were obtained with the
experimental observations. In addition to the Oh model, Dubois
et al. [5] presented a semi-empirical algorithm for modeling the
radar backscatter of bare surfaces based on the scatterometer
data. The deviations observed among the IEM simulations and
the SAR data motivated Baghdadi et al. [11] to propose an
empirical calibration of the IEM. In contrast to theoretical mod-
els, which require complex mathematical derivations, empirical
models relate several fitted parameters obtained from specific
radar observations. However, they are only applicable to the
conditions under which those radar data were measured, and
some of the models neglect one (or two) of the surface parame-
ters (e.g., the role of the correlation length is not involved in the
Oh model [2]). In research work [6], a large discrepancy (about
3.2 dB) was observed between two IEM simulations, which were
conducted with the same rms height (s = 0.5 cm) and different
correlation lengths (l = 3 and 8 cm) at 30°. As a result, these
empirical models suffer from significant restrictions.

Computer science is moving forward at a rapid pace, and the
deep-learning (DL) approaches have brought a new perspective
to various fields, especially for image classification [17], [18],
[19], object detection [20], [21], and semantic segmentation
[22], [23]. Due to their powerful capabilities, extensive efforts
have been devoted to investigating the applicability of the
DL-based methods to the field of electromagnetic [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34]. In the early
stage, researchers have been attempting to explore whether DL-
based methods could be used in computational electromagnetic
(CEM) [24], [25], [26], [27]. In [25], Yao et al. treated the
conventional method of moments (MoM) matrix as the train-
ing dataset, and the artificial neural network training process
became a conventional linear algebra MoM-solving process.
This novel idea brings a new perspective to CEM. Similarly,
our previous work [27] aimed to apply DL-based methods
to the finite-difference time-domain simulations. As expected,
DL methods achieved satisfactory accuracy. Recently, extensive
work has been undertaken to find the use of DL-based methods
to address the electromagnetic scattering problems [28], [29],
[30], [31], [32], [33], [34]. For instance, Li et al. [29], for the
first time, exploited the connection between DL-based methods
and nonlinear inverse scattering problems. Numerical and exper-
imental results revealed that the DL-based method outperforms
remarkably conventional methods in terms of both image quality
and computational time. In [33], Xiao et al. proposed a hybrid
method that combines DL and experimental design to reproduce
the monostatic radar cross section of the conducting target.

Numerical experiments were carried out to evaluate the accuracy
and efficiency of the proposed method. All these outcomes serve
as a novel path for solving electromagnetic scattering problems.
However, until now, most of the research has focused on ap-
plying DL-based methods to develop an inversion algorithm to
reproduce the parameters of interest [28], [29], [30], [31], [32],
i.e., inverse problems, and few efforts have been reported to
characterize the forward problems [33], [34]. Apparently, an
accurate forward method can be guided to develop an effective
retrieval algorithm.

The radar measurements (Ji Mo 2008, and Min Qin 2009)
carried out by the CRIRP were reported for the first time in this
article. Validation of the measured data was made based on the
AIEM simulations. Motivated by the deviations observed be-
tween the AIEM simulations and the measured data under large
roughness conditions, we propose a two-stream long short-term
memory (LSTM)–based model to address this issue. First, a hy-
brid dataset, consisting of many sets of input parameters (i.e., the
radar configurations and surface parameters) and corresponding
backscattering coefficients with Gaussian random noise, was
generated based on the radar data and the AIEM simulations.
Second, we build a two-stream LSTM network (radar-surface
network, termed RSNet) to receive the radar configurations
and surface parameters and use them as the multiple inputs of
the model. Concretely, several LSTM blocks are employed to
exploit the features from the input parameters. Furthermore, a
feature fusion layer is applied to motivate the network to focus
on the discriminative features. The network ultimately ends with
a cascaded fully connected (FC) layer that is responsible for
prediction. In this way, the proposed RSNet can exploit and
fuse the correlated features from the multiple inputs and has the
capability to estimate the radar backscatter from soil surfaces.

The rest of this article is organized as follows. Section II
presents the truck-mounted scatterometer and the experimen-
tal campaigns. Section III validates the applicability of AIEM
simulations with radar data. Section IV illustrates the proposed
two-stream LSTM-based backscattering model. The detailed
comparisons are shown in Section V. Finally, Section VI con-
cludes this article.

II. RADAR MEASUREMENTS

A. Truck-Mounted Scatterometer System

CRIRP developed a truck-mounted scatterometer system,
namely CRIRPSCAT, as shown in Fig. 1. This system mainly
comprises an antenna module, a vector network analyzer (VNA)
and a servo module. The antenna module is equipped with
six sets of antennas in different bands (i.e., L-band, S-band,
C-band, X-band, Ku-band, and Ka-band). The computer unit
is responsible for sending commands to the VNA to transmit
signals through the antenna and then receive the echo signals
from the receiving antenna for the desired data. The servo
module includes a servo control unit and a servo motor and is
mainly used to control the elevation angle of the antenna, which
can collect the scattering echoes of point (or distributed) targets
at different incidence angles. Table I lists the basic configurations
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Fig. 1. Photograph of the truck-mounted scatterometer system.

TABLE I
CONFIGURATIONS OF THE CRIRPSCAT

of CRIRPSCAT, e.g., the center frequency, bandwidth, and
antenna gain.

The operating principle of the truck-mounted scatterometer
system is defined as follows.

1) The VNA generates the signal of a given frequency, and
then the signal is delivered to the transmission antenna via
a feeder.

2) The polarization switch of the transmission antenna con-
trols the polarization mode of the signal and then delivers
the signal to the feed.

3) The antenna receives the scattering signals from the soil
surface and transmits the signals through the feeder to the
VNA.

4) Then, the VNA converts the received signals into a time
domain, and based on the beamwidth and antenna height,
one can calculate the irradiation area. Then, it filters out
edge clutter signals and retains valid signals.

5) The signal is processed by the VNA and transformed from
the time domain to the frequency domain to obtain the
value of the reflected power over the irradiated area.

B. Radar Measurements

In general, the procedure of the radar measurement is broadly
organized into the following parts.

1) Calibrating the scatterometer: The objective of calibration
is to reduce the error of the scatterometer system and
enhance the accuracy of the measurement. The calibration
formula is as follows:

σs =
Prσ0R

4

Pr0AR4
0

(1)

where σs represents the surface backscattering coefficient and
σ0 is the theoretical scattering cross-section of the calibrator. Pr

Fig. 2. Photograph of (a) calibrator and (b) measurement for noise background
level.

Fig. 3. Locations of the campaigns. (a) Ji Mo 2008 in Qingdao, Shandong,
China. (b) Min Qin 2009 in Wuwei, Gansu, China.

and Pr0 are the power of the surface echo and the calibrator. R
denotes the distance from the antenna to the ground, whereas
R0 is the distance from the antenna to the calibrator. A is the
irradiation area. Note that the calibrator used in this experiment
was a standard hollow metal sphere, as shown in Fig. 2.

1) Selecting the test sites. It is important to note that the
location of the test sites should be representative and easy
to measure.

2) Setting up the devices, e.g., computer unit and antenna
system.

3) Changing the incidence angles (i.e., elevation angles of
the antenna) over the range of interest.

4) Acquiring the radar data via the scatterometer system.
5) Changing the azimuth and repeating the procedure to

collect more independent samples.
To achieve the backscatter data from soil surfaces under large

roughness conditions, two radar campaigns were conducted by
the CRIRP, namely Ji Mo 2008, and Min Qin 2009. The locations
of radar campaigns are shown in Fig. 3.

Ji Mo 2008: This campaign took place from December 20 to
31, 2008. Three test sites, located at 36.586°N, 120.435°E in
Qingdao, Shandong, China, with an average elevation of 42 m,
were selected for measurements. This campaign was devoted to
measuring the plowed fields with soft soil and large roughness.
The width of each test site was approximately 40 m, whereas the
length was approximately 200 m. The radar data were collected
by the CRIRPSCAT, which operates at L-band and S-band (1.34,
and 3.2 GHz, respectively) at incidence angles ranging from 20°
to 80° with an interval of 5°.

Min Qin 2009: This campaign was commenced on April 14,
2009, and completed on June 10, 2009. During the experiment,
the desired radar data were collected from four fields, located at
39.006°N, 103.562°E in Wuwei, Gansu, China, with an average
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TABLE II
GROUND MEASUREMENTS OF THE JI MO

Fig. 4. Photograph of a roughness profile with a 2.4-m-long needle profilome-
ter and a 3-cm interval between needles.

Fig. 5. Diagram the system of dielectric constant measurement.

elevation of 1300 m. The radar configurations for this campaign
were consistent with those of Ji Mo 2008, except for a slight
change in the incidence angles, i.e., 25°–80° with an interval
of 5°. Note that the test fields in Min Qin 2009 were relatively
smoother and drier than those in Ji Mo 2008.

C. Ground-Truth Measurements

For each test site, radar measurements were repeated (>16
times) at various azimuth angles to enhance the number of
independent samples. Simultaneously to radar acquisitions, the
ground-truth measurements were made over the corresponding
soil surfaces. Soil roughness measurements were conducted
using a 2.4-m-long needle profilometer with a 3-cm internal,
as shown in Fig. 4. To achieve sufficient statistical precision,
more than four profiles were recorded at each test field of those
two campaigns. The rms height s and the correlation length l
were estimated using the mean of all experimental correlation
functions.

Fig. 5 shows the system for measuring the dielectric constant
of the soil surfaces, which mainly consists of a computer, a VNA,
a coaxial probe, etc. Based on transmission line theory, this
system establishes a function between the dielectric constant and

measured values. It should be noted that the dielectric constant
was measured at a depth of 4 cm over each test surface.

After preprocessing the measured data, a complete ground-
truth dataset with large surface roughness conditions was es-
tablished. Tables II and III summarize the ground-truth data for
those two campaigns. For the full set of measurements, the rms
height varies from 1.23 to 3.8 cm, and the correlation length
ranges between 29.25 and 43.6 cm. Compared with other radar
campaigns that have been reported [2], [6], all of the test fields
reported in this article are at a large scale of roughness values,
e.g., in [6], the rms height and correlation length vary from
0.36 to 1.58 cm and 1.5 to 16.9 cm, respectively. Therefore,
the presented experiments are quite different from those in the
literature [2], [6].

III. COMPARISON BETWEEN RADAR DATA AND

AIEM SIMULATIONS

A. AIEM Model

In research work [8], modification of the IEM model [3] was
made by removing a simplifying assumption in the spectral rep-
resentation of the Green’s function. Therefore, a more complete
version of the IEM model was derived, namely AIEM. It is well
known that the AIEM demonstrates significant improvements
for single scattering problems over a wide range of roughness
conditions [15], [16]. The general form of the AIEM is shown
in the following equation:

σs
pp = σk

pp + σkc
pp + σc

pp =
k2

2
exp[−s2(k2z + k2sz)]

×
∞∑

n=1

s2n

n!

∣∣Inpp∣∣2W (n)(ksx − kx, ksy − ky) (2)

with

Inpp = (ksz + kz)
nfppe

−s2kzksz

+
1

4
{(ksz − q1)

nF
(+)
pp1 e

−s2(q21−q1ksz+q1kz)

+ (ksz − q2)
nF

(+)
pp2 e

−s2(q22−q2ksz+q2kz)

+ (ksz + q1)
nF

(−)
pp1e

−s2(q21+q1ksz−q1kz)

+ (ksz + q2)
nF

(−)
pp2e

−s2(q22+q2ksz−q2kz)}

+
1

4
{(kz + q1)

nF
(+)
pp1 e

−s2(q21−q1ksz+q1kz)
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TABLE III
GROUND MEASUREMENTS OF THE MIN QIN

Fig. 6. Comparison of backscattering coefficients between AIEM simulations
and the measured data of surface J1 for (a) L-band at 1.34 GHz and (b) S-band
at 3.2 GHz.

+ (kz + q2)
nF

(+)
pp2 e

−s2(q22−q2ksz+q2kz)

+ (kz − q1)
nF

(−)
pp1e

−s2(q21+q1ksz−q1kz)

+ (kz − q2)
nF

(−)
pp2e

−s2(q22+q2ksz−q2kz)} (3)

where p = V and H stands for vertical or horizontal polar-
ization, respectively. kx = ksinθicosφi, ky = ksinθisinφi, and
kz = kcosθi, and ksx = ksinθscosφs, ksy = ksinθssinφs, and
ksz = kcosθs. θi and θs represent the incidence angle and
scattering angle, respectively. k is the wavenumber. For the sake
of brevity, the remaining formulas are omitted here but can be
referred to [8].W (n)( · ) is the Fourier transform of the nth power
of the normalized surface correlation function. In the case of
natural surfaces, an exponential correlation function generally
serves as a good match for most scenes [6]. Thus, we have

W (n)(ksx − kx, ksy − ky) =
l2

n2

[
1 +

(
2kl sin θ

n

)2
]−1.5

.

(4)

B. Comparison Between the Radar Data and the AIEM

Figs. 6–12 show the comparisons of the AIEM simulations
with the measured data. Particularly, surfaces J2 and M2 are
used as examples to demonstrate the applicability of the AIEM
in detail, and Fig. 13 shows the corresponding test fields.

1) Surface J2: It is seen in Table II that surface J2 represents a
large roughness condition with s= 3.2 cm and l= 30.6 cm. Fig. 7

Fig. 7. Comparison of backscattering coefficients between AIEM simulations
and the measured data of surface Surface J2 for (a) L-band at 1.34 GHz and
(b) S-band at 3.2 GHz.

Fig. 8. Comparison of backscattering coefficients between AIEM simulations
and the measured data of surface J3 for (a) L-band at 1.34 GHz and (b) S-band
at 3.2 GHz.

illustrates the AIEM simulations compared with the measured
data at 1.34 and 3.2 GHz for both HH and VV polarizations.
It can be found in Fig. 7(a) that the simulated values of the
AIEM, on the whole, capture the trend of the measured data, but
fail to match the magnitude well. The root-mean-square errors
(RMSE) for HH and VV polarizations are equal to 3.74 and
2.81 dB, respectively. As the frequency increases from 1.34 to
3.2 GHz (or ks increases from 0.9 to 2.14), the AIEM predictions
show a large deviation from the measured data, especially at
intermediate incidence angles (e.g., 40° and 50°), with overall
RMSE values of 2.46 and 2.86 dB, respectively.

2) Surface M2: As observed in Table III, the rms height
and correlation length of surface M2 are 1.51 and 29.25 cm,
respectively, which is regarded as a relatively smooth condition
among these two experiments. Fig. 10 shows the comparison of
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Fig. 9. Comparison of backscattering coefficients between AIEM simulations
and the measured data of surface M1 for (a) L-band at 1.34 GHz and (b) S-band
at 3.2 GHz.

Fig. 10. Comparison of backscattering coefficients between AIEM simula-
tions and the measured data of surface M2 for (a) L-band at 1.34 GHz and
(b) S-band at 3.2 GHz.

Fig. 11. Comparison of backscattering coefficients between AIEM simula-
tions and the measured data of surface M3 for (a) L-band at 1.34 GHz and
(b) S-band at 3.2 GHz.

the AIEM predictions and the measured data for surface M2. In
this case, the AIEM simulations perform better than those for
surface J2. It is observed from Fig. 10 that the AIEM simulations
for HH polarization are in good agreement with the measured
data, with lower RMSEs of 1.67 and 0.87 dB for both L-band
and S-band. However, for VV polarization, there is an obvious
discrepancy between the AIEM and the measured data. The
RMSEs are greater than those for HH polarization.

It is reported that the validity domain of such an IEM-based
algorithm is generally limited to ks <3 [4], [35]. As seen in
Tables II and III, the ks values of surfaces J2 and M2 are both
within their validity range. However, the results shown in Figs. 7
and 10 reveal the limited applicability of the AIEM in correctly
estimating the soil surface backscatter under large roughness
conditions. In practice, these limitations may be related to the
following reasons: 1) the AIEM used in this article performs
the single scattering mechanism, whereas the effect of multiple

Fig. 12. Comparison of backscattering coefficients between AIEM simula-
tions and the measured data of surface M4 for (a) L-band at 1.34 GHz and
(b) S-band at 3.2 GHz.

Fig. 13. Photograph of the test fields. (a) Surface J2, with s = 3.2 cm and
l = 30.6 cm. (b) Surface M2, with s = 1.51 cm and l = 29.25 cm.

scattering gradually increases with the roughness increases; and
2) the correlation length assessment may be inaccurate, as it is
not only the least accurate parameter but also the most difficult
to measure [10].

IV. MODEL DEVELOPMENT

In Section III, the discrepancies between the AIEM sim-
ulations and the radar data under large roughness conditions
were demonstrated. Motivated by this issue, we propose a new
DL-based backscatter model using the simulated data and the
measured data.

A. LSTM-Based Backscatter Model for Soil Surfaces

According to the derivation of the AIEM, the soil backscatter
acts as a function of the radar configurations (i.e., frequency,
incidence angles, and polarizations) and the surface parameters
(i.e., rms height, correlation length, and dielectric constant).
Without loss of generality, we assume that R(·) and S(·) denote
the nonlinear mappings of the radar and surface parameters,
respectively, then an explicit expression is given by[

σ0
HH, σ

0
VV

]
= AIEM {R(f, θi);S(s, l, εr)} . (5)

With reference to (2) and (5), we can observe a complex
nonlinear relationship between the soil backscatter and the input
parameters. Reportedly, DL-based networks work as a powerful
tool to solve nonlinear relationships due to the presence of the ac-
tivation function [36], [37]. On the other hand, all the parameters
in (5) contribute to the backscatter through a coupled way, which
indicates that the interconnections between the parameters are
also required to be considered. Moreover, according to (5), each
parameter vector can be regarded as a set of orderly sequences.



ZHU et al.: TWO-STREAM LSTM-BASED BACKSCATTERING MODEL AT L-BAND AND S-BAND FOR DRY SOIL SURFACES 3143

Fig. 14. Diagram of (a) LSTM block and (b) proposed RSNet.

Among fundamental DL networks, LSTM neural network is one
of the most powerful networks for processing sequential inputs
[38], [39], [40]. In view of this, the LSTM network is well-suited
for the backscatter estimation of soil surfaces. To justify these
considerations, we build a two-stream LSTM-based backscatter
model, RSNet, to tackle the inadequacy of the AIEM simulations
under large roughness conditions.

As shown in Fig. 14(a), the LSTM block consists of four units,
namely an input gate, a forget gate, a memory cell, and an output
gate. The input gate controls the data flow from the network to
the memory cell, whereas the cell is applied to record and store
the internal state of information. Simultaneously, the forget gate
can learn to reset the previous state when the stored information
is no longer needed [36].

The general formulas of the input gate, forget gate, and output
gate are given by

it = δ(Wixxt +Wihht−1 + bi) (6)

ft = δ(Wfxxt +Wfhht−1 + bf ) (7)

ot = δ(Woxxt +Wohht−1 + bo). (8)

The expression of the memory cell is given as

ct = ft � ct−1 + it � tanh(Wcxxt +Wchht−1 + bc). (9)

Finally, we have the hidden layer update formula

ht = ot � tanh(ct) (10)

where xt and ht are the input and final output, respectively. δ(·)
denotes the sigmoid activation function and tanh( · ) represents
the hyperbolic tangent activation function. W is the weight,
whereas b is the bias (for convenience, we ignore subscripts).
� denotes the elementwise product.

Fig. 14(b) illustrates the diagram of the proposed two-stream
RSNet. As the name suggests, this model contains two identical
subnetworks that take the radar configurations and the surface
parameters as the multiple inputs, as listed in (5). We assume

that the inputs of these two streams are xR and xS , so we have

xR = [f, θi]
T , xS = [s, l, ε′r, ε′′r]

T
. (11)

Then, the features between elements of the input sequences are
exploited by several LSTM blocks in each stream. Note that
in Fig. 14(b), the bold digits within LSTM blocks represent the
numbers of hidden neurons, which are set to 16, 32, 64, and 128.
After acquiring these desired features, a linear fusion strategy is
utilized to concatenate the output of each subnetwork. Finally,
the fused feature maps are entered into the cascaded FC layers.
For the sake of illustration, we simplify the process represented
by (6)–(10) as Lstm(·) Therefore, we have

oc = Lstm(xR)⊕ Lstm(xS) = {h1, . . . hm : h1, . . . , hn}.
(12)

Concretely, hm and hn are the outputs of the subnetworks,
with m, and n equal to the number of the hidden neurons of the
last LSTM block, 128, in this article. oc represents the output
of the fusion layer. ⊕ represents the linear fusion operation. A
fusion layer is able to concatenate a list of inputs and return a
single tensor that is the concatenation of all inputs. Our principle
in applying this strategy is to force the subnetworks to contribute
as much as possible to the predicted results by exploiting more
representative feature maps along the layers of each stream.
Then, the final output of RSNet can be written as

[σ0
HH, σ

0
VV]

T
= δ(Wfcoc + bfc) (13)

where Wfc and bfc denote the weight and bias of the FC layer,
respectively.

B. Dataset and Network Setup

DL-based methods strongly depend on both the quantity and
quality of the training data. It is undeniable that the AIEM is
a well-established model for estimating soil backscatter under
many scene conditions [15], [16]. It is, therefore, suitable for
generating an extensive training set.

Table IV summarizes the ranges and sampling intervals of
the radar and surface parameters. It should be noted that, due
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TABLE IV
RANGE OF THE RADAR CONFIGURATIONS AND THE SURFACE PARAMETERS

to the limited radar data available to us, we set the frequency
within the L-band and S-band (i.e., 1–4 GHz with a 0.5 GHz
interval), and the incidence angles between 20° and 60° with a
5° interval. As observed in Section III, the performance of the
AIEM simulations is significantly suppressed as the roughness
increases. Therefore, the surface parameters are accordingly
set in a reasonable range, e.g., 0.5–2 cm for s with a 0.5 cm
interval and 5–25 cm for l with a 10 cm interval. In addition, to
approximate the backscattering coefficient of soil surface under
natural conditions, we added a zero mean Gaussian random noise
with a standard deviation of ±0.5 dB to the values produced by
the AIEM.

As shown in Table IV, we can conclude that the simulated
dataset mainly represents the smooth or slightly rough cases,
which is insufficient for developing a DL-based model to ad-
dress the objective of this article. Alternatively, the reported
radar measurements provide the probable roughness conditions
of the natural surfaces under large roughness conditions. It is
noteworthy at this point that, some of the radar data and the
corresponding ground-truth data were constructed as the natural
dataset, including surfaces J2, J3, M1, M2, and M4. The remain-
ing measured data (surfaces J1 and M3, known as CRIRPSCAT
data) were used for validation, which will be discussed in Section
IV-C. After combination, a total of 11 424 sets of data were
obtained which are referred to as the hybrid dataset. For this
study, 70% of the hybrid dataset was randomly selected as the
training set, 20% as the validation dataset, and the rest as the
test set.

The proposed RSNet is mainly implemented with the Keras
framework, and end-to-end trained on an NVIDIA GTX 1650Ti
GPU laptop. As indicated in (5), the input dimension of these
two streams is set to 2 and 4, respectively. During the training
process, the mean-squared error loss function is optimized by
the adaptive moment estimation (Adam) [41] with momentum.
To reduce the computational complexity, the backscattering
coefficients are normalized to [0, 1]. The momentum is fixed
to 0.9, and the weight decay is set to 1e-4. The learning rate
during the training process is equal to 0.001. The batch size and
epoch are set to 64 and 1000, respectively.

Moreover, two statistical indices are utilized to quantitatively
verify the performance of the proposed model, namely the
RMSE, and the bias. Their expressions are shown as follows:

RMSE =

√
1

m

∑m

i=1
(pi − yi)

2 (14)

Fig. 15. Correlation of backscattering coefficients between RSNet predictions
and test data for (a) HH and (b) VV polarization.

Fig. 16. Box plot of the estimated differences between model predictions and
the test data for both HH and VV polarization.

Bias =
1

m

m∑
i=1

(pi − yi) (15)

where pi and yi are the ith predicted result and ground truth,
respectively, and m is the number of data points.

V. EXPERIMENTAL RESULTS

A. Comparison With Test Set

The objective of this section is to evaluate the performance of
the proposed model on the test set. The correlation plots for HH
and VV polarizations are depicted in Fig. 15. The predicted
values of RSNet agree well with the test data. Furthermore,
the detailed quantitative indices also indicate that the proposed
model can provide high precision in predicting the backscat-
tering coefficients with overall RMSE and Bias values of 1.31
and −0.11 dB, respectively, for HH polarization, and 1.05 and
−0.13 dB, respectively, for VV polarization. Fig. 16 presents
the box plot of the estimated differences among the model
predictions and the measured data for HH, and VV polarization.
The box plot is a statistical diagram that shows the dispersion
of data, and the statistical meanings are shown in blue font in
Fig. 16. Despite the fact that there are several outliers up to
4 dB, the overall median values of the estimated differences
generally vary in the range of 0–1 dB, thus exhibiting the good
performance of the proposed RSNet.

To visually show the performance of RSNet, two examples are
presented in Fig. 17. It is observed that the predicted backscat-
tering coefficients are close to those of the AIEM simulations in
terms of both magnitude and trend, with low RMSE and Bias val-
ues. As ks increases, slight discrepancies are observed at smaller
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Fig. 17. Comparison of backscattering coefficients between RSNet predic-
tions and validation data with (a) V1: f = 1.5 GHz, s = 0.5 cm, l = 10 cm,
and εr = (4.50.5) and (b) V2: f = 2.5 GHz, s = 1.5 cm, l = 20 cm, and
εr = (6.52.5).

incidence angles (e.g., 20°). As the incidence angle becomes
larger, the discrepancies are gradually reduced as expected.

In summary, the aforementioned outcomes strongly support
the point that LSTM can characterize the relationship between
the input parameters and soil backscatter, suggesting the capa-
bility of the proposed RSNet in estimating the soil backscatter.

B. Comparison With POLARSCAT Data

In this section, we verify the robustness of the proposed model
with the experimental measurements under relatively smooth
surface conditions. POLARSCAT data [2], acquired by a truck-
mounted polarimetric scatterometer [42], cover a wide range
of roughness and moisture conditions and are well suited for
evaluating the model performance [15], [43]. Three different
surfaces, namely S1, S2, and S3, are used in this article. The
radar data were acquired at L-band (1.5 GHz) at incidence angles
ranging from 20° to 50° for both HH and VV polarizations.
The ground truth data were simultaneously obtained from the
corresponding surfaces with s ranging from 0.32 to 1.12 cm and
l varying from 8.4 to 9.9 cm, as listed in Table V.

Fig. 18 shows the correlation plots of the measured data and
RSNet predictions for the selected surfaces. It can be clearly
observed that the RSNet predictions are very close to the 1:1
line, suggesting a strong intensive correlation between the model
predictions and the measured data. The statistical indices also
reveal the good accuracy of the RSNet model in predicting
backscattering coefficients under natural conditions, with low

TABLE V
RADAR AND SURFACE PARAMETERS OF POLARSCAT

Fig. 18. Correlation of backscattering coefficients between RSNet predictions
and POLARSCAT data for (a) HH and (b) VV polarization.

TABLE VI
STATISTICAL INDICES BETWEEN RSNET PREDICTIONS, AIEM SIMULATIONS,

AND POLARSCAT DATA

RMSE and Bias values of 1.46 and −0.71 dB for HH polariza-
tion, and 1.37 and 0.14 dB for VV polarization, respectively.

To further demonstrate the performance of RSNet, we present
a comparison of the values generated by the AIEM and RSNet
for those three surfaces, as shown in Fig. 19. For surfaces
S1 and S3, a good agreement is observed, over the range of
intermediate incidence angles (i.e., 20° to 50°), whereas for
surface S2, the AIEM predictions have large deviations from
the measured data at 40°, with a maximum value of 5 dB for HH
polarization, and 4 dB for VV polarization. As expected, RSNet
predictions closely match the angular magnitude and trend of
the POLARSCAT data for all these cases. To quantitatively
assess the capacity of the proposed model, we compute the
statistical indices among the AIEM simulations and RSNet
predictions, and the detailed values are listed in Table VI. It
can be observed that, among the three surfaces, RSNet achieves
a better performance than the AIEM, in terms of the RMSE
and Bias. Based on these results, it can be concluded that the
proposed model is more suitable than AIEM for predicting the
backscattering coefficient of natural surfaces under relatively
smooth conditions. This could be explained by the fact that
LSTM can easily learn the nonlinear relationship between the
parameters and the radar backscatter.
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Fig. 19. Comparison of backscattering coefficients between AIEM simula-
tions, POLARSCAT data, and RSNet predictions with (a) S1: s = 0.4 cm,
l = 8.4 cm, and εr = (7.99, 2.02), (b) S2: s = 0.32 cm, l = 9.9 cm, and εr =
(5.85, 1.46), and (c) S3: s = 1.12 cm, l = 8.4 cm, and εr = (7.70, 1.95) for
1.5 GHz.

C. Comparison With CRIRPSCAT Data

CRIRPSCAT data (i.e., surfaces J1 and M3), as mentioned
in Section IV-A, were not chosen to feed into the dataset.
Therefore, we will employ these data, for validation purposes,
in this section. As presented in Tables II and III, surfaces J1 and
M3 are different from POLARSCAT data in terms of the surface
parameters, which can be utilized to examine the generalization
capability of the proposed model under large roughness condi-
tions.

Figs. 20 and 21 depict the correlation plots of RSNet, the
AIEM simulations, and measured data. Note that surface J1
refers to the roughest surface among these experiments, with
s = 3.8 cm and l = 43.6 cm, whereas the rms height and
correlation length of surface M3 are 1.99 cm and 36.38 cm,
respectively, representing a relatively rough condition. A very
close agreement is observed with the 1:1 line for RSNet

Fig. 20. Correlation of backscattering coefficients between model predictions
and the measured data for surface J1. (a) HH polarization. (b) VV polarization.

Fig. 21. Correlation of backscattering coefficients between model predictions
and the measured data for surface M3. (a) HH polarization. (b) VV polarization.

TABLE VII
STATISTICAL INDICES BETWEEN RSNET PREDICTIONS, THE AIEM

SIMULATIONS, AND CRIRP DATA

predictions in Fig. 20, with favorable RMSE values of 1.72 dB
for HH polarization and 2.11 dB for VV polarization, respec-
tively. Fig. 21 then shows the comparison for surface M3. A very
strong correlation between the predicted values by RSNet and
the measured data is again observed. Concerning the Bias, the
detailed values indicate that the proposed model overestimates
the backscattering coefficient for both surfaces, i.e., surface
J1 with 0.46 dB for HH polarization and 1.72 dB for VV
polarization, respectively, and surface M3 with 0.12 dB for HH
polarization and 0.74 dB for VV polarization, respectively. This
may be explained by the fact that the samples of larger roughness
conditions within the dataset are insufficient for the model to
learn the intrinsic connections adequately.

Figs. 22 and 23 demonstrate the angular behavior of RSNet
predictions, the AIEM simulations, and the measured data,
whereas the corresponding statistical indices are listed in
Table VII. From Fig. 22(a), the values reproduced by RSNet
and the AIEM, on the whole capture the angular trends of the
measured data well, whereas the performance of the proposed
model is slightly worse over the incidence angle range of 50° to
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Fig. 22. Comparison of backscattering coefficients between the AIEM sim-
ulations, CRIRPSCAT data, and RSNet predictions with s = 3.8 cm and
l = 43.6 cm for (a) L-band and (b) S-band.

60° for HH polarization, with a higher RMSE value of 1.53 dB.
In the case of surface M3 [see Fig. 23(a)], both RSNet and
AIEM predictions match well with the measured data for HH
polarization, whereas for VV polarization, RSNet predictions
perform better than the AIEM simulations. As the frequency (or
ks) increases, the precision of the proposed model significantly
outperforms that of the AIEM. With reference to Fig. 22(b), we
see that both the AIEM and RSNet provide similar accuracy on
the measured data for HH polarization, but in the case of VV
polarization, the AIEM gives rise to obvious separation over
the angular range with higher RMSE and Bias values of 4.06
and 3.97 dB, respectively. Some deviations between the AIEM
simulations and the measured data are also observed in Fig. 23(b)
with RMSE and Bias values greater than those of RSNet predic-
tions. It is concluded that the proposed model outperforms the
AIEM in estimating the backscattering coefficient under large
roughness conditions.

D. Sensitivity Analysis

As previously mentioned, a total of 11 424 sets of data were
obtained, containing 11 340 samples simulated by the AIEM and
a very limited amount of 84 sets of measured data. This indicates
that the measured data only represent a very small proportion of
the training dataset, i.e., less than 1%. To provide a convincing
justification, a comparison experiment was made to assess the
sensitivity of the model accuracy to the amount of real radar
data.

The procedure of the comparison experiment is broadly or-
ganized into the following parts. First, the ground-truth data

Fig. 23. Comparison of backscattering coefficients between the AIEM sim-
ulations, CRIRPSCAT data, and RSNet predictions with s = 1.99 cm and
l = 36.38 cm for (a) L-band and (b) S-band.

Fig. 24. Correlation plot between RSNet and AIEM predictions on validation
data. RSNet was trained with 20% of the real radar data and simulated dataset.
(a) HH polarization. (b) VV polarization.

were paired with the corresponding radar backscatter data. Sec-
ond, 20% of those paired data were randomly selected as the
validation dataset. Third, the remaining data (i.e., 80%) were
proportionally incorporated with the simulated dataset to train
the model. Finally, the results on the validation dataset were
recorded and shown in Figs. 24–27. The corresponding RMSEs
are listed in Table VIII. It can be seen from these figures that,
with the real radar data proportionally increasing, the model
predictions gradually converge to the 1:1 line, and the RMSEs
of RSNet were reduced as expected. It also can be found in
Table VIII that for the cases of HH polarization, the predicted
errors of RSNet perform better than the AIEM simulations
when the percentage of the radar data exceeds 50%, whereas
the percentage is 30% for VV polarization. Those outcomes
reveal that the hybrid dataset, even if it contains merely 1% of
the real radar data, can give an improvement in accuracy to the
networks.
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Fig. 25. Correlation plot between RSNet and AIEM predictions on validation
data. RSNet was trained with 40% of the real radar data and simulated dataset.
(a) HH polarization. (b) VV polarization.

Fig. 26. Correlation plot between RSNet and AIEM predictions on validation
data. RSNet was trained with 60% of the real radar data and simulated dataset.
(a) HH polarization. (b) VV polarization.

Fig. 27. Correlation plot between RSNet and AIEM predictions on validation
data. RSNet was trained with 80% of the real radar data and simulated dataset.
(a) HH polarization. (b) VV polarization.

TABLE VIII
COMPARISON OF THE PREDICTIONS ON THE VALIDATION DATASET

VI. CONCLUSION

Understanding the radar backscatter from natural surfaces
requires a suitable model that is capable of predicting backscat-
tering coefficients close to those observations by radar. Since the
validity region of the AIEM covers a wide range of roughness

values, it was used to validate the measured data collected
by the CRIRPSCAT. However, deviations between the AIEM
simulations and the measured data have shown the inadequacy
of this model under large roughness conditions. Taking this into
account, a new LSTM-based backscatter model (RSNet) was
developed and then trained on the hybrid dataset, which consists
of a simulated dataset produced by the AIEM and the experimen-
tal data acquired by the scatterometer. We conducted extensive
experiments to verify the feasibility and performance of the
LSTM-based model. First, the proposed RSNet was validated by
comparing its predictions with those obtained with the AIEM.
Good agreement is shown between these models, and the overall
RMSE value is within 1.31 dB. Next, we compared the model
predictions with POLARSCAT data. The outcomes show that
the model predictions are closely related to the radar measure-
ments under relatively smooth conditions, persistently justifying
the robustness of this model. Then, comparisons between the
proposed DL-based model and CRIRPSCAT data under large
roughness conditions were performed. As expected, the RSNet
predictions significantly outperform the AIEM simulations and
the average RMSEs are estimated to be 1.77 dB for surface J1
and 1.49 dB for surface M3, respectively. Finally, the sensitivity
of the model accuracy to the amount of real radar data was made.
The results revealed that limited real radar data can indeed bring
an improvement to the model performance. All these promising
outcomes will serve as a new path for further developing a
retrieval algorithm.

It is concluded from this article that the proposed RSNet can
provide a reasonable estimation of the radar backscatter from
natural surfaces under large roughness conditions. However, the
ranges of related parameters proposed in Table IV were not
reached high values, especially for the rms height and real part
of the dielectric constant. Therefore, a few additional comments
on the limits of validity of the proposed model we would like
to make. First, to ensure the accuracy of the dataset simulated
by AIEM, the values of rms height were set to 0.5∼2 cm.
Meanwhile, the reported measured data (i.e., surfaces J2, J3,
M1, M2, and M4) were used to cover the large roughness condi-
tions. As a result, the proposed model works well within those
scope of roughness. Second, due to the limited data available
to us, the real part of the dielectric constant also did not go to
high values, which means the proposed model is applicable to
those soil surfaces under relatively dry conditions. Finally, it
would be advisable to calibrate the proposed model on other
radar measurements to broaden its validity in more generalized
conditions.
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