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Abstract—Hyperspectral image (HSI) classification has become
a popular research topic in recent years, and transformer-based
networks have demonstrated superior performance by analyzing
global semantic features. However, using transformers for
pixel-level HSI classification has two limitations: ineffective capture
of spatial-spectral correlations and inadequate exploitation of local
features. To address these challenges, we propose a dual-dimension
self-attention (D2SA) mechanism that fully exploits HIS’s high
spectral-spatial correlation by using two separate branches to
model the global dependence of features from the spectral and
spatial dimensions. Additionally, we develop a multilayer residual
convolution module that extracts local features and introduces
shallow-deep feature interactions to obtain more discriminative
representations. Based on these components, we propose a
dual-dimension spectral-spatial bottleneck transformer (D2S2BoT)
framework for HSI classification that simultaneously models the
local interactions and global dependencies of HSI pixels to achieve
high-precision classification. By virtue of the D2SA mechanism,
the introduced D2S2BOT framework can produce competitive
classification results with a limited number of training samples on
three well-known datasets, which we hope will provide a strong
baseline for future research on transformers in the field of HSI.

Index Terms—Convolutional neural network (CNN), dual-
dimension self-attention (D2SA) mechanism, hyperspectral image
(HSI) classification, remote sensing, transformer.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) is a widely utilized
form of satellite remote sensing data, characterized by
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pixels containing multiple continuous narrow spectral bands.
This attribute enables more accurate identification of material
information on the Earth’s surface. Consequently, HSI has found
extensive applications in diverse fields such as anomaly de-
tection [1], military reconnaissance [2], and vegetation disease
analysis [3]. To expand the application scope of HSI, researchers
have extensively investigated various data processing tech-
niques, including unmixing [4], super-resolution [5], semantic
segmentation [6], and classification [7]. HSI classification has
emerged as a prominent research area.

Over the years, researchers have developed several HSI clas-
sification methods, aiming to achieve high-accuracy results.
These methods fall into two categories: traditional and deep
learning-based approaches. Initially, traditional methods em-
ployed machine learning techniques such as k-nearest neigh-
bors [7], the Bayesian estimation [8], and support vector ma-
chines [9], [10], which used spectral information as input. Later,
researchers integrated spectral-spatial information into classifi-
cation methods. For example, in 2015, Li et al. [11] proposed an
integrated learning framework, allowing for the joint utilization
of multiple features. In 2017, Lu et al. [12] developed a fusion
framework that combined subpixels, pixels, and super-pixels
features. Despite their high performance, traditional methods
rely heavily on hand-crafted descriptors, which can compromise
classification robustness [13].

Compared with traditional methods, DL-based methods are
more robust in automatic extraction and representation of high-
level image features. In recent years, many computer vision tasks
have benefited from DL and made significant breakthroughs,
such as natural language processing (NLP) [14], image seg-
mentation [15], [16], and image classification [17], [18]. HSI
classification is a typical image classification task, and DL-based
methods are widely used in this field [19], [20], [21]. In 2014,
Chen et al. [22] proposed a stacked autoencoder-based HSI clas-
sification model, introducing deep learning methods to the task.
Subsequently, many DL-based backbone networks have been
successfully applied to the HSI classification task, such as deep
belief network [23], graph neural network [24], convolutional
neural network (CNN) [25], [26], recurrent neural network [27],
[28], capsule networks [29], and graph convolutional network
[30], [31], with CNN emerging as the mainstream.

CNNs are a powerful tool for capturing local correlations
due to their shared weights and local connections, making them
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well-suited for HSI classification tasks. Similar to traditional
methods, the researchers explored CNN-based classification
methods from the spectral information of HSI. Hu et al. [32]
proposed a 1D CNN with five convolutional layers to extract the
spectral features of HSI. Li et al. [33] proposed an HS image clas-
sification method based on a pixel-level CNN framework, which
can automatically extract hierarchical features from HS pixels.
Later, 2D-CNN and 3D-CNN-based classification methods were
developed to integrate spatial and spectral information. Xu et al.
[34] introduced a dual-branch framework for HSI classification,
in which the 1-D CNN branch and 2-D CNN branch are used
to explore HSI’s spectral and spatial information, respectively.
Li et al. [35] proposed an HSI classification framework, which
realized the joint extraction of spatial-spectral features using
3D-CNN. In subsequent years, researchers introduced numer-
ous CNN-based structural frameworks to enhance classification
performance. Roy et al. [36] proposed the HybridSN frame-
work for HSI classification, which uses 3D-CNN to extract
spectral-spatial features and subsequently uses 2D-CNN to learn
high-level spatial representations further. Zhong et al. [37] pro-
posed the spectral-spatial residual network (SSRN), wherein the
residual spectral block and the residual spatial block sequentially
learn features from the spectral and spatial information of HSI,
effectively enhancing feature utilization. Li et al. [38] proposed
the dual-branch dual-attention mechanism network (DBDA),
where 3D-CNNs with different receptive fields separately ex-
tracted spatial and spectral features, followed by the application
of attention modules in both branches to highlight features.

Recently, a model called transformer [39] has been pro-
posed for NLP, demonstrating promising results in analyz-
ing global long-range dependencies of input data with its
unique self-attention mechanism. Given its success in language
tasks, researchers have increasingly explored the expansion of
transformer-based models in computer vision, with a particular
emphasis on applications in hyperspectral image fields. Con-
sequently, numerous variants of the transformer architecture
for HSI classification have been proposed. For example, He
et al. [40] proposed a spatial-spectral transformer that com-
bines CNNs for extracting HSI spatial features and a modified
transformer to capture spectral sequence relationships. Liu et
al. [41] proposed a deep spectral-spatial transformer that stud-
ies transformer classification results along spatial and spectral
dimensions. Sun et al. [42] proposed a spectral-spatial feature
Tokenization transformer that utilizes a Gaussian-weighted fea-
ture tokenizer to exploit the deep semantic properties of the
spectral-spatial features. Roy et al. [43] proposed the Mor-
phormer network, which integrates a self-attention mechanism
with morphological operation to better learn spatial-spectral
features. Yao et al. [44] proposed an extended vision transformer
(ViT) with a parallel architecture, incorporating a cross-modal
attention module to effectively fuse spectral-spatial features
from HSI and geometric information from Lidar data, enhancing
complementary feature learning. However, the self-attention
mechanism in the transformer model, which excels at conducting
comprehensive analysis and establishing global dependencies
within input sequences, encounters limitations when it comes
to attending to local information between adjacent sequences

[45]. This constraint hinders its effectiveness in capturing local
features among neighboring pixels in HSI data—a crucial con-
sideration in remote sensing HSI data where adjacent pixels
often correspond to the same feature [42]. Furthermore, the
conventional self-attention mechanism faces a challenge in ef-
fectively handling the redundant spectral information present
in HSI data, as it extensively analyzes all spectral components
and incorporates their global dependencies. This comprehen-
sive analysis poses difficulties in discerning valuable spectral
information and accurately extracting discriminative features.

To address these challenges, a transformer-based frame-
work is proposed in this article with the aim of achieving
high-accuracy HSI classification. The framework comprises of
two key components, namely dual-dimension spectral-spatial
bottleneck transformer (D2S2BoT) and a multilayer residual
convolution module. The former is designed to explore the
global correlation of HSI to predict classification results, while
the latter captures and provides local features. Specifically, in
D2S2BoT, a unique dual-dimension self-attention (D2SA) mech-
anism is introduced to model the spectral-spatial correlation
of HSI. Two independent branches are applied to refine the
long-range dependencies of the HSI data on the two dimensions,
resulting in better joint exploitation of spatial and spectral global
information. An efficient linear projection classifier is then
introduced to summarize the features learned by D2SAs for
determining classification results. The multilayer residual con-
volution module is developed to preprocess HSI data to enhance
D2SA’s local feature perception. Two residual blocks are used
to extract HSI spectral and spatial local features differentially,
and shallow-deep local feature interactions are employed to
obtain more discriminative representations. By developing
local-global features, the D2S2BoT framework effectively mod-
els the spectral-spatial interrelationships of HSI, producing com-
petitive classification results on three well-known hyperspectral
datasets.

The main contributions of this research are summarized as
follows.
� The D2S2BoT framework is proposed for HSI classifica-

tion, employing a progressive feature extraction strategy
from local to global. The framework utilizes CNNs to learn
multilayer local features and incorporates a unique bottle-
neck transformer (BoT) structure to effectively capture and
adaptively fuse global spectral and spatial dependencies.
Experimental results on three well-known datasets demon-
strate that the proposed framework achieves competitive
performance even with limited training samples.

� A D2SA mechanism is proposed. Through differentiated
mapping of HSI features, this mechanism effectively cap-
tures the long-term dependencies in both channel and
spatial dimensions, while employing an adaptive fusion
strategy to enhance information interaction.

� A multilayer residual convolution module is introduced
for capturing local features, where a double parallel block
structure is employed to extract HSI spectral and spatial
features differentially, and shallow-deep feature interac-
tions are further applied to enhance the multilayer feature
representation.
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Fig. 1. Architecture of ViT.

The rest of the sections of this article are structured as
follows. Section II provides a concise overview of the ViT
and BoT. In Section III, our proposed framework is elabo-
rated in detail. Experimental description and analytical results
are presented in Section IV. Finally, Section V concludes this
article.

II. RELATED WORK

In this section, we present a succinct overview of two trans-
former models employed in the domain of computer vision,
including the ViT and the BoT.

A. Vision Transformer

With the popularity in the NLP field, researchers have also
applied the transformer model to image classification tasks
and have proposed many transformer-based image classification
models. In 2020, Dosovitskiy et al. [46] first applied the trans-
former model to the image classification task, which is called
the “vision transformer.” As shown in Fig. 1, the input image of
ViT is divided into multiple blocks, and flattened after passing
through the patch embedding layer to obtain several vectors
called tokens. After concatenated with position information, the
tokens are then fed into the transformer encoder to simulate the
deep relationships among them. Finally, the features learned by
the encoder are sent to a multilayer perceptron (MLP) head to
complete the classification.

The multihead self-attention (MHSA) layer is the key com-
ponent to the encoder of classical ViT architecture, which
aims to leverage global information to learn the interrela-
tions between tokens. As shown in Fig. 2, the MHSA layer
consists of n identical head self-attentions, each with three
learnable matrices defined in advance: the query matrix WQ,
the key matrix WK and the value matrix WV . These in-
put tokens X are linearly mapped into 3D invariant matri-
ces, including the query matrix Q = XWQ

i , the key matrix
K = XWK , and the value matrix V = XWV . The dot
products are used to calculate the Q with all K, and then the
weights on the V is calculated by using softmax function.
Output by the ith head self-attention can be defined by the

Fig. 2. Attention mechanisms in the transformer encoder, i.e., (a) MHSA and
(b) self-attention.

following formula:

headi = Attention (Q,K,V )

= softmax

(
QKT

√
d

)
V (1)

where d is the dimension of K.
Then, the output of the MHSA layer can be obtained by

concatenating the self-attention results of independent head.
Formula (2) can represent this process.

MHSA (Q,K,V ) = Concat (head1, . . . ,headn)W
(2)

where W is the parameter matrix and Concat(·) is the con-
catenation operation.

Recently, some ViT-based HSI classification models have
been introduced by researchers. In 2020, He et al. [47] proposed
a bidirectional encoder representation from transformers that can
efficiently analyze global dependencies between HSI pixels. In
2021, He et al. [48] proposed a spectral-spatial HSI classification
framework in which a DenseTransformer was used to capture the
spectral relationships of HSI. In 2022, Hong et al. [49] proposed
the SpectralFormer network architecture based on ViT, which
rethinks the HSI classification in terms of the sequential prop-
erties of the spectra. Although these HSI classification models
based on ViT structure has good performance, they ignore the
fundamental differences between sequence-based NLP tasks and
image-based visual tasks. For instance, in ViT, the flattening of
image blocks into vectors for processing results in the loss of 2D
structure and local spatial information [45]. Additionally, ViT
exhibits limitations in extracting low-resolution and multiscale
features [45], thereby posing a significant challenge to further
enhance the classification accuracy of these models.

B. Bottleneck Transformer

In 2016, the bottleneck structure was first introduced to
ResNet by He et al. [50] As shown in Fig. 3(a), the classi-
cal bottleneck block consists of three convolutional layers: a
(1 × 1) convolution for dimensionality reduction, a (3 × 3)
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Fig. 3. Different bottleneck blocks. (a) ResNet bottleneck block. (b) BoT
block.

convolution for spatial feature extraction, and a (1 × 1) con-
volution for dimensionality expansion. The bottleneck structure
can effectively reduce the computation of the convolution layer
without reducing the performance of model, and has therefore
been widely used in the design of neural networks and further
refined in subsequent researches. In [51], the channels of each
convolutional layer in the bottleneck block are further increased
to improve feature extraction ability. In [52], the middle spatial
layer of the classical bottleneck structure is replaced by grouped
convolution to aggregate richer image features. Lately, as atten-
tion mechanisms have evolved and demonstrated good utility
for improving various types of networks, their hybrid structures
with the bottleneck block have been researched. In [53], the
bottleneck block was extended by a channel attention branch,
which aims to improve the representation of the network by
modeling the relationship between channels of the feature map.
In [54], a multiscale bottleneck structure is introduced, in which
branches with different receptive field sizes are automatically
assigned weights by the cross-channel attention module, effec-
tively improving the adaptability of the model. Furthermore, the
MHSA is a unique attention mechanism from the transformer
[39], which has powerful global information modeling capabil-
ity. Therefore, Srinivas et al. [55] migrated it in the bottleneck
structure and named it the BoT.

BoT performs well in visual recognition tasks owing to the
combination of the global information modeling capability of
the self-attention mechanism and the lightweight attribute of
bottleneck structure. As the BoT detailed in Fig. 3(b), the (3× 3)
spatial convolution layer in the classical bottleneck structure is
replaced by the MHSA from the transformer. Benefiting from its
architecture, BoT processes and aggregates the information in
the 2D feature map by exploiting the global self-attention from
MHSA layer, thus better modeling the long-range correlation
between pixels. In addition, it is not necessary for BoT to reshape
2D feature maps into 1D token sequences, which facilitates the
maintenance of 2D spatial adjacency information of the input
image for further exploitation.

The attention of the MHSA layer in BoT be defined by the
following formula:

Attention (Q,K,V ) = softmax
(
QP +QKT

)
V
(3)

where Q is the query, K is the key, and V is the value.
P represents the position encoding, and Rh and Rw represent
the height and width of 2D feature map, respectively.

While MHSA can help networks focus on globally useful
features from the spatial domain, the BoT is not designed for
HSI data with a three-dimensional stereoscopic structure, which
is challenging in balancing the analysis of spectral and spatial
features. To further explore the long-distance dependence of
spectral and spatial features, we design the dual-domain self-
attention (D2SA) mechanism with a parallel structure for appli-
cation scenarios of HSIs. This mechanism comprises a channel
global attention branch and a spatial global attention branch.
The former projects input features into three adaptable vectors,
facilitating the complementary learning of spectral long-range
dependencies by incorporating vectors from both the global
channel and local space. The spatial attention branch, derived
from the original MHSA, enhances location correlation through
two-dimensional relative position encoding. The outputs of these
branches are adaptively fused to prioritize discriminative fea-
tures essential for classification. This dual attention structure
enables the collaborative utilization of global features in both
spectral and spatial dimensions, effectively capturing long-range
interactions among HSI pixels.

III. METHODS

Fig. 4 illustrates the overall framework for HSI classification,
consisting of two components: a multilayer residual convolution
module and D2S2BoT.

First, the multilayer residual convolution module extracts
local information and includes two residual blocks that focus
on spectral and spatial features. A shallow-deep feature interac-
tion mechanism enhances the representation of HSI multilayer
features.

Then, the D2S2BoT receives the local feature map to establish
the global correlation of HSI pixels and predict the classification
result. It includes stacked dual-dimension encoders (D2Encoder)
and a linear projection classifier. The encoders analyze local
feature maps and simulate the long-range correlation of HSI
pixels using the introduced D2SA structure. The linear projec-
tion classifier summarizes the output of the encoder to make
predictions for classification result.

Algorithm 1 presents the pseudocode of this framework, while
subsequent sections offer a comprehensive explanation of these
components.

A. Multilayer Residual Convolution Module

To exploit the feature extraction capability of CNNs, the
multilayer residual convolution module is first introduced to
refine the local features of HSI, which provides rich local
information for the subsequent D2S2BoT. As shown in Fig. 5, the
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Fig. 4. Overall structure of proposed framework for HSI classification. It consists of two main components, i.e., multilayer residual convolution module for local
feature extraction, and D2S2BoT for global correlation analysis and predict the classification results.

Fig. 5. Multilayer residual convolution module. Where S and K represent the
strides and size of the convolution kernel, respectively. (a) Spectral Residual
Block and (b) Spatial Residual Block.

HSI’s spectral dimension is initially reduced by principal com-
ponent analysis. Then, the dimensionality-reduced data patch is
passed through the spatial and spectral residual blocks to extract
the corresponding features, employing shallow-deep features
interaction to capture more useful local information. Finally,
the extracted features are fused by a channel concatenation
operation to further obtain feature maps containing rich local
spectral-spatial information.

1) Spectral Residual Block: The spectral residual block em-
ploys two independent branches, i.e., a deep-level feature and a
shallow-level feature branch, as shown in Fig. 5(a).

In the deep-level feature branch, multiscale perception is
combined to build convolutional layers, which are stacked twice
to refine the multiscale features and further learn more abstract
representations. In each layer, multiscale features are extracted
through two sets of convolution kernels with receptive fields
of (3 × 3 × 3) and (3 × 3 × 5), respectively. The resulting

feature maps are then concatenated along the channel dimension,
followed by a (1 × 1 × 7) convolutional kernel to further
aggregate information. This can be represented by the following
formula:

Xi
spe(d) = Conv3d(1×1×7)

×
[
Concat

(
Conv3d(3×3×3)

(
X

(i−1)

spe(d)

)

Conv3d(3×3×5)

(
X

(i−1)

spe(d)

)
)]

(4)

where Xi
spe(d) denotes the output of the Ith (I = 1, 2) layer

of spectral residual block; Concat (·) denotes the concatena-
tion operation, and Conv3d (·) denotes convolution operation,
which consists of 3D convolution operation, batch normalization
layer, and mish activation function [56].

In contrast, the shallow-level feature branch employs a single-
layer convolutional structure with a (1 × 1 × 7) kernel, which
is well-suited for extracting coarse-grained features of the HSI.
The resulting output of the shallow feature branch can be repre-
sented by the following formula:

Xspe(s) = Conv3d(1×1×7) (X) (5)

where X represents dimension-reduced HSI patch.
Next, we introduce the shallow-deep feature interaction op-

eration, which aims to fuse the output of the two branches and
enhance the residual block’s ability to capture and refine useful
information from the multilayer features. This operation consists
of a concatenation operation and a convolutional layer with a size
of (1× 1× 7). The resulting output of the spectral residual block
can be expressed as follows:

Xspe = Conv3d(1×1×1)

[
Concat

(
Xspe(s)

Xspe(d)

)]
(6)

where Xspe represents the output from the spectral residual
block.

2) Spatial Residual Block: To explore the spatial features of
HS images, we construct the spatial residual block using 2D
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Fig. 6. (a) D2Encoder and (b) D2SA. The encoder consists of three layers: a contraction layer, a D2SA layer, and an expansion layer. The D2SA is implemented
by two branches, i.e., the spatial global attention branch and the channel global attention branch. Where H, W, and C represent the feature map’s heights, widths,
and channels, respectively.

convolution with a similar concept to the spectral residual block.
The block is composed of two branches, extracting deep and
shallow features independently, as depicted in Fig. 5(b). The
shallow-depth feature interaction operation is then employed
to learn and refine these features, involving a concatenation
operation and a 2D convolution operation with (1 × 1) kernel
size. The output of the spatial residual block can be expressed
as follows:

Xspa = Conv2d(1×1)

[
Concat

(
Xspa(s)

X2
spa(d)

)]
(7)

Xi
spa(d)=Conv2d(1×1)

[
Concat

(
Conv2d(3×3)

(
X

(i−1)

spa(d)

)

Conv2d(5×5)

(
X

(i−1)

spa(d)

)
)

(8)

Xspa(s) = Conv2d(7 × 7) (X) (9)

where Xspa represents the output of the spatial residual block,
Xspa(s) andXspa(s) represent the outputs of shallow and deep
feature branch, respectively. Conv2d (·) denotes convolution
operation, which consists of 2D convolution operation, batch
normalization layer, and Mish activation function.

3) Spectral and Spatial Feature Fusion: Using spectral and
spatial residual blocks, feature maps are obtained for both spec-
tral and spatial dimensions, which are then fused using con-
catenation operations instead of element summation to prevent
cross-interference of features from different dimensions. This
process can be represented by the following formula:

Xout = Concat
(
Xspa

Xspe

)
(10)

where Xout represents the output of the multilayer residual
convolution module, which serves as the input of the subsequent
transformer.

B. Dual-Dimension Spectral-Spatial BoT

Given the strong interdependence between the spectral and
spatial dimensions of HSI data, we have developed a D2S2BoT
that can efficiently learn local spectral-spatial features and
analyze long-range dependencies to achieve accurate land
cover classification. The D2S2BoT consists of a stacked set
of D2Encoders and a linear projection classifier. The encoders
are specifically designed to capture global correlations of HSI
pixels across both spectral and spatial dimensions, with each
layer of the stacked encoders learning spectral-spatial features at
increasing depths. The deep HSI features learned by the encoders
are then aggregated by the linear projection classifier to produce
the final classification results.

1) Dual-Dimension Encoder: As shown in Fig. 6(a), the
proposed D2Encoder consists of three layers: a contraction
layer, a D2SA layer, and an expansion layer. The contraction
and expansion layers utilize (1 × 1) convolutions to reduce
and increase the number of feature map channels, respectively.
The D2SA layer is the core of modeling HSI global relation-
ships, with the ability to analyze and learn from long-range
dependencies of spatial and channel dimensions in feature
maps. The D2SA layer is implemented through two separate
branches, including the channel global-attention and the spatial
global-attention.

As illustrated in Fig. 6(b), the channel global-attention branch
utilizes averaging pooling operations to aggregate information
from the input feature mapF i(i = 1,2,3......,L). Specifically, these
operations are applied along the height, width, and channel
dimensions, resulting in the extraction of three distinct fea-
ture maps, denoted as F i

h, F i
w, and F i

c, respectively. The
first two are applied for modeling HSI neighborhood pixel
interactions, and the last for capturing long-range channel
correlations.
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Algorithm 1: D2S2BoT Framework.

Input: Input an HS image data I�R H×W×C and
ground-truth Y �R H×W ; PCA band number
B = 30;HS patch size S = 11; training ratio T%.

Output: Predicted labels of the test HS dataset.
1: Set the batch size of the model to 64, the optimizer to

Adam (learning rate 1e−4), the epoch number E to 50,
and the D2S2BoT encoder layers L to 3.

2: Obtain HS image data Ipcaafter PCA transform and
divide it into training and test sets. Generate training
loader and test loader.

3: For n = 1 to E do
4: Perform the multilayer residual convolution module

to obtain a feature map Xout.
5: Input Xout. to the Transformer module’s Layer 1

encoder.
6: For m = 1 to L do
7: Perform the dual dimension encoder on the feature

map of layer m.
8: End for
9: Perform linear projection classifier to identify labels
10: End for
11: Use the trained model to make predictions on the test

set.

First, the F i
h and F i

w are fed to the 2D convolution layers of

size (3 × 1) and (1 × 3), respectively, to obtain F̂
i

h and F̂
i

w,
which are fused and multiplied with the input F i to obtain the

attention map F̂
i

channel. These processes can be expressed by
the following formulas:

F̂
i

channel = F i ∗f
(
F̂

i

h, F̂
i

w

)
(11)

F̂
i

h = Conv2d(1×3)

(
F i

h

)
(12)

F̂
i

w = Conv2d(3×1)

(
F i

w

)
(13)

where f(·) represents fusion operation, which consists of ex-
pansion operations, element-wise addition, a convolution of size
(1 × 1), and a sigmoid activation function.

Subsequently, the attention map F̂
i

channel is processed along
the channel dimension to perform the global average pooling
operation, which is concatenated with F i

c, followed by a fully
connected layer to learn each channel correlation and obtain
the channel attention vector V i

c. Finally, the channel attention
branch output F i

channel is derived by multiplying the chan-

nel attention vector V i
c with the attention map F̂

i

channel, as
described by the following formulas:

F i
channel = V i

c ∗F̂
i

channel (14)

V i
c = FC

[
Concat

(
V i

c,GP c

(
F̂

i

channel

))]
(15)

Fig. 7. Linear projection classifier in D2S2BoT.

whereF i
channel represents the channel global-attention branch

output of layer I encoder. Concat(·) represents the concatena-
tion operation. GP c(·) represents the global average pooling
operation performed by the channel dimension.

For the spatial global-attention branch, the self-attention
mechanism is used to extract the global correlation in the spatial
dimension. As shown in Fig. 6(b), 2D convolution operations
are performed on the input feature map to create three trainable
matrices: Q, K, and V , which are used to analyze the global
context information of spatial dimensions. The process can be
expressed as follows:

Q,K,V = Conv2d(1×1)

(
F i
)

(16)

where Q, K, and V are trainable matrices of query, key, and
value, respectively.

To better align the feature information in the spatial dimension
of the feature map with location information, we introduce a spa-
tial position query matrix Qs. This is realized by implementing
2D relative location self-attention [57]. These four matrices are
then used to analyze the global context information of spatial
dimensions. This process can be expressed as follows:

F i
spatial = Attention (Q,K,V )

= softmax
(
Qs +QKT

)
V (17)

Qs = Q ∗ (P h + Pw) (18)

where F i
spatial represents the spatial global-attention branch

output of layer I encoder.Qs is the spatial location query matrix,
which contains relative height and width information (Ph and
Pw, respectively) on the spatial dimension of the feature map.

Then, the outputs of the two branches are fused, where a
learnable parameter γ is introduced to adaptively adjust the
weights of each branch. The Ith layer encoder output can be
expressed as follows:

F i+1 = Encode
(
F i
)
= a ∗ F i

spatial

+ (1− a) ∗ F i
channel (19)

where Encode(·) represents D2S2BoT encoding operation,
and a ∈ (0, 1) is a learnable parameter.

2) Linear Projection Classifier: The linear projection clas-
sifier layer receives the global features learned by encoders and
further completes the classification. As shown in Fig. 7, the
classifier is constructed by global average pool operation and
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TABLE I
NUMBER OF SAMPLES IN THREE DATASETS

full connection layer instead of the MLP layer in the original
transformer. The classification process can be expressed as
follows:

Y = FC
(
GP

(
FL
))

(20)

where Y represents the classification result predicted by the
D2S2BoT, and F l represents the last (Lth) encoder output.

IV. EXPERIMENT

We conduct various experiments on three HSI datasets to
validate the proposed D2S2BoT framework. First, we provide
an overview of these datasets. Then, we elaborate on the experi-
mental setup, including the implementation details, and conduct
several ablation experiments to demonstrate the validity of the
different modules. Finally, we compare the classification results
of the D2S2BoT framework with some advanced algorithms to
demonstrate its superiority.

A. Overview of Datasets

This study involved conducting experiments on three hyper-
spectral image datasets, namely the Indian Pine (IP), Salinas
Valley (SV), and Botswana (BS) datasets. Table I shows the
detailed information of each dataset.

IP: The IP dataset, acquired by the AVIRIS spectrometer in
northwest Indiana, encompasses 200 spectral bands spanning
wavelengths ranging from 0.4 to 2.5 µm. This dataset com-
prises a total of 145×145 pixels with a resolution of 20 m/pixel
and encompasses a diverse set of 16 classes. Fig. 8(a) visually
presents the corresponding ground-truth map.

SV: The SV dataset was acquired using AVIRIS sensors and
is situated in California, USA. It encompasses 204 spectral
bands spanning wavelengths from 0.4 to 2.5 µm. This dataset
comprises a spatial resolution of 3.7 m with dimensions of
512 × 217 pixels, encompassing a total of 16 land cover
classes. The ground truth for the SV dataset is depicted in
Fig. 9(a).

BS: The BS dataset was acquired by the EO-1 HS sensor in Oka-
vango Delta, California, USA in 2001. Following the removal
of noisy bands, a total of 144 spectral bands were selected
for the experiment, encompassing wavelengths ranging from
0.38 to 1.05 µm. The dataset comprises 1476 × 256 pixels
with a spatial resolution of 30 m and encompasses 14 distinct
classes. The corresponding ground-truth map can be observed
in Fig. 10(a).

B. Experimental Setting

This article compares several well-known CNN-based and
Transformer-based models, including HybridSN [36], SSRN
[37], A2S2K [58], DBMA [59], DBDA [38], BS2T [60], Mor-
phformer [61], and CTmixer [62]. All models are executed on a
server with an i5-3470 CPU and a K40c 12 GB GPU for fairness,
with an input patch size of (11 × 11). Each experiment is trained
for 50 epochs.

To quantify the experimental results, three evaluation indexes
are introduced, namely overall accuracy (OA), average accuracy
(AA), and kappa coefficient (K). The HS image dataset is split
into three subsets (training, validation, and test) with fewer
training samples to better distinguish performance differences
among algorithms. For the IP dataset, 2.5% of the samples are
randomly assigned to the training set and another 2.5% to the
validation set. For the SV and BS datasets, 0.5% and 1.5% of the
samples are used for training, respectively, while another 0.5%
and 1.5% are used for validation. The remaining samples are
reserved for testing.

C. Classification Results

1) Classification Results for the IP Dataset: The low spatial
resolution (20 m) and mixed pixel phenomenon of the IP dataset
pose challenges in distinguishing land covers, thus we adopted
a training ratio of 2.5%. Our proposed framework outperformed
other algorithms, achieving superior classification results with
an OA of 95.96%, AA of 94.58%, and a kappa coefficient of
0.9539, as elaborated in Table II. Comparative analyses with
CNN-based networks such as HybridSN and SSRN reveal that
our proposed method exhibited superior classification accuracy
across most classes, with notable improvements, particularly
for class 12 and class 16, surpassing the performance of the Hy-
bridSN network by 35.98% and 17.36%, respectively. Moreover,
compared to the SSRN network, our method improved the clas-
sification accuracy for these classes by 16.88% and 19.94%, re-
spectively. Additionally, in contrast to attention-based methods
like A2S2K, DBMA, and DBDA, our proposed method excelled
in analyzing the global relationships of HS pixels, resulting in
significant accuracy enhancements, particularly for classes with
limited samples. For example, in class 1, our method’s accuracy



ZHANG et al.: D2S2BOT: DUAL-DIMENSION SPECTRAL-SPATIAL BOTTLENECK TRANSFORMER FOR HSI CLASSIFICATION 2663

Fig. 8. Map of classification results for the IPs dataset. (a) Ground-truth map. (b) HybridSN. (c) SSRN. (d) A2S2K. (e) DBMA. (f) DBDA. (g) BS2T.
(h) MorphFormer. (i) CTmixer. (j) PROPOSED WORK.

Fig. 9. Classification maps of the SV dataset. (a) Ground-truth map. (b) HybridSN. (c) SSRN. (d) A2S2K. (e) DBMA. (f) DBDA. (g) BS2T. (h) MorphFormer.
(i) CTmixer. (j) PROPOSED WORK.

surpasses the mentioned methods by 54.15%, 3.64%, and 6.32%,
respectively. By leveraging the interdependence of HSI features
in both dimensions, our method outperformed Transformer-
based approaches such as BS2TMorphformer and CTmixer
in terms of OA metrics, achieving a 1.09% improvement
over the suboptimal Morphformer, which achieved an OA of
94.87%.

2) Classification Results for the SV Dataset: Table III
presents the three metrics for all evaluated methods on the SV
dataset, with the best-performing results highlighted in bold. The
SV dataset ground truth and the classification maps predicted by
different methods are displayed in Fig. 9.

For the SV dataset, training is executed using only 0.5%
of the samples, as the majority of land classes are continu-
ous and linearly separable. The framework exhibits a promi-
nent classification effect, with outstanding OA, AA, and kappa
coefficients reaching 98.46%, 98.29%, and 99.12%, respec-
tively, as detailed in Table III. Notably, the introduced method
attains more than 90% accuracy for each ground class, with
the highest accuracy observed for classes 5, 8, 9, 11, and 14
compared to other methods. It is noteworthy that, while the
Morphformer and CTmixer methods also achieve commend-
able classification results (OA = 97.81% and 97.71%, respec-
tively), the proposed method generates fewer noisy points and
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Fig. 10. Map of classification results for the BS dataset. (a) Ground-truth map. (b) HybridSN. (c) SSRN. (d) A2S2K. (e) DBMA. (f) DBDA. (g) BS2T.
(h) MorphFormer. (i) CTMIXER. (j) PROPOSED WORK.

exhibits smoother boundary regions during the classification
process.

3) Classification Results for the BS Dataset: Table IV
presents the three metrics for all methods evaluated on the BS
dataset, with the top-performing results highlighted in bold. The
ground truth maps for the BS dataset and the prediction result
maps generated by the different algorithms are displayed in
Fig. 10.

The BS dataset contains only 3248 labeled samples, with
1.5% allocated for training. The proposed framework achieves
outstanding classification results, with an OA of 96.69%, AA
of 96.29%, and kappa of 0.9461. The introduced method also
attains over 80% accuracy for all land-cover classes, including
seven classes with the highest accuracy among all methods.
Moreover, the introduced method achieves 100% accuracy for
classes 7, 10, 12, 13, and 14, leveraging local and global contexts
to develop HSI patch features. These results demonstrate the
proposed method’s capability in capturing deep global rela-
tionships between different objects, achieving high-precision
classification on the BS dataset, which contains a substantial
number of discrete and local samples.

D. Parameter Studies

In this section, we analyze the influence of two key network
parameters, i.e., the size of the input patch and the number of
encoder layers of D2S2BoT. Two sets of experiments are then

Fig. 11. Effect of different input patch size on the OA.

performed on three datasets to compare the complexity of all
compared methods and their performance at different training
ratios.

1) Input Spatial Size: The OA of the proposed framework
with different input sizes is illustrated in Fig. 11. As the in-
put size increases, the model can effectively incorporate more
spatial-spectral neighborhood information. Optimal classifica-
tion results are achieved when the input spatial size expands to
(11 × 11). However, further increasing the spatial size counter-
intuitively leads to a decrease in classification accuracy due to
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TABLE II
RESULTS FOR IP DATASET OBTAINED BY DIFFERENT CLASSIFICATION METHODS

TABLE III
RESULTS FOR SV DATASET OBTAINED BY DIFFERENT CLASSIFICATION METHODS

unnecessary information introduced by excessive input space,
resulting in over-fitting of the model.

2) Number of Encoder Layers of D2S2BoT: Fig. 12 shows the
proposed model’s classification results with varying numbers
of D2S2BoT encoder layers. Classification accuracy initially
increases with the number of layers but reaches its peak at
three layers, with further increases causing slight fluctuations.
Stacking encoders enhances the HSI feature representation, but
excessive encoders weaken the correlation between layers, lead-
ing to unstable performance. To balance model complexity and
performance, subsequent experiments set the number of encoder
layers to 3.

3) Parameters Numbers and Running Time: Table V sum-
marizes the time consumption and number of parameters for

nine methods on IP, SV, and BS datasets. The outcomes indicate
that the method achieved the highest classification accuracy with
moderate parameters and time consumption, demonstrating its
effectiveness in accomplishing the HSI classification task.

4) Training Ratios Experiment: The experimental results
obtained by employing various comparison methods on three
datasets with different training sample ratios are presented in Ta-
ble VI. Specifically, for the IP dataset, training ratios of 1%, 2%,
5%, 8%, and 10% were employed. For the BS dataset, training
ratios of 1%, 2%, 5%, 7%, and 8% were employed. Considering
the abundance of samples in the SV dataset, smaller training
ratios are used, namely 0.1%, 0.2%, 0.5%, 0.8%, and 1%.

The results in Table VI show that there is a positive rela-
tionship between training rate and classification accuracy. It
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TABLE IV
RESULTS FOR BS DATASET OBTAINED BY DIFFERENT CLASSIFICATION METHODS

Fig. 12. Effect of different D2S2BoT encoders layer (number of encoders) on
the OA.

is worth noting that all models show excellent performance
when provided with sufficient training samples (10% for IP
dataset, 8% for BS dataset, and 1% for SV dataset). How-
ever, the introduced method outperforms other models in all
training ratios, especially when training samples are extremely
scarce. For example, for the IP and SV datasets, the OA of the
proposed method reaches 86.28% and 94.19% at 1% training
rate, which are 1.64% and 1.46% higher than the suboptimal
CTmixer method, respectively. For the BS dataset, the OA of
the proposed method reaches 92.69% with the training rate of
0.1%. Moreover, the introduced framework can achieve simi-
lar or even better classification results with a smaller training
rate compared to other methods. For example, the introduced
framework achieves a 98.23% OA metric on the IP dataset
with a training rate of 5%, which is significantly higher than
the HybirdSN (98.01%), SSRN (97.54%), A2S2K (98.11%),
and DBMA (97.87%) methods with a training rate of 10%.
These results demonstrate the excellent potential of our proposed
method in terms of labor and cost savings, given the high cost
of labeled datasets.

TABLE V
COMPARISON OF RUNNING TIME AND PARAMETERS OF DIFFERENT METHOD

E. Ablation Studies

Ablation experiments are conducted on three datasets to
validate the effectiveness of two key components in our pro-
posed method: the multilayer residual convolution module
and the D2SA. First, we evaluate the performance impact of
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TABLE VI
EXPERIMENTAL RESULTS OF TRAINING RATIOS ON THREE DATASETS UTILIZING DIFFERENT METHODS

TABLE VII
ACCURACY ANALYSIS FOR DIFFERENT COMPONENTS COMBINATIONS IN THE PROPOSED METHOD

TABLE VIII
ACCURACY ANALYSIS FOR DIFFERENT ATTENTION MECHANISM

the two residual blocks (spectral and spatial) in the multi-
layer residual convolution module on the two Transformer
modules through two sets of comprehensive experiments. Ad-
ditionally, we compare the traditional self-attention mecha-
nism with the introduced D2SA mechanism. We evaluate the
performance of each branch of the D2SA mechanism based
on classification accuracy, and detailed results are presented
in Tables VII and VIII.

To validate the effectiveness of the multilayer residual convo-
lution module, we undertake an exploration of three combina-
tions of residual blocks to gauge their impact on the performance
of two transformer modules—the original BoT module and
the introduced D2S2BoT module. As illustrated in Table VII,
the framework’s classification accuracy reaches its lowest point
when only the spectral residual block is activated. This is at-
tributed to the inherent spectral specificity in HSI data, where

the same land class may manifest varying spectral features, or
different land classes may exhibit analogous spectral features
[4]. Therefore, the coactivation of the two residual blocks is
necessary (lines three and six), allowing the spectral and spatial
features to be jointly extracted and enabling the subsequent
Transformer module to capture discriminative features from
different land covers, thus improving overall performance.

On the other hand, Table VI also reveals that the introduced
D2S2BoT module consistently outperforms the original BoT
module in all three residual block combinations, especially when
only one spectral residual block is activated (rows one and four).
The OA of the three datasets is improved by 2.12%, 1.29%,
and 3.62%, respectively, which is attributed to the ability of
D2S2BoT to extract features from two dimensions, adaptively
encode global features, and efficiently fuse and summarize them
for exploring deep interactions.
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Furthermore, we conduct a comprehensive comparative anal-
ysis to validate the efficacy of our introduced D2SA mechanism
in comparison with the original self-attention mechanism, as
shown in Table VIII. Specifically, we examine the independent
activation of the spatial global attention branch (D2SA-S) and
channel global attention branch (D2SA-C) within D2SA. The re-
sults demonstrate that the introduced D2SA better attends to the
global features of HSI compared to the traditional self-attention
mechanism. Specifically, the use of relative spatial location
coding in D2SA-S significantly enhances the model’s ability to
process location information of local spatial features. In contrast,
D2SA-C focuses on learning and summarizing global depen-
dencies from the channel dimension of the HSI feature map,
allowing for better mining of deeper features. The synergistic
activation of D2SA-S and D2SA-C unleashes dynamic adapta-
tions that enable D2SA to learn the interdependencies of features
between the two domains. This adaptation leads to a more
efficient analysis of joint features in spectral space, significantly
improving classification performance with average accuracies of
95.32%, 98.29%, and 96.41% on the three datasets, respectively.

V. CONCLUSION

In order to effectively extract the spectral-spatial correlations
of 3D stereo-structured HSI data, we developed a D2SA mecha-
nism, which formed the basis of our high-performance D2S2BoT
classification framework. To explore the local-global features
of HSI, we first introduced a multilayer residual convolution
module for extracting local features. This module utilized two
parallel residual blocks to extract spatial and spectral features,
respectively. We then introduced a D2S2BoT to receive local
features. D2S2BoT included a critical D2SA mechanism, which
was devised to effectively capture the spectral-spatial correlation
of the HSI data by modeling the long-term dependence of spatial
and spatial-dimension features through two independent global
attention branches. Finally, we introduced a linear projection
classifier to summarize the features learned by the D2SAs and
predict the classification results.

The experimental results on three HSI datasets demonstrate
that the D2S2BoT framework significantly improves the per-
formance of the transformer model. Specifically, the D2SA
mechanism designed for HSI classification effectively explores
both global spectral and spatial features, thereby capturing the
spectral-spatial correlation accurately. In our future research en-
deavors, we aim to optimize the multimodal feature-awareness
capability of D2SA mechanisms by incorporating advanced
techniques such as complementary learning of multimodal fea-
tures. Additionally, we plan to enhance the spectral feature
extraction capabilities of framework in complex HSI scenes by
integrating strategies for mitigating spectral variability, such as
augmented linear mixture modeling [4].
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