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Abstract—Due to their spatial and spectral information, hyper-
spectral images are frequently used in various scientific and indus-
trial fields. Recent developments in hyperspectral image classifica-
tion have revolved around the use of convolutional neural networks
and transformers, which are capable of modeling local and global
data. However, most of the backbone networks of existing methods
are based on 3-D convolution, which has high complexity in network
structure. Moreover, local information and global information are
extracted through different modules, and the coupling relation-
ship between the two types of information is weak. To address
the above-mentioned issues, we propose a method named main–
sub transformer network with spectral–spatial separable convo-
lution method (MST-SSSNet), which includes two key modules:
the spectral–spatial separable convolution (SSSC) module and the
main–sub transformer encoder (MST) module. The SSSC module
uses the proposed spectral–spatial separable convolution, reducing
network parameters and efficiently extracting local features. The
MST module adds the designed subtransformer in front of the
conventional transformer encoder (main transformer). It assists
the main-transformer encoder to establish global correlation by
learning local information. The WHU-Hi dataset can be used as a
benchmark dataset for precise crop classification and hyperspec-
tral image classification research. MST-SSSNet is shown to de-
liver better classification performance than current state-of-the-art
methods on the datasets.

Index Terms—Convolution neural networks (CNNs),
hyperspectral image (HSI) classification, main–sub transformer
encoder (MST), spectral–spatial separable convolution (SSSC).

I. INTRODUCTION

HYPERSPECTRAL images (HSI) contain rich information
[1], which has two spatial dimensions and one spectral

dimension. Compared with ordinary RGB images, it has richer
spectral information [2] and can be used in precision agricul-
ture [3], modern medical detection [4], military security [5],
and other fields [6], [7], [8]. The process of HSI classification
encompasses the identification of each pixel within a scene and
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its categorization into predefined classes [9]. HSI classification is
a basic technology in HSI processing and has been a hot research
topic in the remote sensing field [10], [11], [12].

Traditional HSI classification techniques typically leverage
the abundant spectral features present in HSI, including support
vector machine (SVM) [7], [14], k-nearest neighbor method
[15], [16], and other methods [17], [18], [19]. In [20], a method
considered spatial information for HSI classification. The re-
search by Sun et al. [21] introduced a multiscale spectral–spatial
kernel approach, employing adjacent superpixels. This method
takes into account both the spectral and spatial information
of the data, further improving the classification performance.
Although the above-mentioned methods achieved good results at
the time, most of them relied on manually designed features and
were shallow models that could not extract high-level features
of HSI images. This limits the improvement of classification
performance.

The emergence of deep learning techniques has brought con-
siderable focus to the utilization of deep models in the realm
of HSI classification [22]. Stacked autoencoder and deep belief
networks were used as traditional depth models in HSI clas-
sification [23], [24]. Nevertheless, their approach involved the
utilization of numerous fully connected layers, each containing
a substantial volume of trainable weights. The labeling cost of
HSI is high, and insufficient data to train the model means that
it often leads to serious overfitting problems.

However, convolutional neural networks (CNNs) based meth-
ods have the disadvantage of weak modeling ability of global
feature dependencies, which hinders further improvement of
classification performance.

In recent times, CNNs have become a focal point of attention
in numerous disciplines, primarily due to their outstanding abil-
ity to model local features [25], [26], [27], and have also been
explored a lot in HSI classification. 1D-CNN [28], 2D-CNN
[29], and 3D-CNN [30] were all explored in HSI classification.
Roy et al. [31] combined 3-D convolutional layers and 2-D
convolutional layers to enhance spatial feature extraction and
proposed HybridSN. However, CNN-based methods have the
disadvantage of weak modeling ability of global feature de-
pendencies, which hinders further improvement of classification
performance.

Beyond the scope of CNNs, researchers have delved into nu-
merous alternative network architectures for HSI classification.
Mou et al. [32] first used RNN for HSI classification. Graph

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-0202-0235
https://orcid.org/0009-0007-0910-4307
https://orcid.org/0009-0004-7989-279X
https://orcid.org/0009-0000-7132-545X
mailto:gaojingpeng@hrbeu.edu.cn
mailto:gaojingpeng@hrbeu.edu.cn
mailto:jixiangyu@hrbeu.edu.cn
mailto:chengengic@hrbeu.edu.cn
mailto:983402243@hrbeu.edu.cn
https://github.com/fengqinshou/MST-SSSNet
https://github.com/fengqinshou/MST-SSSNet


2748 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

convolutional networks have been widely explored in HSI clas-
sification [33], [34], [35]. Zhu et al. [36] designed a multiscale
long and short graph convolution, which makes full use of texture
structures of different sizes and captures local and global spectral
information at the same time. In addition, capsule networks [37],
[38] and generative adversarial networks (GANs) [39], [40] have
also been explored in HSI classification but they all have their
own shortcomings, which can be summarized as follows. RNN
may experience problems of vanishing gradient and exploding
gradient. The risk of overfitting in GCN is heightened by their
substantial parameter count. The training cycle of a capsule
network is long and there is a problem of capsule congestion.
There is a problem of pattern collapse in GANs.

In the most recent developments, the vision transformer (ViT)
[41] has attained remarkable success within the realm of com-
puter vision. Hong et al. [42] proposed spectralFormer, which
learns spectral features from shallow to deep through spectral
grouping embedding and cross-layer adaptive fusion. However,
it puts too much emphasis on the learning and modeling of
spectral sequences, ignoring the spatial characteristics. Huang
et al. [43] proposed a supervised contrastive spectral–spatial
masked transformer (SC-SS-MTr). However, transformers have
always had the disadvantage of weak local modeling capabili-
ties. CNN has been widely studied for its local modeling ability
to solve this problem [44], [45]. Sun et al. [46] introduced a
transformer with feature tokenization using the CNN feature
extraction module. Roy et al. [47] designed a morphFormer
network with morphological operations.

While the above-mentioned methods-based transformers and
CNNs have been extensively explored in the HSI classification,
there are still several shortcomings. The transformer has high
requirements for training data and computing resources [48] and
the combination with CNN makes this problem more serious.
This not only makes the model easy to overfit but also makes
the algorithm difficult to deploy on the HSI classification de-
vice, limiting the application of the algorithm. Moreover, local
information and global information are extracted by different
modules, respectively, and the coupling relationship between the
two types of information is weak. Specifically, in previous meth-
ods, the global correlations established through the transformer
were mostly directly based on feature maps extracted from local
information by CNN. Not introducing local information to guide
the establishment of global correlations may lead to incorrect
category information being introduced into the model. Such an
outcome could cause imprecise extraction of features, thereby
constraining the potential improvement in classification perfor-
mance. In response to the issues outlined above, we present
a solution termed main–sub transformer with spectral–spatial
separable convolution (MST-SSSNet) designed specifically for
HSI classification. It enables a more effective utilization of
both local and global spectral–spatial information, effectively
integrating these two types of information. Our method includes
two key modules: spectral–spatial separable convolution (SSSC)
module and main–sub transformer encoder (MST) module. We
use the SSSC module for feature extraction to capture shallow
spectral–spatial features and use the MST module to learn local
information to establish the correlation of global information.

For the SSSC module, the previous methods were mostly
based on 3-D convolution design feature extraction modules,
which have the advantage of extracting spectral–spatial features.
However, this will result in modules having higher algorithm
complexity. Some models also use 1-D and 2-D convolutions to
extract spectral and spatial features, respectively, which reduce
the requirement for computing resources. However, it cannot
capture the potential correlation between spectral and spatial
information.

We innovatively propose SSSC to build a local feature ex-
traction module. The idea of this convolution is to extract
spatial–spectral features through two orthogonal 2-D convolu-
tions instead of the 3-D convolution commonly used in pre-
vious methods. The two spatial dimensions and the spectral
dimension form two orthogonal planes, respectively. Two 2-D
convolutions perform convolution operations through these two
planes respectively to replace the 3-D convolution. Therefore,
spectral–spatial feature information can be effectively extracted
with fewer parameters.

For the MST module, unlike previous transformer-based
methods, the main–sub transformer proposed is not a simple
two-layer or double-branch structure, it is designed as a two-step
global feature construction. The first step is to learn local features
through the subtransformer, and the second step is to introduce
the learned local features into the main transformer to jointly
establish global information with the original data. The pivotal
contributions of this study can be outlined as follows.

1) We propose a method named MST-SSSNet for HSI clas-
sification, which uses the designed SSSC to effectively
extract spectral–spatial features and then uses local infor-
mation to model global information.

2) We design a lightweight SSSC module that replaces the
3-D convolution with our SSSC. We innovatively use
an orthogonal structured 2-D convolution instead of 3-D
convolution to achieve efficient feature extraction.

3) We design an MST module including a subtransformer
and a main transformer. Unlike cascaded or dual-branch
structures, the designed MST module assists the main
transformer in establishing global information by dividing
the image into different scales and learning local informa-
tion through the subtransformer.

II. RELATED WORK

In recent years, deep learning has developed rapidly. Com-
pared with traditional hand-designed feature extractors, deep
learning methods usually have stronger feature modeling capa-
bilities and robustness [22]. Therefore, HSI classification meth-
ods based on deep learning have been widely explored. In this
section, we will introduce the HSI classification method based
on CNN, the HSI classification method based on transformer,
and other deep learning methods.

A. Method Based on CNN

CNNs have been explored a lot in HSI classification [31],
[49], [50], [51]. Hu et al. [28] involved the effective extraction
of spectral features through the use of 1D-CNN. Zhao and Du
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[29] used the principal component analysis (PCA) to reduce the
dimensionality of HSI data and then extracted spatial features
through 2D-CNN. In [30], spectral and spatial features were
extracted concurrently using a 3D-CNN. Furthermore, regular-
ization techniques were applied to enhance the system’s gen-
eralization prowess. In [49], a method combining 3-D and 2-D
is proposed, which aims to extract spectral spatial features and
use them for classification. Roy et al. [31] combined 3-D con-
volutional layers of different scales to extract features and used
2-D convolutional layers to enhance spatial feature extraction. It
achieved good results. In [50], a global framework classification
pattern has been designed to alleviate the problem of difficult ex-
traction of global information caused by traditional patch-based
dataset partitioning. Yu et al. [51] introduced the feedback atten-
tion mechanism proposed in this article into CNN networks and
designed a dense spatial–spectral CNN structure for HSI classi-
fication, called FADCNN, which improved classification perfor-
mance. In addition to the above-mentioned work, some methods
consider introducing CNN into other backbone networks to
enhance classification performance [33], [34], [35], [59], [46].
These work with better performance than separate networks.

B. Method Based on Transformer

Transformers have received widespread attention for their
excellent long-distance modeling capabilities. It also demon-
strates excellent potential in HSI classification [52], [53], [54],
[55]. He et al. [56] used transformers and proposed BERT to
HSI classification. Hong et al. [42] used transformer encoders
and designed a cross-layer fusion structure to create spectral-
Former. Cao et al. [57] proposed a transformer-based MAE using
contrastive learning, attempting to combine these two methods
to further improve performance. Huang et al. [43] designed
a spectral–spatial masked transformer (SS-MTr) and through
contrastive and supervised learning proposed an SC-SS-MTr.
Some other methods have been used to improve transformers.
Yu et al. [58] designed a lightweight classification network using
an image-level framework and CNN and transformer. In [44],
a multiscale network was designed for more accurate feature
extraction, and the transformer was improved for HSI image
classification. Huang et al. [44] introduced active learning into
the transformer and designed a learning strategy combining
superpixel segmentation while improving the transformer using
Outlook attention. However, a transformer has the disadvantage
of poor local modeling ability. Some works have solved this
problem by combining CNN with a transformer, which has been
proven to be effective. He et al. [59] used a VGG-like network
to extract the spatial features of HSI data and then modeled
the spectral information through a transformer. Sun et al. [46]
used a CNN network consisting of 3-D and 2-D convolutional
layers for feature extraction and learned advanced semantic
information through a transformer. Roy et al. [47] combined the
attention mechanism with morphological operations to improve
the interaction and proposed morphFormer. Yang et al. [60]
designed a multilevel feature fusion network for class prediction
using interactive CNN and transformer. This network can extract
category features of different perception fields and depths for
better prediction.

C. Method Based on Other Networks

1) Method Based on RNN: Zhang et al. [61] scanned HSI into
a sequence of pixels and each pixel and its spectral information
is a step of the model. In [62], the RNN model was simplified and
designed into an efficient model that can be extended. Zhou et al.
[63] studied the effectiveness of multiple scanning strategies to
generate features. This strategy is proven to have significant
improvements in RNNs.

2) Method Based on GCN: In [64], locality preserving low-
pass graph convolutional embedding autoencoder is proposed,
and self-training clustering mechanism and joint optimization
loss are introduced to achieve mutual benefit. Ding et al. [33]
combined multiple filters through defined degree scales to better
process HSI information. Zhang et al. [65] proposed an adap-
tive receptive field graph neural framework that can alleviate
excessive smoothness in the model and reduce computational
complexity.

3) Method Based on GAN: Zhang et al. [39] designed a
semisupervised HSI data framework based on one-dimensional
GAN for HSI classification. Sun et al. [40] proposed an auxiliary
classifier based on the gradient penalty Wasserstein GAN (AC-
WGAN-GP). Feng et al. [66] introduced contrastive learning
into GAN and designed a pair of coarse-grained GAN networks.

III. PROPOSED METHOD

A. Overall Framework of the Proposed Method

Fig. 1 illustrates the overall framework of our MST-SSSNet
method. In this section, we introduce the MST-SSSNet method
from three steps: preprocessing, spectral–spatial separable con-
volutional module, and main–sub transformer module.

In the preprocessing part, the original HSI data are processed
by PCA to reduce the redundancy existing in the data. This step
is crucial to improving the overall algorithm speed. The data
after dimension reduction need to be block extracted to generate
a dataset for model learning, and the dataset is divided into a
training set and a test set.

The data of the training set are used as the input of the SSSC
module, which is a two-branch structure designed by the SSSC,
and finally uses a 2-D convolution to enhance the extraction of
spatial features, and finally outputs the feature map.

The feature map first generates a patch token through trans-
formation. Then the patch token generates subtokens and main
tokens, respectively. The main tokens are the input of the main
transformer and the subtokens are the input of the subtrans-
former. The subtoken learns local detail features through the
subtransformer and then fuses them with the main token to help
the main token establish global features in the main transformer.
Finally, the classification structure is obtained through a linear
layer and softmax function.

B. Preprocessing

HSIs typically comprise a substantial number of spectral
bands, and there is high information redundancy between adja-
cent bands. These issues increase the complexity of computation
and storage and may lead to overfitting issues. As an effective
method for dimensionality reduction, PCA streamlines data
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Fig. 1. Overall framework of the proposed MST-SSSNet.

complexity and minimizes redundancy among spectral bands. It
changes the feature spatial of pixels to better distinguish spectral
signals of different substances. Thus, PCA is applied in the
handling of HSI data. The HSI data, having undergone PCA, are
recorded as IPCA ∈ RH×W×D. H and W denote the spatial size,
and C represents the center pixel to extract a patchP ∈ RS×S×D

from IPCA. S is the size of the patch. The true label is ascertained
based on the label assigned to the central pixel. Edge pixels
need a padding operation before being extracted, with a filling
width of (S − 1)/2. After extracting all patches, we separate the
remaining samples into a training set and a test set.

C. Spectral–Spatial Separable Convolution Module

To address the above issues, inspired by spatial separable
convolution [67], we designed SSSC to replace 3-D convolution.
Richer spectral–spatial features are extracted with equivalent
parameter quantities.

Fig. 2 illustrates the comparison of details between 3-D
convolution and SSSC. X and Y denote spatial dimensions. L
represents the spectral dimension. The input cube data are used
2-D convolution on the Y–L plane for convolution. It is called
the Y–L convolution. Then convolution is performed on the X–L
plane. It is called the X–L convolution. The above is used to
replace the 3-D convolution. The convolution of data with a size
of 7 × 7 × 7 is taken as an example. The 7 × 7 × 7 sized blue
block represents the original data, and the 3 × 3 sized blocks
of different colors represent Y–L convolution kernels and X–L
convolution kernels. We calculate the parameter quantities for
3-D convolution and SSSC. Selecting a convolution kernel with a
size of 3 × 3 × 3 for 3-D convolution requires 175× 27 = 4725
multiplication operations. SSSC selects kernel sizes 3 × 1 × 3
and 3 × 3 × 1. It takes 175× 9 + 75× 9 = 2250 times. The
procedure significantly diminishes the parameter count, leading
to enhanced computational efficiency. Compared to networks
designed based on 3-D convolution, we by using the SSSC

Fig. 2. Comparison of details between 3-D convolution and SSSC.

can design deeper networks, thereby enhancing the ability to
capture features. It should be noted that the number of times we
use a pair of SSSCs to extract features in the frequency band
dimension is two. Within the context of parameter reduction,
we have simultaneously refined our capacity for spectral feature
extraction. Consequently, employing SSSC enables the extrac-
tion of profoundly efficient feature representations, enriching
the process of network learning To elaborate further, in SSSC,
the calculated values of the jth feature cube of X–L convolution
and Y–L convolution in the ith layer at the spatial position can
be given as

vxyzij = Φ

(
bij +

∑
m

Xi−1∑
p=0

Li−1∑
r=0

wpr
ijmv

(x+p)y(z+r)
(i−1)m

)
(1)

vxyzij = Φ

(
bij +

∑
m

Yi−1∑
q=0

Li−1∑
r=0

wqr
ijmv

x(y+q)(z+r)
(i−1)m

)
(2)
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Fig. 3. Illustration of the SSSC module.

whereΦ(·) denotes the activation function and bij represents the
bias. m is the feature map in the (i− 1)th layer that is connected
to the jth feature map. Yi, Xi, Li, respectively, represent the
height, width, and channel number of the SSSC kernel. Li stands
for spectral dimension. In the mth feature cube, the parameters
wpr

ijm and wqr
ijm correspond to the weights linked with the

position (p,q,r).
The SSSC module is graphically presented in Fig. 3. The

activation function will result in spatial asymmetry in SSSC.
This asymmetry will affect the network’s preference for learning
features. Therefore, we design a dual-branch network to elim-
inate this preference. The SSSC module processes data in two
stages. In the first stage, two pairs of SSSCs in different orders
perform feature extraction on the input patches. The first-stage
feature mapping formula can be described as follows:

XP1 = RELU(BN(ConvYL(RELU(BN(ConvXL(X))))
(3)

XP2 = RELU(BN(ConvXL(RELU(BN(ConvY L(X))))
(4)

where X denotes the input. XP1 and XP2 represent the feature
maps.RELU( · ) is the activation function, BN( · ) denotes the
BatchNorm operation.ConvXL(·) and ConvY L(·) represent the
different direction SSSCs. In the second stage, by reshaping and
fusing the feature maps from the two branches, a new feature
map is derived. Then the feature map undergoes standard 2-D
convolution operations, enhancing the network’s spatial feature
extraction ability. The formula for the second stage is given as
follows:

XP3 = RELU(BN(Conv2D(reshape(XP1)

⊕ reshape(XP2)))) (5)

where the SSSC module output is defined asXP3 ∈ Rm×n×d.m
is the height andn represents the weight. The number of channels
is represented as d. ⊕ represents the concatenate function. The
extracted features will provide a good feature representation for
subsequent module processing.

D. Token Generator and Main–Sub Transformer Module

1) Token Generator: SSSC module has extracted good local
spectral–spatial features XP3 ∈ Ra×a×d, the spatial size is rep-
resented as a, and d signifies the number of channels in the given
context. The feature token is defined as XT ∈ Rw×d, where w
represents the token number. It can be obtained by the following

Fig. 4. Details for a transformer encoder and MSA. (a) Transformer encoder.
(b) MSA.

formula:

Xflat = Flatten(XP3) (6)

XT = softmax(WaXflat)
TXflat (7)

whereWa represents a learnable weight matrix. The feature map
is projected into tokens through the above-mentioned steps [45]
for subsequent operations.

2) Main–Sub Transformer Module: In Fig. 4(a), both the
main-transformer encoder and the subtransformer encoder share
an identical architecture. This configuration includes two nor-
malization layers (LN): a multihead self-attention (MSA) block
and a multilayer perceptron (MLP) layer. Residual skip connec-
tions are applied prior to the MSA block and the MLP layer.
The specifics of the MSA are illustrated in Fig. 4(b). The entire
process can be mathematically expressed as follows:

SA = Attention(Q,K,V) =

(
QKT

√
dK

)
V (8)

MSA(Q,K,V) = Concat(SA1, SA2, . . . ,SAh)W (9)

where the matrices Q, K, and V are learnable weight matri-
ces. SA represents self-attention. The incorporation of SA in
the MSA block effectively captures correlations among feature
sequences. Within the MSA block, multiple groups of weight
matrices are employed to map Q, K, and V, employing a uniform
operation process to calculate multihead attention values. Sub-
sequently, the results from each head attention are concatenated.
“h” denotes the number of heads, and W signifies the parameter
matrix. The MLP comprises two fully connected layers sepa-
rated by a nonlinear activation function known as Gaussian error
linear units. In order to establish the correlation between local
and global information, we designed a main–sub transformer.
When people understand a sentence, they first understand the
meaning of the words or phrases; second, they establish the
context of the entire sentence through their meanings, thereby
understanding the entire sentence. This idea also applies to
the model’s understanding of HSI. When establishing global
correlation, irrelevant information is often introduced, which
affects the model’s feature learning. Entering local information
to assist in the establishment of global correlation will greatly
improve this problem. Specifically, we divide the input patch
tokens into more fine-scale subtokens. Its detailed features are
then learned through a subtransformer. Unlike general dual-
scale or multiscale methods, we do not cascade two or more
transformers at different scales. Instead, the detailed features
learned by the subtransformer are integrated into the main token.
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Fig. 5. Illustration of the main–sub transformer module.

Fig. 6. LongKou dataset. (a) False-color composite image. (b) Ground truth
map.

Finally, the main transformer is used to learn global correlations
while retaining the detailed features. The details of the main–sub
transformer module are shown in Fig. 5.

Each token as input represents XT = [T1,T2, . . . ,Tw]. We
divide the token into n subtokens by reshaping the data form.
After adding trainable position coding, it is expressed as X ′

T =
[T11,T12, . . . ,T1n,T21, . . . ,Twn] + PEsub. A subtransformer
encoder is used to learn local details. Then the subtoken is
converted into the same data form Xt = [T′

1,T
′
1, . . . ,T

′
w] as

the token. After processing a block consisting of two normal-
ization layers and a linear layer, it is added to the patch token.
Finally, it is concatenated with a learnable class token Tcls

0 to
get the main token. The comprehensive process outlined above
is encapsulated by the following equations:

Xt = Norm(Linear(Norm(X ′
T))) (10)

Xm = Xt +XT (11)

Xmain = Concat(Tcls
0 , Xm). (12)

The main token is the input of the main-transformer encoder.
Finally, we only use Tcls

0 as the input to the linear layer for
the classification. Via the linear layer, the probability of the
input belonging to a specific class will get through the softmax
function. The label corresponding to the highest probability
signifies the class of the given sample.

IV. EXPERIMENT AND ANALYSIS

This section introduces the WHU-Hi dataset used in the exper-
iments, including LongKou, HanChuan, and HongHu [68], [69].
Furthermore, we present the experimental settings, including
evaluation indicators, configuration, and parameter analysis.
Then, the ablation experiment is introduced. Finally, we show
and analyze the results.

Fig. 7. HanChuan dataset. (a) False-color composite image. (b) Ground truth
map.

Fig. 8. HongHu dataset. (a) False-color composite image. (b) Ground truth
map.

A. Data Description

To evaluate the effectiveness of our MST-SSSNet, rigorous
experiments were executed utilizing the WHU-Hi dataset, a
UAV-borne HSI resource provided by the RSIDEA research
group at Wuhan University. This dataset is publicly available and
can be downloaded from the RSIDEA team’s homepage. This
dataset encompasses three hyperspectral datasets: WHU-Hi-
LongKou, WHU-Hi-HanChuan, and WHU-Hi-HongHu. The
False-color composite image and ground truth maps of the three
datasets are shown in Figs. 6–8.

The LongKou dataset was procured through an 8-mm focal
length headwall nanohyperspectral imaging sensor mounted on
a DJI Matrice 600 Pro, conducting aerial surveys over Longkou
Town in China in the year 2018. Within this study region, there
exist nine specific classes, comprising six diverse crop species.
The dataset consists of 550 × 400 pixels and ranges from 400
to 1000 nm, including 270 bands.

The HanChuan dataset was acquired utilizing a 17-mm focal
length headwall nanohyperspectral imaging sensor installed on
a Leica Aibot X6, conducting surveys over HanChuan, China,
in the year 2016. There are 16 classes including 7 crop species:
watermelon, water spinach, greens, strawberry, cowpea, greens,
and sorghum. The dataset consists of 1217 × 303 pixels ranging
from 400 to 1000 nm and includes 274 bands. Notably, because
the time to collect the HanChuan dataset was in the afternoon,
there are many areas that are shadow-covered in the image.

The HongHu dataset was captured using a 17-mm focal length
headwall nano-hyperspectral imaging sensor mounted on a DJI
Matrice 600 Pro, conducting surveys over HongHu City in China
in the year 2017. The experimental area comprises a diverse
agricultural landscape featuring 22 distinct classes, with varying
cultivars of the same crop cultivated within the region. The size
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Fig. 9. Impact between different SSSC kernel sizes and patch sizes for the OA. (a) LongKou. (b) HanChuan. (c) HongHu.

of the image is 940 × 475 pixels and ranges from 400 to 1000
nm, comprising 270 bands.

B. Experimental Setting

1) Evaluation Indicators: In our experimental framework,
we adopted overall accuracy (OA), average accuracy (AA), and
Kappa coefficient (K) as assessment metrics [70]. OA represents
the comprehensive accuracy across all samples, while AA sig-
nifies the mean accuracy computed for each individual class.
Kappa coefficient gauges the alignment between the classifica-
tion outcomes and the true underlying classes. The mathematical
expressions for these metrics are detailed as follows:

OA =

(
1

n

∑
k

(
True positive + True Negative

Total number of pixels

))
(13)

Recall = (True positive + False negative) (14)

AA =

∑n
i=1 Recalli

n
×100% (15)

K =
N
∑n

i=1 xii−
∑n

i=1 (xi+ × x+i)

N2 −∑n
i=1 (xi+ × x+i)

. (16)

2) Configuration: The verification experiments for the pro-
posed methodology were conducted within the PyTorch com-
putational framework, using an 11th Gen Intel(R) Core(TM)
i9-11900K processor clocked at 3.50 GHz, and an NVIDIA
GeForce RTX 3090Ti 24-GB GPU server. The optimization
process is initiated with the Adam optimizer, and the learning
rate is set to 0.001. During batch training, each batch was
configured to contain 64. The original spectral band number
for the LongKou and HongHu datasets is 270, while the original
band number for the HanChuan dataset is 274. The number of
bands after PCA operation is set to 30. The size of the input image
is the same as the size of the original dataset. The LongKou
consists of 550 × 400 pixels. The HanChuan consists of 1217
× 303 pixels. The HongHu consists of 1217 × 303 pixels. A
total of 100 training epochs were applied to each dataset. Ten
experiments were rigorously carried out for every method, and
the most optimal result among them was meticulously selected
as the definitive outcome.

3) Patch Size and SSSC Kernel Size Analysis: We analyzed
the impact of input patch size and SSSC kernel size on classi-
fication accuracy. In Fig. 9 the impact of patch size and kernel
size on classification accuracy is shown.

In general, the accuracy of classification tends to diminish
as the kernel size increases. In particular, we choose [2], [7]
all kernel sizes instead of only odd ones. The result shows that
odd kernel sizes have no obvious advantages over even kernel
sizes. The reason for this may be that the feature has captured
the central feature because of the two orthogonal convolutions in
the spatial dimension. For the channel dimension, the centermost
channel has the same importance as the other channels, so there
is no obvious difference between odd and even convolution
kernels. The best kernel size of the three datasets is 2.

For patch size, the accuracy of classification exhibits an
initial rise, followed by a subsequent decline as the patch size
increases. The patch sizes with the size of [9], [23] are tested in
experiments. In the local range, it accords with the characteristics
of convex function. For three datasets, when small patch size
and large kernel size are combined, it usually leads to a serious
decrease in accuracy. That is because too small a patch and too
large a kernel can result in too few convolutions on a patch and
cannot accurately extract features.

For the LongKou dataset, classification accuracy is not sensi-
tive to changes in two parameters. The optimal patch size is 15.
In HanChuan and HongHu, the influence of the two parameters
on classification accuracy exhibits similarity. The optimal patch
size is 21. The experimental results indicate that selecting the
appropriate patch size and kernel size can better extract fea-
tures. Following an evaluation of the performance across the
three datasets, a patch size of 21 was chosen as the optimal
selection.

C. Ablation Studies

To fully validate the effectiveness of our method, ablation
experiments with different component combinations were con-
ducted on the HongHu dataset. Five combinations were consid-
ered. We assess the effect of distinct components on the over-
arching model through their impact on classification accuracy.
The results of all experiments are meticulously documented in
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TABLE I
ABLATION EXPERIMENT OF THE PROPOSED METHOD ON THE HONGHU DATASET

Table I, with the most superior classification outcome emphati-
cally presented in bold typeface.

The effectiveness experiment of the MST module is per-
formed by replacing it with a linear layer and ordinary trans-
former encoder (TE). About the linear layer, the feature map
output by the SSSC module is reshaped and connected to the
linear layer. In the linear layer, in_features is set to 1600 (the
same size as the reshapped feature map), and out_features is set
to 22 (the same number of categories as the dataset). Among
them, the combination of the SSSC module and linear layer has
the worst effect because the features lack the establishment of
long-range correlation. The MST module is superior to ordinary
transformer encoders, especially in terms of significantly im-
proving AA. This indicates that the MST module can reduce the
introduction of irrelevant information by establishing long-range
correlation through local information. Thereby the classification
accuracy is improved.

To validate the efficacy of the SSSC module, two distinct sets
of experiments were crafted. One set of experiments replaced the
SSSC module with 3-D convolutional layers. The depth of the
3-D convolutional layer is 1, the number of convolutional kernels
is 8, and the size is 3 × 3 × 3. The other set of experiments
only used the MST module after PCA operation. The MST
module operating in isolation demonstrates inferior classifica-
tion accuracy attributed to its absence of local feature extraction
capabilities. The combination of the SSSC module and the MST
module is better than the combination of the 3-D convolution
and MST module in classification performance and calculation
time, which shows that the proposed spectral–spatial separable
volume of the product can extract richer features with fewer
parameters. In summary, the analysis of comprehensive experi-
mental results further confirms the effectiveness of our model.

D. Analysis of Results

In this section, three datasets will be selected for the ex-
periment. The training samples within each dataset have been
allocated at an average of 100 samples per class.

For the LongKou dataset, we randomly selected 900 samples
as the training set. In the case of the HanChuan dataset, 1600
samples were meticulously chosen to form the training set. For
the HongHu dataset, 2200 sample training sets were selected.
The samples not chosen for training are specifically allocated as
test sets to evaluate the model’s efficacy.

1) Comparison Methods: To validate the proposed method-
ology, a selection of representative baseline methods as well
as the most advanced backbone methods have been chosen.
We divide them into nontransformer methods (such as SVM
[13], 1DConv [28], 2DConv [29], 3DConv [30], and HybridSN

[31]) and transformer-based methods (such as ViT [38], spec-
tralFormer [40], SSFTT [45], and SC-SS-MTr [41]). The intro-
duction to these methods is as follows.

SVM is one of the first machine-learning methods used in HSI
classification. It represents the classic machine learning method.
The 1-D-CNN is a method including a 1-D convolutional layer,
maximum pooling layer, and fully connected layer. The 2-D-
CNN is a method that includes three convolutional layers and
two fully connected layers. HybridSN consists of a convolutional
part, a fully 2-D convolutional layer, and two fully connected lay-
ers. The 3-D-CNN is a 3-D convolution-based method, includ-
ing three 3-D connected parts. The convolutional part includes
three 3-D convolutional layers of different scales and one 2-D
convolutional layer. The linear layer part consists of two linear
layers. MST-SSSNet surpasses current state-of-the-art methods
across three datasets based on three comprehensive evaluation
indicators. The best performer among CNN-based approaches
is HyBridSN. Thanks to the design of the convolutional kernel
size in the network, HybridSN pays attention to more abundant
spectral features and achieves better results compared with other
CNN-class methods. This shows that extracting rich spectral
features can better distinguish different classes. In addition to
the proposed methods, SSFTT and SC-SS-MTr perform better
than other transformer-based methods. SSFTT benefits from
the excellent basic architecture combined with CNN and trans-
former and extracts local and global features at the same time to
achieve better classification performance. SC-SS-MTr enhances
the performance of the transformer and achieves competitive
classification results through supervised learning, discriminant
feature learning, and mask. The proposed MST-SSSNet uses the
designed SSSC to extract spectral–spatial features with fewer
parameters so that the network can be designed deeper and the
local information can be extracted more fully. Therefore, it has
the best classification results. For the LongKou dataset, the OA,
AA, and Kappa coefficients of our method reached 98.97%,
96.16%, and 98.64%, respectively. On this dataset, HybridSN
and most transformer-based methods have achieved competitive
classification results. We posit that this can be attributed to the
limited number of classes in the LongKou and the concentrated
distribution of these categories, leading to a reduced level of clas-
sification complexity. Datasets have low requirements for model
classification ability. However, our method still achieves the best
classification performance. For HanChuan, the proposed method
reached 97.15%, 93.02%, and 96.67% in three evaluation indi-
cators, and the best classification accuracy was achieved in 12
out of 16 classes. Compared with other methods, OA, AA, and
Kappa coefficients of the best-performing methods increased
by at least 0.89%, 4.51%, and 2.22%. For the HongHu dataset,
the OA, AA, and kappa coefficients of the proposed method
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TABLE II
COMPARATIVE EXPERIMENTAL RESULTS ON THE LONGKOU DATASET

reach 97.84%, 97.27%, and 94.51% in OA, AA, and Kappa
coefficients, respectively, and the best classification accuracy
is achieved in 12 out of 22 classes. Compared with the best
performance of other methods, OA, AA, and Kappa coefficients
can be improved by at least 1.08%, 2.11%, and 1.27%.

In HanChuan and HongHu, the accuracy of only two and one
classes of our method is lower than 90% respectively, while the
accuracy of the other classes is relatively stable. HanChuan’s
class13 is a difficult class to classify. Although the classification
accuracy of our method is lower than 90% (88.32%), it is still the
highest accuracy in this class. Other methods have more than five
classes with a classification accuracy of less than 90%. This is
because when establishing global correlation, combining local
features can reduce the influence of irrelevant information so
that the proposed method is less affected by class features and
has good robustness.

Based on the performance of the three datasets, the proposed
methods have achieved the best classification performance. This
proves that the global correlation with strong coupling with
local information is closer to the core features of the class. And
the SSSC module can extract excellent local detail features to
provide a good feature representation for subsequent modules.
The proposed method can effectively improve the classification
performance of the model by local information to establish
global correlation.

Vit used a transformer for image processing for the first
time and achieved excellent results. It proves that the excellent
performance of the transformer is not limited to the field of NLP.
SpectralFormer is specifically designed to emphasize the extrac-
tion of spectral information. Remarkably, it achieves exceptional
classification results without the utilization of convolutional or
recurrent units. The improvement of SSFTT on the tokenizer
fully explores the ability of the transformer to handle HSIs.
Its feature extraction module consists of a 3-D convolutional
layer and a 2-D convolutional layer. After being tokenized, it is
connected to the transformer encoder and achieves excellent re-
sults in image classification. SC-SS-MTr used a spectral–spatial
masked transformer, which gains competitive classification re-
sults. It uses supervised learning and contrastive learning for

better generalization. The parameters and experimental details
of all the above methods are set in accordance with the reference
papers.

2) Quantitative Results and Analysis: Tables II–IV list
the comparison of various classification indicators of var-
ious methods under three datasets. The best outcomes are
highlighted in bold black for clear visibility. The out-
comes unequivocally demonstrate the superior performance of
our MST-SSSNet, surpassing current state-of-the-art methods
across three datasets based on three comprehensive evaluation
indicators.

3) Visual Evaluation: To visually discern the performance
disparity between the proposed method and other models, the
classification results are plotted as visual classification maps.
The visual classification maps of the three datasets of LongKou,
HanChuan, and HongHu are shown in Figs. 10–12.

For the LongKou dataset, this is relatively easy to distinguish
dataset, except for 1D-CNN and 2D-CNN, which failed to
make use of the spatial or spectral features of HSI, resulting in
unsatisfactory classification results; other models have achieved
good results. However, for some of the difficult areas, such as
the left side of the map where the blue extreme meets the top
and bottom of the other classes, most methods make a mistake in
demarcating the boundaries. Even if the classification accuracy
is similar, such errors are often more serious. In addition, we
circle an area with a red border to enlarge it for display. In this
area, the classification, especially the boundary recognition, is
difficult due to the variety of classes. In addition, other methods
make it easy to divide some gray areas into blue classes, because
the gray samples whose map coordinates are connected with
blue affect the learning of the gray class. The proposed method
successfully classifies the gray part correctly, and the recognition
of the class boundary is more accurate.

For the HanChuan dataset, the classes of this dataset are
interleaved, making classification difficult. The classification
results of other methods obviously contain more pronounced
noise, such as the region near the purple class in the upper
right corner. Compared with other methods, the proposed MST-
SSSNet gives smoother classification results. We have circled
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TABLE III
COMPARATIVE EXPERIMENTAL RESULTS ON HANCHUAN DATASET

TABLE IV
COMPARATIVE EXPERIMENTAL RESULTS ON THE HONGHU DATASET



GAO et al.: MAIN–SUB TRANSFORMER WITH SSSC FOR HSI CLASSIFICATION 2757

Fig. 10. Visualization of the experimental results based on the LongKou dataset. (a) Ground truth. (b) 1D-CNN. (c) 2D-CNN. (d) 3D-CNN. (e) HybridSN.
(f) ViT. (g) SpectralFormer. (h) SSFTT. (i) SC-SS-MTr. (j) MST-SSSNet(ours).

Fig. 11. Visualization of the experimental results based on the HanChuan dataset. (a) Ground truth. (b) 1D-CNN. (c) 2D-CNN. (d) 3D-CNN. (e) HybridSN.
(f) ViT. (g) SpectralFormer. (h) SSFTT. (i) SC-SS-MTr. (j) MST-SSSNet(ours).
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Fig. 12. Visualization of the experimental results based on the HongHu dataset. (a) Ground truth. (b) 1D-CNN. (c) 2D-CNN. (d) 3D-CNN. (e) HybridSN.
(f) ViT. (g) SpectralFormer. (h) SSFTT. (i) SC-SS-MTr; (j) MST-SSSNet(ours).

an area where our method is more accurate in distinguishing
between the boundaries of the semicircle and the interior. In
addition, almost all methods misidentify the gray corner above
the semicircle. It proves that our method is more reliable in
distinguishing details.

For the HongHu dataset, this dataset has the characteristics
of the previous two datasets. There are large areas of the same
class, and there are areas where multiple classes gather. At the
same time, this dataset has the largest number of samples. Since
the partitioning of the training set is random, such a partitioning
method is more challenging for the model. In order to pursue
the improvement of classification accuracy, the model is easier
to overfit a large number of classes. Other methods are more
accurate for large areas of light green in the middle, but the area
below obviously achieves poor results. The classification results
are also circled in an area where it is clear that the proposed

method gets results closer to the ground truth map and has better
antioverfitting ability for most classes.

The analysis of visual classification results from three datasets
demonstrates that the proposed method exhibits relatively stable
classification performance in areas with simple and complex
categories. However, for boundary areas that are difficult to
distinguish but often very important, the proposed method has
achieved significant advantages over other methods. This stems
from the SSSC module overcoming the drawback of most feature
extraction modules focusing too much on spatial or spectral
features, as well as the design of the MST module to establish
global correlations based on local features. Therefore, the best
classification results were achieved.

4) Influence of Sample Number: In addition, we selected
20%, 40%, 60%, 80%, and 100% of the original training samples
from three datasets to compare 2D-CNN, 3D-CNN, HybridSN,
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TABLE V
TRAIN TIME AND TEST TIME OF DIFFERENT METHODS IN THE LONGKOU DATASET

Fig. 13. OA results on the HongHu dataset with a varying number of training
samples.

SSFTT, and SC-SS-MTr with our method. The classification
outcomes are depicted in Fig. 13. It is evident that as the utilized
training samples increase, the overall classification performance,
represented by OA, exhibits a gradual improvement. Among
them, the proposed MST-SSSNet method performs best in clas-
sification performance when the training set proportion is about
30% to 100%, and its performance is equivalent to that of SSFTT
and SC-SS-MTr methods when the training set proportion is
below 30%, indicating that the effectiveness of our method
endures even in situations characterized by inadequate sample
sizes.

5) Time Cost Comparison: The train and test time among
2D-CNN, 3D-CNN, HybridSN, SSFTT, SC-SS-MTr, and our
method on the LongKou dataset is given in Table V. The SSFTT
model has the fastest calculation speed, and the proposed method
and 2D-CNN are slightly higher than SSFTT, although SSFTT
adopts a 3-D convolution and transformer structure that con-
sumes computational resources. However, due to limited fitting
ability, a large patch size is not required. In the original text,
the patch size is set to 13, which is much smaller than other
methods including the proposed method. This resulted in the
method achieving the best training and testing time. However,
a too small patch size limits the improvement of classifica-
tion performance and prevents learning more global category
information. The proposed SSSC can reduce parameters and,
thus, reduce training time. However, the design of the two trans-
formers in the proposed method, especially the subtransformer,
requires multiple calculations of attention and residual connec-
tions, which increases the calculation time. After considering

the calculation time and classification accuracy, it is worthwhile
to increase computational resources. HyBridSN and 3D-CNN
both have high parameter count due to their multilayer 3-D
convolution, resulting in longer calculation time. SC-SS-MTr
has a heavy computational burden due to its two stages and the
use of masked transformers. Overall, the proposed MST-SSSNet
achieves better classification performance with minimal com-
puting resources. Thus, it has excellent classification efficiency.

V. DISCUSSION

Computational complexity is an important indicator for eval-
uating models. In this section, we discussed the computational
complexity of the proposed module.

We analyzed the computational complexity of the proposed
SSSC and the MST module. For the SSSC module, the biggest
difference from other feature extraction modules is the use of the
proposed SSSC. Let us assume that the total number of pixels
in the input 3-D feature map is P , K is the convolutional kernel
size, and Cl represents the number of output channels in the lth
layer. The algorithm complexity of SSSC can be expressed as

O

(
P ·K2 · 2 ·

l−1∑
i=0

Ci · Ci+1

)
. (17)

The complexity of most existing algorithms using 3-D con-
volution is

O

(
P ·K3 ·

l−1∑
i=0

Ci · Ci+1

)
. (18)

It can be seen that the proposed SSSC outperforms 3-D
convolution in terms of algorithm complexity.

For the MST module, the main computational resource is
consumed in the computation of multihead attention. If C repre-
sents the number of channels, Nq and Nk represent the number
of elements in query and key, respectively. The computational
complexity of MSA can be expressed as

O
(
NqC

2 + vC2 +NqNkC
)
. (19)

Let the token generator generate n tokens of length d. Each
patch token is divided into s2 subtokens. The computational
complexity of MSA in the MST module can further be expressed
as

O
(
n2d+ (sn)2d/n

)
= O

(
5n2d

)
. (20)

Therefore, the subtransformer consumes the main computing
resources. For the entire MST, the computational complexity
depends on the number and length of tokens generated.
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VI. CONCLUSION

This article proposes an MST-SSSNet HSI classification
method, which achieves excellent classification performance
through the SSSC module and MST module. The SSSC module
is a lightweight feature extraction module constructed from the
proposed SSSC, which can accurately and effectively extract
local spectral–spatial features. The MST module uses subtrans-
formers to learn local details to help the main transformer
establish global correlation, thereby enhancing the coupling
between local information and global information. On three
representative datasets, we compared state-of-the-art methods.
Based on the results of experiments, our MST-SSSNet has the
best classification performance compared with other methods.
In the future, the next step is to study MST-SSSNet-based
unsupervised classification methods in response to the scarcity
of hyperspectral samples. And we hope to introduce the physical
features of spectral bands and prior knowledge of HSI into the
model to improve classification performance. In addition, we
will conduct more in-depth research on the problem that PCA
may not fully utilize HSI information.
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