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Abstract—Currently, convolutional neural networks (CNNs) and
vision transformers (ViTs) are widely adopted as the predominant
neural network architectures for remote sensing image scene clas-
sification. Although CNNs have lower computational complexity,
ViTs have a higher performance ceiling, making both suitable as
backbone networks for remote sensing scene classification tasks.
However, remote sensing imagery has high intraclass variation and
interclass similarity, which poses a challenge for existing methods.
To address this issue, we propose the class-aware self-distillation
(CASD) framework. This framework uses an end-to-end distil-
lation mechanism to mine class-aware knowledge, effectively re-
ducing the impact of significant intraclass variation and interclass
similarity in remote sensing imagery. Specifically, our approach
involves constructing pairs of images: similar pairs consisting of
images belonging to the same class, and dissimilar pairs consist-
ing of images from different classes. We then apply a distillation
loss that we designed, which distills the corresponding probability
distributions to ensure that the distributions of similar pairs be-
come more consistent, and those of dissimilar pairs become more
distinct. In addition, the enforced learnable α added to the distil-
lation loss further amplifies the network’s ability to comprehend
class-aware knowledge. The experiment section demonstrates that
our method CASD outperforms other methods on four publicly
available datasets. And the ablation experiments demonstrate the
effectiveness of the method.

Index Terms—Deep learning, knowledge distillation (KD),
remote sensing image, scene classification, vision transformer
(ViT).

I. INTRODUCTION

IN THE modern technological era, high spatial resolution
(HSR) remote sensing images are increasingly utilized in var-

ious sectors. These applications include disaster detection [1],
[2], geographic object detection [3], [4], and land-use classifi-
cation [5], [6], [7], [8]. An abundance of research focuses on
understanding HSR remote sensing images. Remote sensing

Manuscript received 9 August 2023; revised 30 October 2023 and 20 Novem-
ber 2023; accepted 12 December 2023. Date of publication 15 December 2023;
date of current version 3 January 2024. This work was supported in part by
the National Natural Science Foundation of China, specifically under Grant
K23I00040, Grant 62171247, and Grant 41921781. (Corresponding author:
Siyuan Hao.)

Bin Wu is with the College of Information and Control Engineering, Qing-
dao University of Technology, Qingdao 266520, China (e-mail: wubin970623
@gmail.com).

Siyuan Hao is with the School of Software Engineering, Beijing Jiaotong
University, Beijing 100091, China (e-mail: lemonbananan@163.com).

Wei Wang is with the Institute of Information Science, Beijing Jiaotong
University, Beijing 100091, China (e-mail: wei.wang@bjtu.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2023.3343521

image scene classification refers to categorizing images into
predefined land-cover/land-use classes. It is a key topic in aerial
and satellite image analysis and essential for understanding HSR
images. Yet, classifying these images is challenging due to the
complex relationships among ground objects.

In recent scientific advancements, the development of scene
classification methods has garnered widespread attention in
the field of computer vision. These methods can be broadly
divided into two main categories: hand-crafted feature-based
methods [9], [10], [11], [12], [13], [14] and deep-learning-
based methods. The hand-crafted feature-based method is less
commonly used nowadays due to its requirement for specific
expert knowledge and its inability to achieve efficient end-
to-end classification. In contrast, deep-learning-based meth-
ods offer an alternative approach by automatically learning
to extract relevant features through the neural network ar-
chitecture, resulting in improved performance and reduced
workload.

Deep learning-based methods include deep belief nets,
stacked autoencoders, convolutional neural networks (CNNs),
and vision transformers (ViTs). Among these, the CNN is the
most widely used network structure for remote sensing image
scene classification tasks. Recently, the ViT has emerged as a
popular and innovative approach in the field of computer vision.

There are two key differences between ViTs and CNNs for
the classification task:

1) Unlike the local convolutional strategy of CNNs, ViTs
divide images into a sequence of patches and model
the global relationships between patches using the self-
attention mechanism. This allows ViTs to capture long-
range dependencies and abstract higher order semantic
labels for remote sensing images with complex spatial
layouts. However, modeling global relationships also in-
creases the computational complexity of ViTs, reducing
the computational efficiency.

2) CNNs rely on their own inductive bias (e.g., locality and
spatial invariance) and perform well on limited data. How-
ever, this inductive bias may limit the information learned
when there is ample data available [15]. On the other hand,
ViTs rely on a more flexible self-attention mechanism,
making it easier to achieve a higher performance ceiling
compared to CNNs.

In summary, CNNs are computationally efficient and do not
heavily depend on pretrained data, while ViTs are computation-
ally intensive but can attain higher performance with sufficient
pretrained data.
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Fig. 1. Examples illustrating intraclass diversity and interclass similarity of
remote sensing images.

Remote sensing images present unique challenges due to
their complex scene layouts and varied ground object informa-
tion. The complexity results in significant intraclass diversity,
meaning images of the same scene can vary considerably. This
is largely due to differences in physical conditions, seasonal
changes, and the imaging sensor used. Further complicating
matters is interclass similarity resulting from semantic overlap
between different scenes. For instance, an urban park and a
rural forest might appear similar due to shared features, causing
potential confusion in classification. These factors make the
classification task in remote sensing image analysis particularly
challenging. Fig. 1 shows that the “Park” images have high
intraclass diversity. For instance, there are significant differences
in the scene layouts, colors, and textures between the two “Park”
images. This makes it hard to be classified correctly as the
training and testing images might be visually quite different.
In contrast, the “Commercial” and “DenseResidential” images
have interclass similarity due to their similar building shapes
and scene layouts. This makes them hard to be distinguished
from each other. As a result, how to classify these images that
have high intraclass diversity and interclass similarity is a big
challenge.

To address this challenge, for remotely sensing images, it is
expected that pairs of the same class will be closer, while pairs of
different classes are separated in the feature space. This results
in a decrease in intraclass distance and an increase in interclass
distance, effectively improving the classification performance.
Therefore, the model must be trained to acquire additional
knowledge to achieve this objective. Knowledge distillation
(KD) is a training method that enables student models to grow by
learning the output distribution of a teacher network. While some
self-distillation methods can achieve the transfer of class-aware
knowledge, they often only focus on intraclass knowledge or

interclass knowledge, and cannot effectively combine the two.
Previously, Zhang et al. [16] proposed a self-distillation frame-
work to learn class information by making the output distribution
of the same class images more consistent. However, this only
reduced the intraclass distance and did not address the interclass
distance. To tackle both distances, we proposed the class-aware
self-distillation (CASD) framework.

The CASD framework is based on the principle of KD, where
the objective is to transfer knowledge from a teacher network
to a student network. However, in the case of CASD, both the
teachers and the student are the same network. There are two
teachers in CASD, with one imparting the similarity of samples
within the same class and the other imparting the difference
between samples from different classes to the student. Through
this process, the student network gains class-aware knowledge
to improve the performance of the classification model. Fur-
thermore, we have constructed a unique distillation loss for the
transfer of knowledge, which includes a learnable interval α to
amplify the class-aware knowledge.

Our experiments on four benchmark datasets using ResNet
and ViT architectures show that the proposed CASD method has
good generalization and improved classification performance.

In summary, we make the following principle contributions
in this article.

1) A CASD framework is proposed for the remote sensing
image scene classification. The CASD framework cleverly
utilizes self-distillation to simultaneously alleviate the
issue of intraclass diversity and interclass similarity in
remote sensing images by extracting class-aware infor-
mation.

2) Our constructed class distillation loss enables the transfer
of class-aware knowledge both intraclass and interclass.
More importantly, through a learnable interval, it ensures
that the network can adaptively adjust interclass distances,
significantly enhancing the model’s performance.

3) Experimental results show that our method has good
generalizability. Both the ResNet and ViT architectures
achieved significant performance enhancement on four
benchmark datasets of remote sensing images.

II. RELATED WORK

A. CNN-Based Methods

Some CNN-based methods will be simply enumerated. In-
spired by visual attention mechanisms, Wang et al. [17] first
introduced the attention mechanism to remote sensing image
classification. In 2019, Zhang et al. [18] proposed CNN-Capsnet,
which combines the CNN with a capsule network (CapsNet).
Subsequently, Wang et al. [19] present a global-local two-stream
architecture to address the large-scale variation of features and
objects in remote sensing images, achieving state-of-the-art
results on four public datasets. Xu et al. [20] introduced a
graph-convolutional-network-based model that effectively cap-
tures context relationships and refines features for high spatial
resolution scene classification, outperforming several state-of-
the-art methods. Wan et al. [21] proposes an efficient multi-
objective evolutionary framework that balances interpretation
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accuracy and parameter quantity for remote sensing image scene
classification, demonstrating the effectiveness of the approach
in comparison to human-designed networks and other search
methods. Another interesting work is by Xu et al. [22], who
effectively combined lie group machine learning with the CNN
to enhance the expressive power of the CNN. Some methods
are dedicated to analyzing and reducing the dimensionality
of remote sensing data to enhance the model performance.
Makantasis et al. [23], [24] mainly focus on how to capture the
multidimensional structure of data through the tensor method,
and build a more effective and accurate data analysis model.

B. ViT-Based Methods

As an attention-based structure model, the transformer [25],
[26], [27] demonstrated tremendous force in sequence modeling
and machine translation with great success. Researchers have
tried to transplant transformers to the field of computer vision
inspired by the successful application of transformers in natural
language processing. In 2020, Dosovitskiy et al. [28] proposed
the ViT by using image patches as input for image classification,
which boosted the classification performance of SOTA. Since
a ViT lacks some inductive biases inherent to CNNs (such as
translation invariance and localization), it cannot generalize well
when the trained data are insufficient. However, when pretrained
at sufficient scale, the ViT can achieve excellent results on
downstream tasks with a less amount of data.

The ViT already has many applications in scene classification
with its powerful image recognition capability. In 2021, Bazi
et al. [29] introduced a pruned ViT to remote sensing image
scene classification and explored the effect of different data
augmentation strategies on the ViT. Kaselimi et al. [30] pro-
posed a multilabel ViT called ForestViT to solve the problem
of satellite image classification regarding deforestation mon-
itoring. The interaction of the CNN and ViT has also been
studied recently. CTNet was proposed by Deng et al. [31], it
uses both CNN and ViT streams concurrently, complementing
semantic information with local structural information, thereby
extracting more distinctive features. Subsequently, TRSNet [32]
was proposed, which enhanced the capacity of the ViT by
integrating it with the CNN in a serial structure. While the
combination of the CNN and ViT can certainly improve the
classification performance, how effective are pure ViT structure
models in the task of remote sensing image scene classification?
The SCViT proposed by Lv et al. [33] fully exploits the spatial
and spectral information and demonstrates that a pure ViT may
also achieve better classification performance. In addition, Hao
et al. [34] proposed TSTNet, which improves the performance
of the Swin transformer in the field of scene classification using
edge information as a priori.

C. Knowledge Distillation (KD)

KD, a concept introduced by Hinton et al. [35], is a model
compression method that facilitates the transfer of knowledge
from a larger, well-trained model, often referred to as the teacher,
to a smaller one, known as the student. This process enhances
the learning capabilities of the student model, enabling it to

mimic the performance of its larger counterpart, although with
a significantly reduced computational footprint. A variant of this
method, self-distillation, innovatively eliminates the need for a
separate teacher model. Instead, it employs the same network
for both student and teacher roles, essentially using the model’s
own predictions as supervisory signals. Zhang et al. [36], [37]
proposed two self-distillation methods that transfer knowledge
from deeper to shallower sections of the network, reinforcing
the idea of self-distillation as an effective technique to enhance
the model performance. In the realm of remote sensing image
processing, the application of self-distillation has proven to be
highly beneficial. It not only improves model robustness but
also enhances feature learning ability, aiding in more accurate
and efficient interpretation of complex remote sensing data. In
remote sensing image processing, self-distillation is used to
improve model robustness and feature learning ability. Wang
et al. [38] used self-distillation to transfer knowledge from
ensemble branches to the main branch, reducing the network
complexity. Duan et al. [39] designed a self-context distillation
module, and Hu et al. [40] proposed a variational self-distillation
network with a variational knowledge transfer module.

In contrast to previous works, our objective is not to learn
knowledge in a general sense, but rather class-aware informa-
tion. To achieve this, we have designed a single network that
takes three inputs: an anchor, a positive sample (a sample from
the same class as the anchor), and a negative sample (a sample
from a different class than the anchor). After the network has
learned the features of the three inputs in feature space, the loss
function we have designed ensures that the distribution of the an-
chors and positive samples are similar, while the distribution of
the anchors and negative samples are dissimilar. This approach
effectively mitigates the issue of high intraclass diversity and
interclass similarity in remotely sensing images.

III. PROPOSED METHOD

Fig. 2 shows the general architecture of CASD. This section
focuses on the following three parts: 1) backbone networks;
2) three-branch distillation; and 3) class-aware distillation loss.
The specific details of CASD are provided in Sections III-A–II-
I-C.

A. Backbone Networks

Both ViT and CNN play significant roles in scene classifi-
cation. ViT, with its robust global modeling capability, offers
superior performance, while CNNs, exemplified by ResNet-50,
bring speed advantages. In real-world applications, one should
choose flexibly based on the balance between speed and per-
formance. Accordingly, we developed two versions of CASD:
CASD-ViT and CASD-ResNet50. Currently, compared to the
well-established CNN architectures, there is limited research on
the self-distillation of the ViT in terms of categories. Therefore,
CASD-ViT is our primary focus and best demonstrates the
performance potential of CASD. In Fig. 2, fθ refers to the
backbone network for extracting features, such as ResNet or
ViT, and gθ refers to a two-layer fully connected multilayer
perception (MLP) network.
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Fig. 2. Framework of the CASD. CASD differs from standard KD in that its three branches networks share weights. During the training process, samples from the
same class (e.g., Commercial 1 and Commercial 2) or different classes (e.g., Commercial 1 and Residential) are input into the feature extraction network fθ . The
output logits z are then obtained after being transformed through the linear projection network gθ , which is a two-layer MLP network. The logits z are distilled into
a soft probability distribution z′ through a temperature T . The class-aware knowledge is transferred from the two teacher branches to the student branch through
the distillation loss LKD. Both LKD and LCE work in tandem to effectively reduce the intraclass distance and increase the interclass distance. It is important to note
that CASD is only used during the training stage, and only the backbone network is retained for validation.

First, we introduce the feature extraction process of the ViT
model. ViT’s input is sequence data. First, the input remote sens-
ing image I ∈ RH×W×3 is divided into multiple patches (also
called tokens), whereH ×W denotes the height and width of the
three-channel image. The image I ∈ RH×W×3 is converted into
sequence data T∂ ∈ RN×D after reshape operation and linear
projection, whereN is the number of patches, andD refers to the
mapping of each patch to a D-dimensional space. Since the ViT
needs to learn the location information of each token, position
embedding Pemb ∈ RN×D is added to the input sequence T∂ .
The input of the ViT is formulated as follows:

T0 = T∂ + Pemb. (1)

After the sequence is constructed, it is fed into the ViT block to
achieve the information interaction between tokens. Each ViT
block consists of a multihead self-attention (MSA) and an MLP

T ′
l = MSA(LN(Tl−1)) + Tl−1, l = 1, . . . , L

Tl = MLP(LN(T ′
l )) + T ′

l , l = 1, . . . , L (2)

where Tl−1 is the output tokens of block l − 1, T ′
l and Tl are

the outputs of MSA and MLP respectively, and LN is the layer
normalization. The outputTL ∈ RN×D of the ViT encoder is fed
to the global average pooling (GAP) to generate feature vector
h ∈ R1×D.

The CASD framework has been applied not only to the
ViT but also to the CNN, specifically the ResNet-50 archi-
tecture. In this implementation, ResNet-50 is chosen as the
other backbone due to its shallow structure and relatively small
number of parameters. The structure of ResNet-50 is on the
right side of Fig. 3. The remote sensing image I ∈ RH×W×3,
after being fed into continuous residual blocks, yields the feature
F ∈ RH ′×W ′×C . Subsequently, the feature F is dimensionally
reduced to h ∈ R1×C by GAP, as described by the following
equation:

h =
1

H ′ ×W ′

H ′∑
m=1

W ′∑
n=1

Fm,n,l (l = 1, 2, · · ·C) (3)

where W ′ and H ′ are the feature sizes and C is the number of
feature channels.

In addition, we designed gθ after the feature extraction fθ. gθ
consists of a two-layer fully connected network and an ReLU
activation function as shown in the bottom of Fig. 3. The purpose
of gθ is to map the representation from the feature space to
the semantic space. gθ receives the feature vector h from the
feature extraction networkfθ to deliver the higher order semantic
information and generate the semantic feature vector z ∈ Rc,
where c is the number of classes. The process is formulated
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Fig. 3. Structure of the feature extraction network. fθ refers to ViT or ResNet.
gθ maps the feature embedding h into logits z.

as follows:

z = FC1(ReLU(FC2(h)). (4)

B. Three-Branch Distillation

CASD is an end-to-end self-distillation method aimed at
enhancing classification performance by decreasing intraclass
distance and increasing interclass distance. The cross-entropy
loss is widely employed for multiclass classification tasks and
it has the following formula:

LCE =
M∑
c=1

yc log(pc) (5)

where M is the total number of classes and pc is the confidence
of the cth class. yc is the label code of the cth class, which
has the value of 1 or 0. Observing the labels of one-hot form
[y1, y2 · · · yM ], we calculate their corresponding values only for
the correctly predicted class. For the other incorrectly predicted
classes, discarding was performed. Therefore, the cross-entropy
loses some of the information entropy. In fact, the labels used for
cross-entropy loss are called hard labels. The high-temperature
softmax function improves the information entropy of the model

output distribution. It not only makes the output logits trans-
formed into a posterior probability distribution but also softens
the probability distribution compared to the regular softmax.
The z to z′ in Fig. 2 shows the softening process of softmax
with temperature T. Given an input x and the ground-truth label
y ∈ Y = 1, . . . , c, we can express the predictive distribution
Q as

Q(y|x; θ, T ) = e(fy(x;θ)/T )

Z
. (6)

Here, fy stands for the logit of the model for class y, pa-
rameterized by θ, and T > 0 denotes the temperature. Z is a
normalizing factor defined as

Z =

c∑
j=1

efj(x;θ)/T . (7)

The aforementioned high-temperature softmax function is sim-
plified to σ(·)

CASD has three branches receiving three consecutive inputs
x1, x2, and x3, where x1 and x2 have the same label as similar
pairs, and x1 and x3 have different labels as dissimilar pairs. The
three branch networks are the same network and share the same
weights, thus being defined as a self-distillation framework. For
the ternary input, the feature extraction is denoted as

zi = gθ(fθ(xi)) i = 1, 2, 3. (8)

After getting logits z1, z2, and z3, they are fed into the high tem-
perature softmax σ(·) to distill more knowledge, the procedure
is as follows:

z′i = σ(zi/T ) i = 1, 2, 3 (9)

z′1 is a soft probability prediction, and z′2 and z′3 are soft
labels containing class-aware information. The first branch is
the student network that receives the class-aware knowledge
from the teacher network (second and third branches).

C. Class-Aware Distillation Loss

To facilitate the acquisition of class-aware knowledge from
z′2 and z′3 by z′1, a suitable metric is necessary to quantify
the difference in probability distributions among them. The
Kullback–Leibler (KL) divergence is a prevalent metric em-
ployed in KD, which we utilize in this article. The KL diver-
gence between probability distributions p(x) and q(x) can be
expressed as follows:

KL(p ‖ q) = Ex∼p

[
log

p(x)

q(x)

]
. (10)

Subsequently, we constructed similar pairs 〈z′1, z′2〉 and dis-
similar pairs 〈z′1, z′3〉. Reducing the distribution differences of
〈z′1, z′2〉 enables the model to learn intraclass consistency. In-
creasing the distribution difference of 〈z′1, z′3〉 enables the model
to learn the diversity of different classes. In addition, we aim
to ensure that the difference between 〈z′1, z′3〉 is significantly
greater than that of 〈z′1, z′2〉, which promotes the extraction of
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Fig. 4. Three optimization objectives for distillation loss. (a) Intra-class dis-
tance is greater than inter-class distance. (b) Intra-class distance is slightly less
than inter-class distance. (c) Intra-class distance is much less than inter-class
distance.

more discriminative features. Hence, we formulated the pro-
posed mining class distillation loss as follows:

LKD =
1

N

N∑
max{KL(z′1, z′2)−KL(z′1, z′3) + α, 0}

(11)
whereN refers to the number of batches, andα > 0 is a learnable
interval between similar and dissimilar pairs. Typically, α is set
to a specific initial value greater than 0 (e.g., 0.1) and is allowed
to update as the network learns, until it reaches an appropriate
interval. Such a design usually has two advantages. First, it poses
challenges to the network, enhancing the system’s robustness.
On the other hand, it allows for learning different intervals at
different stages of network training until converging to a suitable
interval. As illustrated in Fig. 4, the optimization ofLKD involves
three objectives. The first objective is to

KL(z′1, z′2) > KL(z′1, z′3), LKD > α. (12)

Corresponding to Fig. 4(a), the LKD is larger and needs more
optimization.

Second optimization objective corresponds to Fig. 4(b) as
follows:

KL(z′1, z′2) < KL(z′1, z′3) < KL(z′1, z′2) + α

0 < LKD < α. (13)

This objective is a simple case where LKD is greater than 0 and
less than α, and still needs to be optimized.

We expect 〈z′1, z′3〉 to be much larger than 〈z′1, z′2〉, so we use
α as the interval. The third optimization objective corresponds
to Fig. 4(c) as follows:

KL(z′1, z′2) + α < KL(z′1, z′3), LKD = 0 (14)

Algorithm 1: CASD Framework.

〈z′1, z′3〉 is much larger than 〈z′1, z′2〉 is an ideal objective, that is,
KL(z′1, z′2)−KL(z′1, z′3) + α < 0. Subsequently, the loss is
0 by the max function. The third objective does not need to be
optimized.

Ultimately, the total loss L is a joint cross-entropy loss LCE

and mining class distillation loss LKD:

L = λLCE + (1− λ)LKD/T
2 (15)

where λ is the balance coefficient of the two losses and T is the
temperature coefficient, which is used to increase the backward
gradient of distillation loss. The proposed CASD framework is
summarized in Algorithm 1.

IV. EXPERIMENTS

A. Datasets Description

In the subsequent experiments, we used four publicly avail-
able datasets: the NWPU-RESISC45 (NWPU) [41] dataset;
Aerial Image dataset (AID) [42]; UC Merced (UCM) [43]
dataset; and OPTIMAL-31 [17] datasets; example images of the
four datasets are shown in Figs. 5–8. Among them, the NWPU
and AID datasets have more scenes, while these scenes have
complex spectral and spatial distributions and are the most com-
monly used benchmark datasets. The UCM and OPTIMAL-31
datasets are relatively small in magnitude and low in a challenge.
Among them, the AID, NWPU, and OPTIMAL-31 datasets have
high intraclass diversity and interclass similarity, which pose a
big challenge for classification methods. Details of the NWPU,
AID, UCM, and OPTIMAL-31 datasets are placed in Table I.

B. Experiment Settings

1) Hardware and Software Environment: All experiments
were run on a server configured with an Intel(R) Xeon(R) Silver
4214R central processing unit (CPU) at 2.40 GHz and four
NVIDIA Geforce RTX 3090 high-speed graphics processing
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Fig. 5. Example display of 45 scenarios for the NWPU dataset.

Fig. 6. Example display of 30 scenarios for the AID dataset.

Fig. 7. Example display of 21 scenarios for the UCM dataset.

Fig. 8. Example display of 31 scenarios for the OPTIMAL-31 dataset.

TABLE I
DETAILED INFORMATION ON NWPU, AID, UCM, AND PATTERNNET DATASETS

units (GPUs) with 24 GB of memory. The software environ-
ment for CASD is Ubuntu 18.04.6 LTS with the deep learning
framework Pytorch 1.8.0 and Python 3.8.

2) Optimization and Hyperparameters: The backbone of the
proposed CASD is loaded with pretrained weights obtained
by training on ImageNet-1 K, and then, it is fine tuned on
remote sensing images. CASD offers two versions, including
the CASD-ViT-B or CASD-ResNet50. The model needs to be
trained for 100 epochs, including 15 epochs of warmup strategy.
In the training stage, the batch size is set to 64, and we used
the Adam optimizer. The learning rate was set to 5e-4. In
addition, the cosine learning rate scheduler was used with a
minimum learning rate of 1e-6. Finally, we recommend CASD’s
hyperparameter settings. In the training stage, the distillation
temperature coefficient T is set to 5 and learnable interval
parameter α is initialized to 0.1 and is constrained to be greater
than 0. In the final loss function L, the coefficients λ is set
to 0.8.

3) Data Processing and Evaluation Metrics: In subsequent
experiments, we will utilize portions of different datasets as
training sets. Specifically, for the NWPU dataset, we will employ
10% and 20% of the dataset as the training set. For the AID
dataset, we will use 20% and 50% of the dataset for training.
With the UCM dataset, we will utilize 50% and 80% of the data
as the training set. Finally, for the OPTIMAL-31 dataset, we will
use 80% of the data for training purposes. The image size was
resized, and the center cropped to 224×224 to be consistent with
the previous method on the three datasets. Data augmentation
techniques are used in order to improve the generalization of
CASD. Data enhancement techniques include horizontal flip,
random rotation, automatic contrast, sharpness, etc.

For the task of remote sensing image scene classification, the
prevalent validation metrics utilized are overall classification
accuracy (OA) and the confusion matrix (CM). In addition,
to mitigate the potential influence of dataset partitioning and
other random variables, the experiments were conducted five
times. Hence, the experimental results are presented as standard
deviations to ensure the reliability of the outcomes.

C. Comparison With State-of-The-Arts

We compared our proposed method and the state-of-the-art
methods using four widely adopted public benchmark datasets,
and employed OA and CM as evaluation metrics. Note that some



2180 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE II
ACCURACY (OA ± STD) OF CASD COMPARED WITH OTHER METHODS ON

THE NWPU DATASET

of the compared methods do not report standard deviations in
this article, and we only used OA. The methods we compared are
mainly divided into three categories: methods based on rhe CNN,
methods based on the ViT, and methods related to distillation.

1) NWPU Dataset: The results of CASD in comparison
to the state-of-the-art and baseline methods are presented in
Table II. In this table, we have selected CNN-based models,
ViT-based models, and distillation-based models. The accuracy
of the CNN-based methods has already reached exceptional
results with more than 90% accuracy. For instance, Xu’s method
exhibits an accuracy of 91.91% and 94.43% under 10% and
20% training samples, respectively. As indicated in Table II,
the upper performance limit of the ViT-based method surpasses
that of the CNN-based method, which can be attributed to the
network structure of the ViT. The benchmark performance of
the original ViT was tested under the same data enhancement
and optimization strategy as CASD. The results showed that
the overall classification accuracy of the ViT reached 92.15%
and 94.19% with 10% and 20% training samples, respectively.
SCViT, which utilizes both spectral and spatial information,
further enhances the classification performance of the NWPU
dataset. ET-GSNet, classified as a distillation-based method,
leverages the long-range information from the ViT and distills it
into ResNet, resulting in improved performance and efficiency.
The overall classification accuracy of ET-GSNet was 92.72%
and 94.50% with 10% and 20% training samples, respectively.

Fig. 9. Confusion matrix is plotted using the CASD-ViT model trained on
10% of the NWPU dataset as the training set.

EMSCNet is a distillation-based multisample contrastive net-
work that exhibits good performance with 10% and 20% training
samples. Our proposed method, CASD, demonstrates superior
classification accuracy compared to the other methods. Specifi-
cally, when equipped with ResNet-50 and ViT, CASD achieved
a 1.52% and 0.97% improvement, respectively, under 10% train-
ing samples, and a 1.64% and 1.33% improvement, respectively,
under 20% training samples. This demonstrates that our method
is able to effectively differentiate the similarities and differences
among remote sensing images and fully exploit the global spatial
relationships of the images.

To further evaluate the performance of CASD-ViT under 10%
training samples, we plotted its confusion matrix, as shown in
Fig. 9. The results reveal that the correct rate for each category
is satisfactory. For instance, categories with high correctness,
such as “storage tank” and “harbor,” achieved 100% correct
rates. This indicates that CASD is able to distinguish different
scene contents well and effectively extract higher order seman-
tic information for scenes with complex spatial relationships.
On the other hand, categories with high error rates include
“church” and “medium residential,” with a 90% and 86% correct
rate, respectively. These errors occur due to the similarities
in architectural style between “church” and “palace” and the
ambiguity in the definition of “residential,” making it difficult
for the network to distinguish between “medium residential” and
“dense residential.”

2) AID Dataset: As shown in Table III, the overall classifi-
cation accuracy of the AID dataset has reached a satisfactory
level for most of the state-of-the-art methods. The ViT-based
approach exhibits superior performance compared to the CNN-
based method, reaching a new high performance standard. Under
20% training samples, the baseline models ViT and ResNet-50
achieved accuracies of 94.81% and 94.16%, respectively. With
50% training samples, they achieved accuracies of 96.46%
and 95.64% respectively. Meanwhile, the methods SCViT and
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TABLE III
ACCURACY (OA ± STD) OF CASD COMPARED WITH OTHER METHODS ON

THE AID DATASET

ET-GSNet maintain their high performance, achieving 95.56%
and 95.58% classification accuracy under 10% training sam-
ples, respectively. Our method, CASD, demonstrates superi-
ority over other methods in terms of classification accuracy.
With 20% of training samples, CASD resulted in a 1.56% and
1.37% improvement when integrated into ResNet-50 and ViT,
respectively. Similarly, with 50% of training samples, CASD
showed improvement of 1.32% and 1.18% when integrated into
ResNet-50 and ViT, respectively. The reduction of intraclass
variances and increase in interclass distances by CASD play
a crucial role in enhancing the performance. The confusion
matrix of CASD-ViT under the 20% training sample of the
AID dataset is displayed in Fig. 10. The accuracy across all 30
categories is considered to be satisfactory, even with the limited
amount of training data. Specifically, scenes such as “baseball
field,” “beach,” and “mountain” achieved a 100% correct rate.
On the other hand, some categories, including “center” (0.87),
“resort” (0.89), and “square” (0.83), have a correct rate below
90%.

3) UCM Dataset: The performance of CASD is evaluated
on the UCM dataset, which has a smaller number of images and
categories, to demonstrate its robustness in small-scale datasets.
The state-of-the-art methods have achieved high accuracy on this
dataset, reaching performance saturation. Table IV shows how

Fig. 10. Confusion matrix is plotted using the CASD-ViT model trained on
20% of the AID dataset as the training set.

TABLE IV
ACCURACY (OA ± STD) OF CASD COMPARED WITH OTHER METHODS ON

THE UCM DATASET

CASD compares to other methods in terms of performance. Most
methods achieved accuracy above 98% under a 50% training
ratio. The baseline model ViT, for instance, achieved an overall
classification accuracy of 97.93% and 98.63% under a 50% and
80% training ratio, respectively. Under the 50% training sam-
ples, CASD outperformed the other methods, with a 1.70% and



2182 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 11. Confusion matrix is plotted using the CASD-ViT model trained on
50% of the UCM dataset as the training set.

TABLE V
ACCURACY (OA ± STD) OF CASD COMPARED WITH OTHER METHODS ON

THE OPTIMAL-31 DATASET

1.14% improvement when equipped in ResNet-50 and ViT, re-
spectively. Meanwhile, under the 80% training samples, CASD
obtained a 1.39% and 1.07% improvement when equipped in
ResNet-50 and ViT, respectively. These results, as shown in
Table IV, indicate that CASD still has good robustness in
achieving better classification performance even in small-scale
datasets. Fig. 11 presents the confusion matrix of the CASD-
ViT under a 50% training ratio. Out of the 21 categories, 17
achieved a 100% correct rate. The misclassification between
the categories “dense residential” and “medium residential” is a
difficult issue to avoid.

4) OPTIMAL-31 Dataset: Table V presents the results of
comparison between CASD and other methods. The baseline

Fig. 12. Confusion matrix is plotted using the CASD-ViT model trained on
80% of the OPTIMAIL-31 dataset as the training set.

TABLE VI
OVERALL CLASSIFICATION ACCURACY USING CASD ON 1% TRAINING DATA

models, such as VGGNet, ResNet-50, GoogLeNet, and ViT, ex-
hibit classification accuracy values of 88.40%, 93.96%, 84.67%,
and 94.72%, respectively. CASD was applied to both ResNet-50
and ViT. Under an 80% training sample, CASD-ResNet50 and
CASD-ViT achieved classification accuracy values of 95.48%
and 96.05%, respectively. In comparison with other methods,
such as KFBNet and ARCNetet, CASD demonstrates superior
performance and generalization. Furthermore, the confusion
matrix of the CASD-ViT is depicted in Fig. 12.

To verify the learning capability of CASD under small sam-
ple conditions, we conducted experiments using only 1% of
the training data. Table VI presents the overall classification
accuracy of CASD with this 1% training sample. As can be
seen from the table, the CASD-ViT performs remarkably well
on the NWPU dataset. Even with only 1% of the training data,
the model’s accuracy still reaches 80.54%. This indicates that
our model can achieve commendable performance even in small
sample learning scenarios.

D. Ablation Study

The ablation experiment dismantled the CASD framework to
verify the effectiveness of the CASD framework.

1) Structure Ablation: As depicted in Fig. 13, we conducted
ablation experiments by disassembling the CASD framework in
order to demonstrate its effectiveness. The experiments used
the NWPU dataset with 10% training samples and the AID
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Fig. 13. Ablation studies. OA of different models under the training ratios of
10% on NWPU dataset and 20% on AID dataset. Experimental results are from
the validation set.

dataset with 20% training samples, respectively The ablation
experiment is designed as follows.

1) ViT: Baseline model.
2) ViT+inter: Only distill the knowledge within the class.
3) ViT+intra: Only distill the knowledge between classes.
4) ViT+inter+intra: Distill the knowledge both within

classes and between classes simultaneously.
5) CASD-ViT: Our proposed method introduces a learnable

interval while distilling the knowledge both within classes
and between classes.

As depicted in Fig. 13, the baseline model ViT achieved
accuracy scores of 92.08% and 94.85% on the NWPU and AID
datasets, respectively. The ViT+inter variant only maximizes the
interclass distance between the sample distribution in the fea-
ture space, with an optimization objective of max(KL(z′1,z

′
3)).

Compared to the baseline model, the accuracy of ViT+inter was
improved by 0.68% and 0.58% in the NWPU and AID datasets,
respectively. This suggests that optimizing the interclass dis-
tance is beneficial in enhancing the classification performance.
The results of the experiments on ViT+intra show that opti-
mizing the intraclass distance in the feature space through the
optimization objective max(KL(z′1,z

′
2)) can effectively improve

the classification performance. The accuracy of ViT+intra is
improved by 0.61% and 1.01% compared to the baseline model
ViT, on the NWPU and AID datasets, respectively. This demon-
strates that optimizing the intraclass distance can effectively
improve the classification performance. The ViT+inter+intra
framework optimizes both the intraclass and interclass distances
in the feature space with the optimization objective defined
in (11) by removing α. The experimental results show that
the classification accuracy of ViT+inter+intra is improved by
0.26% compared to ViT+inter on the NWPU dataset, and by
0.54% compared to ViT+inter on the AID dataset. These results
demonstrate that optimizing both the intraclass and interclass
distances can effectively improve the classification performance.
The proposed method, CASD-ViT, has an optimization objective

Fig. 14. OAs with different temperature T . In total, 10% training samples of
the NWPU dataset and 20% training samples of the AID dataset were used.
Experimental results are from the validation set.

as shown in (11). The experimental results show that CASD-ViT
achieves a classification accuracy of 93.14% and 96.26% on
the NWPU and AID datasets, respectively. The optimization of
CASD-ViT involves both the intraclass distance and interclass
distance, with the inclusion of the interval α to maintain a larger
interclass distance compared to the intraclass distance. The
results of the ablation experiments demonstrate the effectiveness
of the CASD framework.

2) Distillation Temperature: As demonstrated in Fig. 14,
we conducted a search for the optimal distillation temperature
ranging from 1 to 50, using 10% training samples from the
NWPU dataset and 20% training samples from the AID dataset.
As shown in Fig. 14, the best performance of both the NWPU and
AID datasets are centered around 5. As a result, the distillation
temperature T was selected as 5.

3) Probability Distribution Metric: Our proposed CASD
framework uses the KL divergence as a measure of the difference
between the two distributions to facilitate the transfer of knowl-
edge. However, alternative measures such as Euclidean distance
and Cosine similarity are also viable options. The concept of
KL divergence is expressed by (10). The Euclidean distance is
a straightforward method of calculating the distance between
two vectors. For a pair of vectors A = (a1, a2,..., an) and B
= (b1, b2,..., bn), the calculation for Euclidean distance can be
expressed as

D(A,B) =
√
(A−B) · (A−B). (16)

This Euclidean distance quantifies the straight-line distance
between the two vectors in an n-dimensional space. On the other
hand, to measure the cosine of the angle between vectors A
and B, which is an indicator of similarity, we use the following
formula:

S(A,B) =
A ·B

|A| · |B| . (17)
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TABLE VII
PERFORMANCE OF DIFFERENT METRICS ON OPTIMAL-31 DATASET (OA ±

STD)

Fig. 15. Training curves of ViT and CASD-ViT. Experiments were conducted
using the NWPU dataset under 20% training samples and the AID dataset under
50% training samples.

Here, S(A,B) gives the cosine similarity, a value between −1
and 1, where 1 means the vectors are identical, 0 indicates
orthogonality (no correlation), and −1 implies opposite vectors.

As shown in Table VII, we evaluated the accuracy of the pro-
posed method using various metrics. Experiments were carried
out on the OPTIMAL-31 dataset utilizing the CASD-ViT and
CASD-ResNet50 frameworks. The experimental results indi-
cate that KL divergence, as a metric of probability distribution
difference, attains the highest classification performance. There-
fore, we adopted KL divergence to measure the intraclass and
interclass distances in the distillation process.

E. Visualization Experiment

1) Training Curve Visualization: We visualized the training
curves of ViT and CASD-ViT to observe the training process
of CASD. We utilized 20% training samples from the NWPU
dataset and 50% training samples from the AID dataset. The en-
tire training process was conducted for a duration of 100 epochs,
as depicted in Fig. 15. The training process of the ViT exhibits
larger fluctuations compared to that of a CNN, particularly in
the initial 15 epochs, where the added warm-up strategy causes
the learning rate to vary significantly. On the NWPU dataset, the
accuracy of the CASD-ViT was not as high in the early stages
as that of the ViT, and we surmise that the primary reason for
this is the substantial distillation loss in the early stages, which
results in a substantial gradient change. However, as the training

Fig. 16. Learning trend of interval α in CASD-ViT on NWPU and AID
datasets.

progressed, the accuracy of the CASD-ViT surpassed that of
the ViT, indicating that the model gradually assimilated class
knowledge, thus improving its classification performance. On
the AID dataset, the CASD-ViT maintained a higher accuracy
compared to the ViT until convergence. To conclude, CASD can
effectively aid the model in converging to the minima point with
greater ease.

2) Learnable Interval Visualization: To investigate the learn-
ing trend of the learnable intervalαwithin the model, we present
the related learning curve. Generally speaking, given an initial
value for α, as the network training progresses, will update its
value to find an appropriate value as the lower limit between
the distance of similar and dissimilar pairs. In Fig. 16, we set
the initial value of α to 0.1. As training progresses, α increases
with the growth of the epoch count, eventually converging to an
optimal value. The growth of α is logical because an increase
in α results in a larger interclass distance, facilitating better
classification performance.

3) Feature Embedding Visualization:: The CASD frame-
work effectively helps the model generate a more meaningful
distribution, reducing intraclass variations and increasing inter-
class distances. As a result, it addresses the high intraclass di-
versity and interclass similarity issues commonly encountered in
remote sensing image classification. As demonstrated in Fig. 17,
we utilized t-SNE [64] to visualize the feature embeddings of
both ResNet-50 and CASD-ResNet50. Fig. 17(a) showcases the
extensive intraclass variation present in the feature space of
ResNet-50, resulting in a crossover between classes. On the other
hand, Fig. 17(b) displays the reduction of intraclass variation in
the feature space of CASD-ResNet50, which results in clearer
boundaries between the classes. Observing Fig. 17(c)–(h), we
can get similar conclusions.
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Fig. 17. Visualizing the feature embeddings of baseline and CASD using t-SNE. (a) ResNet-50 NWPU. (b) CASD-ResNet50 NWPU. (c) ResNet-50 AID.
(d) CASD-ResNet50 AID. (e) ViT NWPU. (f) CASD-ViT NWPU. (g) ViT AID. (h) CASD-ViT AID.

TABLE VIII
COMPUTATIONAL COMPLEXITY AND EFFICIENCY OF THE MODELS BASED ON

THE NWPU DATASET

V. DISCUSSION

A. Running Time and Parameters

In the field of deep learning, more complex models often offer
higher accuracy, but they might also lead to longer training and
inference times. The ideal scenario is to identify a model that
strikes a balance between high accuracy and high speed.

To assess the efficiency of our method, we set up two groups of
experiments to separately evaluate our approach in both training
and inference stages. Compared to the baseline model, our
method requires three forward passes and one gradient update
during the training phase, resulting in a greater time overhead.
However, during the inference stage, our method’s efficiency
is comparable to that of the baseline model. Fig. 18 illustrates
the relationship between time (required to train one epoch) and
accuracy during the training phase, while Table VIII depicts
the relationship between parameter size, throughput (number of

Fig. 18. Visualization of training time and accuracy based on 10% NWPU
dataset.

images inferred per second), and classification accuracy in the
inference phase.

From Fig. 18, it can be observed that the ViT series models
take a significant amount of time to train. This is due to the large
number of parameters and the complexity of the ViT models,
yet they deliver commendable performance.

Relative to the baseline model, our method does increase the
training time but brings about a significant boost in performance.
Notably, for CASD-ResNet50, a slight increase in training time
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results in a considerable performance gain, making it suitable
for practical applications. Furthermore, the training time for
the CASD-ViT is much less than that for the ViT-L, but its
performance surpasses the ViT-L. This suggests that the CASD-
ViT strikes an excellent balance between the training speed and
accuracy.

Looking at Table VIII, during the inference stage, our ap-
proach is virtually indistinguishable from the baseline model,
as we only need to utilize the student branch for infer-
ence. Although GoogleNet boasts a higher throughput, its
performance is evidently not up to the mark. CASD-ResNet50,
while retaining the speed advantages of the baseline ResNet-
50 model, significantly enhances the classification accuracy.
CASD-ViT achieves the best classification accuracy, surpassing
the baseline ViT model. In conclusion, the balance our method
achieves between accuracy and speed is commendable.

B. Extended Interpretation of the Model

From the perspective of information entropy, our method
can be clearly explained. In simple terms, information entropy
measures the uncertainty of a random variable. For a specific
probability distribution P , its information entropy H(P ) is de-
fined as

∑
p(x) log p(x), where p(x) represents the probability

of the random variable taking a certain value.
In KD, softening logits is a common approach. Its aim is to in-

crease the information entropy of the model’s output, which can
be seen as adding some “noise” to the model. In our method, two
teacher branches pass distilled information to the student branch.
This means the information received by the student branch has
high entropy or, in other words, contains this added uncertainty
or “noise.” This “noise” is actually precious. It not only allows
the student model to learn the original hard label knowledge
but also helps it absorb extra knowledge from similar and dif-
ferent samples. This deepens the model’s understanding of the
differences between various remote sensing image categories,
improving the model’s robustness and overall performance.

Clustering is an unsupervised learning method, aiming to
group similar data points together, forming clear and separate
clusters. Spectral clustering is a special variant of clustering
methods, exploring the graphical representation of data to dis-
cover inherent group structures. In spectral clustering, data
points are viewed as nodes in a graph, and a graph is constructed
by calculating the similarity between nodes. Then, by analyzing
the spectral characteristics of the graph (such as eigenvalues and
eigenvectors), clusters are identified and formed.

In the field of remote sensing image interpretation, some
related studies also focus on clustering and optimization of
feature space. For instance, Doulamis et al. [65] employed
constraint inductive learning and spectral clustering methods to
support personalized 3-D navigation. Zhang et al. [66] discussed
a spectral-spatial sparse subspace clustering method, addressing
land-cover classification problems in hyperspectral remote sens-
ing images, while Bach et al. [67] proposed a new objective and
algorithm for learning spectral clustering to optimize clustering
results.

In contrast to the aforementioned works, our method is not
a traditional clustering algorithm, but it optimizes clustering

boundaries. To achieve this, we created similar pairs and dissim-
ilar pairs, reducing the feature distance within the same category
and increasing the feature distance across different categories.
This approach, starting from a clustering perspective, optimizes
the distribution in feature space, effectively alleviating the issues
of high intraclass diversity and interclass similarity in remote
sensing image classification. By reducing intraclass variations
and increasing interclass distances, our method provides clearer
and more compact clustering results for remote sensing images,
thus improving the classification performance.

VI. CONCLUSION

A CASD framework is proposed for the high intraclass vari-
ations and interclass similarity that exist in remotely sensed
imagery. This framework utilizes self-distillation to extract
knowledge from both same-class and different-class samples,
and subsequently, guide the learning process of student models.
In detail, the CASD framework operates in the feature space
by pushing samples of the same class to be more similar and
samples of different classes to be more dissimilar. To further
encourage the model to learn distinctive features, we introduce
an learnable interval α that makes the interclass distance sig-
nificantly larger than the intraclass distance. Experiments were
performed using two different network architectures, ViT and
ResNet-50, and the results showed that the CASD framework
has excellent generalization and robustness. Furthermore, our
experiments on four publicly available datasets showed that the
CASD framework outperforms the state-of-the-art method in
terms of classification performance. In future work, we plan to
extend the CASD framework to a wider range of remote sensing
image classification models.
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