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Abstract—The detection of wet snow by satellite imaging is
currently done in an unsupervised way and lacks quantitative eval-
uation due to the difficulty of collecting ground truths in extreme
environments. In this article, we propose to take into account infor-
mation associated with a physical model to label satellite data for the
purpose of supervised learning of snow properties using synthetic
aperture radar (SAR) imagery. This dataset is constructed from
Sentinel-1 SAR images, augmented with topographic information
obtained from a digital elevation model. The labeling of this data is
done at the scale of the Northern Alps using the CROCUS physical
snow model. Then, we trained, over 13 combinations of labeled
dataset, a wide range of machine learning models to quantitatively
identify the most relevant learners for the wet snow detection task.
The results demonstrate consistency among the different algo-
rithms, with significant improvement observed when incorporating
polarimetric combinations and topographic orientation data in the
input of the model. The best algorithmic solution trained on this
dataset is evaluated by comparing the obtained wet snow map over
a validation area in the French massif of the Grandes Rousses with
the existing Copernicus products, fractional snow cover, and SAR
wet snow. We also compare the temporal results obtained at one
meteorological station located in the test area. The results show a
better representation of wet snow during the melting period using
the supervised learning approach, as well as a reduction in areas
classified as wet during the winter season.

Index Terms—Detection, labeling, synthetic aperture radar
(SAR), segmentation, Sentinel-1, snowpack model, supervised
machine learning, wet snow.

I. INTRODUCTION

THE identification of snow states, notably wet snow, has
considerable significance in diverse domains owing to its

multifaceted implications. To ensure effective risk management,
it is essential to monitor wet snow, especially in the context of
forecasting [1], avalanche awareness [2], modeling the run-out
of wet snow avalanches [3], and employing physical models
for avalanche simulation [4]. The impact of climate change on
snow states is of significant importance. Proper assessment and
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understanding of these factors are necessary to mitigate the
impacts of climate change. Therefore, it is crucial to evaluate
its effects on communities, water resource availability [5], [6],
glacier dynamics [7], [8], and hydrological basins [9]. The im-
portance of wet snow in hydrology is critical to the hydrological
cycle, influencing the timing and amount of spring snowmelt
runoff [10]. The transformation of wet snow to liquid water can
result in rapid and unpredictable fluctuations in river discharge,
which has implications for the planning of natural resources and
the management of water and energy resources [11], [12], [13].
This is especially significant within regions where snowmelt
significantly contributes to water availability [14], [15]. In ad-
dition, it is important to monitor and comprehend snow and wet
snow conditions to guarantee sustainable economic activities
related to tourism [16], [17]. Several papers made advances in
the study of the cryosphere and snow in general [18] or, more
specifically, using satellite imagery [19], [20], highlighting the
challenges, the prospects, and the current limitations. Satellite
imagery makes it possible the global mapping, from the scale of
a mountain range to a whole country. One of the largest used
optical satellite indicators is the normalised difference snow
index (NDSI) [21] with its combination of spectral bands, which
provides information on total snow cover [22]. This index led
to the creation of fractional snow cover (FSC) product of the
European Copernicus program. However, the use of optical or
multispectral satellites limits the analysis of the total snow cover
[23], with no specific information on snow conditions: wet and
dry snow. Tracking snow in the Alps via these optical satellites is
difficult, especially in winter, by the presence of clouds masking
portions of current acquisition or even the entire image, requiring
heavy techniques for their use [24].

SAR imagery, meanwhile, with its ability to observe the Earth
in all weather conditions, is a complementary solution, particu-
larly during the winter periods. Some studies have utilized both
optical and SAR data to mitigate weather disturbances [25]. Due
to the ease of processing with a single sensor, SAR data has
been widely used in snow studies, primarily with an X-band
sensor [26] or C-band [27]. Nevertheless, the use of C-band
SAR data is shown to be more appropriate for analyzing the
snow properties [18]. The launch of the Sentinel-1 A and 1B C-
band satellites, operating at a frequency of 5.405 GHz, allowed
for continuous monitoring of Western Europe and extensive
regions [28], [29], [30], [31]. These satellites provided free data
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access and offered repeat pass acquisitions every 6 days using
the two satellites producing, dense time series of images that
are particularly interesting for regular monitoring [32], [33].
Sentinel-1B is no longer available since December 2021. Ground
range detected (GRD) products are created from focused SAR
data, involving detection, multilooking, and projection to ground
range using an Earth ellipsoid model. The ellipsoid projection of
GRD products is adjusted based on specified terrain height. The
resultant product has nearly square spatial resolution and pixel
spacing, with reduced speckle thanks to multilook processing.
These GRD data are most often used to analyze the backscatter
coefficient (σ0) [34] in order to detect wet snow. Liquid water in
wet snow induces significant dielectric losses and consequently
reduce the backscatter coefficient as the liquid water content
(LWC) increases. Unlike dry seasonal snow, which allows radar
signals to penetrate several meters, wet snow predominantly
reflects and scatters radar signals near the surface and within the
uppermost layers of the snowpack [35]. This distinction results
in a more notable contrast in backscatter intensity between
regions with wet snow cover and those with dry or snow-free
conditions [36]. However, many physical parameters, such as
snow density or incidence angle, can affect this signal reduc-
tion [37]. One of the most widely employed snow detection
methods relies on the approach developed by Nagler et al. [38].
In fact, Tsai et al. [19] shown that over 80% of the algorithms
utilized for wet snow detection employ the backscattering signal,
as in [39], [40], [41], [42]. Nagler’s method based on applying
a threshold on the backscatter coefficient of the ratio between a
current acquisition and a snow free reference image led to the
development of the SAR wet snow (SWS) Copernicus products.
With the rapid growth of machine learning, some studies are
exploiting radar data to adapt computer vision techniques to
supervised classification problems. When analyzing the signal,
one is no longer seeking a specific threshold corresponding to a
physical variation. But, the emphasis is placed on recognizing at-
tributes that can serve as distinguishing factors between classes.
These features can be directly polarimetric channels [43], ob-
tained through the use of classical textural extractors, such as
GLCM1 [44] or even through the first layers of deep learning
networks as shown in the GPR2 data in [45]. Some works have
integrated the use of these supervised techniques for the study
of the cryosphere, such as [46] with artificial neural networks.
More specifically, a classification of wet and dry snow based
on support vector machines (SVM), is proposed in [47]. Other
studies have shown the benefits of using complementary data to
perform wet snow classification [48], [49]. However, the main
obstacle to the development and generalization of these methods
over large areas is the data labeling required to train the models.
In addition, the spatio-temporal nature of the data requires
greater care in the process of creating and selecting training and
test areas to prevent any spatial or temporal correlation [50].

Labeling is a major step in the supervised classification pro-
cess but remains a challenge in the context of SAR images,
especially when dealing with large areas. The main leverages
for the extensive use of machine learning methods rely on this

1Gray Level Co-occurrence Matrice
2Ground Penetrated Radar

labeling, which allows to get a variety of samples that offer
sufficient representativeness to enable the model to generalize
the learning. Visually, the nature of SAR images complicates
manual labeling. Furthermore, the ability of SAR waves to
penetrate certain surfaces makes it difficult to exploit labels
obtained from optical imagery. For the problem of studying
snow through SAR imaging, the decrease in backscattering
coefficient when the snowpack becomes wet makes the manual
labeling task difficult, even impossible. Solutions have been
proposed by adopting different strategies: either an unsupervised
framework using an empirical threshold [35], statistical analysis
like the one proposed by [51], which considers thresholding and
radiative transfer modeling; or using total snow cover, obtained
from MODIS [48], but incorporating a variety of SAR signal
characteristics (backscattering, PolSAR, and InSAR). However,
these approaches face the limits of the unsupervised methods,
such as in thresholding, or when the label is too general and
quite different from the radar signal sensitivity. The incorpo-
ration of topographic data is a helpful method for enhancing
classification [48], [52].

In numerous studies, the final validation focuses on using
weather data. However, this validation remains complex due
to spatial limitations, and sometimes partially evaluated, as
indicated by [19]. Nevertheless, the capability of weather models
to provides detailed information at the scale of large mountain
areas, as well as specific information about the nature of the
studied process [53], enables fully exploiting the spatial and
temporal extent of SAR data in the labeling process.

In this article, we propose a new dataset for large-scale wet
snow detection, labeled from the physical model of the snowpack
provided and developed by Météo-France: CROCUS [54]. The
objective of the proposed approach is to study the ability of
physical model to label a SAR dataset for supervised detection
of wet snow in a machine learning framework. We illustrate the
complete framework in Fig. 1. In Section II, we first present the
data used, their characteristics, and the processing performed,
followed by the labeling process with a focus on dataset struc-
turing within the framework of supervised learning. Then, in
Section III, we discuss the characteristics of the dataset created,
and present the seven classic machine learning algorithms, to
evaluate this dataset. In Section IV, we present a comprehensive
analysis where we assess the performances of 7 algorithms
and the influence of 13 data associations on the input. This
evaluation involves using polarimetric, topographic, and com-
bined polarimetric data, while quantifying the results using
commonly employed metrics in machine learning. We conduct
an analysis in Section IV-C with a comparison with existing
Copernicus products considering the topographic characteristics
of the ground and with a time series of in situ measurements
from a meteorological station in the test area. Finally, Section V
concludes this article.

II. LSD4WSD: WET SNOW DATASET

A. Satellite Data

SAR Data: We use GRD data obtained during the ascending
orbit number 161 of Sentinel-1, denoted by A161. This orbit
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Fig. 1. Diagram of the complete chain for creating a labeled dataset for wet snow detection from SAR and auxiliary data and evaluating the dataset using different
algorithms and metrics.

Fig. 2. (a) Location of the study area in the French Northern Alps: 6 massifs outlined in red for training and green for testing. The area inside the dark blue
rectangle highlights the wet snow validation zone. In blue, the water bodies given by IGN. (b) Details of the sampling strategy in the Bauges massif for training.
The small blue square represent the sample selection strategy. Layover and shadow are masked in brown.

has a local crossing time of 5:30 P.M. We use SAR images pre-
processed using the CNES3 computing facilities, which consists
of a reduction of thermal noise, a calibration of the data, and a
correction of the terrain using the SRTM 30 m digital elevation
model (DEM). The study is conducted within a segment of the
31TGL tile, a component of both the Sentinel-2 tiling system
and the military grid reference system, situated in the Northern
French Alps, which covers seven French alpine massifs, as
shown in Fig. 2. We finally have a series of 69 images with
a temporal resolution of 6 days, using Sentinel-1 A and 1B,
between August 4th 2020 and August 22nd 2021. These images
are unfiltered, with a size of 10980 × 10980 pixels and a pixel
resolution of 20 m. Each image has two polarimetric channels,
VV, and VH and a third channel corresponding to the ratio of

3French Space Agency.

the other two: VV/VH. Geometric distortions (layover, shadows,
foreshortening) are inherent to SAR imaging. To avoid selecting
these zones in the dataset, we avoid them by using a binary
mask mapping the distortion zones (in orange in Fig. 2). We
focused on Sentinel-1’s orbit in the late afternoon to keep the
geometric distortion consistent. It is worth noting that snow gets
warmer after a full day, which increases LWC. By analyzing
LWC at 6 P.M. and 6 A.M., we can see the difference between
the descending and ascending orbit times. The median value of
this difference is 0.15 kg/m2 from October to the end of March,
where we can consider a global winter-like behavior. Similarly,
this difference is 1.28 kg/m2 between April and the end of
September. These values confirm a more significant presence
of liquid water at the end of the day. Choosing this option helps
map more expansive areas of wet snow, as the snowpack is more
strongly associated with liquid water.
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TABLE I
COMPARISON OF THE SPATIO-TEMPORAL SPECIFICITIES OF FOUR LWC

INFORMATION ACCESSES

Auxiliary Data: We use a 10 m resolution DEM provided
by IGN,4 giving access to the elevation, on which we have
calculated the slope and orientation maps. We have selected
an image of the GRD time series (August 9th 2020), which
we consider as a reference image without snow. All these
additional data aim to investigate how they are processed by
the algorithms and whether or not they add any value to the
quality of the classification. To compare the obtained results,
we have selected two other high-level products provided by
the Copernicus program. The first one is the FSC over the
canopy, which gives the percentage of snow cover for each
pixel with a resolution of 20 m per pixel from the Sentinel-2
data using the NDSI. The second product provided by Coperni-
cus is the SWS obtained by the Nagler method [38] with the
ascending data of Sentinel-1, with a resolution of 60 m per
pixel. Because we use only ascending data, we have compared
our results with SWS products obtained only in ascending
passes. Two orbits covered the validation area (path 88 and path
161).

B. Labeling Data

The criteria for characterizing snow as wet are complex: LWC
threshold and total or partial moistening of the snowpack. One
of the main definitions is based on the LWC of the snowpack,
considering the presence of wet snow from 1% of volume water
content [19] or 2% of LWC for [55]. Table I summarizes four
methods used to obtain the physical parameters required for
labeling. These physical parameters need specific instruments
(such as the Nivose stations of Météo-France), less common than
the more standard instruments used to measure temperature or
precipitation [56]. Compromises, therefore, have to be made.
Automatic or manual measurement networks are not dense
enough, so they cannot be set up in some mountainous regions to
capture large variation. Measurement campaigns [57], are often
limited to a small spatial and temporal extent but are highly
accurate. Numerical models [58] can derive indicators directly
from snowpack simulations with better temporal resolution but
more limited spatial resolution.

4French National Institute for Geographic and Forestry Information

Fig. 3. Position of the validation area (semitransparent dark blue rectangle and
span (

√
V V 2 + V H2) of the two polarimetrics channels inside the test massif

of the Grandes Rousses. The white star represents the station considered for in
situ assessment. Areas affected by the SAR geometric distortions (layover and
shadow) are masked in brown.

CROCUS: The Snow Study Centre (CEN) of Météo-France
has developed a physically-based model CROCUS [60], which
aims to describe the state and the evolution of the properties
of the snowpack. The CROCUS model tracks changes in the
physical properties of the snowpack, including stratigraphy
(up to 50 layers) and underlying ground, in response to me-
teorological data reanalyzed at hourly intervals from another
numerical model SAFRAN [61] but without any information of
the observed snowpack. However, the primary assumption of
this model is the spatial homogeneity of the considered mas-
sifs, especially for precipitation. Consequently, the spatial scale
considered is that of a mountain range, but with a topographic
division of 300 m in altitude (from 900 to 3600 m), for six
orientations (N, E, SE, S, SW, W) and three slopes (0, 20◦,
40◦) and the French mountain massifs considered (including 23
Alpine massifs with a surface area of approximately 400 km2).
A graph of the temporal variation of the LWC by the model
is given in Fig. 4. This scale, therefore, excludes local effects
such as those due to snow accumulation or drift by the wind.
CROCUS provides an output of the average snowpack de-
scribed by its vertical stratigraphy and the descriptive variables
of the internal snowpack, including the LWC, minimum, and
maximum temperature across the snowpack and its height. To
classify the type of snow, Ya-Lun et al. [19] defined wet snow
based on the temperature within the snowpack. According to
this definition, snow is considered wet if the temperature of the
snowpack is above zero degrees Celsius. Compared to wet snow
definitions based on LWC, this formulation has the advantage of
remaining close to physical reality while being understandable
for nonexperts with less uncertainty on the model’s variable. We
propose the following relation rule for wet snow labels, based
on the minimum temperature (Tmin) in degrees Celsius and the
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Fig. 4. Minimum snowpack temperature given by CROCUS between August 2020 and 2021. In blue, the curves are given for the Belledonne massif and in
orange for the Grandes Rousses massif, for two given altitudes, facing south. The gray lines show the dates on which the (1) is respected.

snow height (Hs) in meters

Wet Snow = Tmin ≥ 0 and Hs ≥ 0.4. (1)

By including a requirement for snow height, we can ensure that
the radar signal is predominantly generated by the existence of
wet snow, and not by the ground response beneath a thin layer of
snow or rocky areas with limited snow coverage. This limitation
also ensures to have homogeneous areas covered by snow. Fig. 4
illustrates an instance of the CROCUS output. It presents the
minimum temperature of the snowpack for a southern-facing
orientation and an average slope of 20◦ in two distinct moun-
tain ranges: Belledonne and Grandes Rousses. These massifs
are further divided into different altitudes (1500–1800 m and
2400–2700 m), representing medium and high mountain lev-
els, respectively. Vertical gray lines on each curve represent
the dates when the conditions defined by the (1) are satisfied
based on the CROCUS inputs (slope, orientation, altitude, and
mountain massif). Despite the geographical proximity depicted
in Fig. 2, each mountain range possesses unique characteristics.
The Belledone massif experiences more cases of wet snow and
for longer periods throughout the season. Comparing the first
and second lines in Fig. 4, the influence of the altitude gradient
becomes clear. At an altitude of 1800 m, the snow is considered
wet earlier in the season (February–March) but with a shorter
duration of snow coverage. Given that we are working within
a machine learning framework, we did not validate the samples
obtained by in situ measurements. We prefer a large quantity of
variable data with imperfect labeling rather than a small number
of ungeneralizable ground truths. However, numerous works
were able to validate the CROCUS model through measurement
campaigns [60], [62], [63], compare its performance with other
models [64].

C. Dataset Creation:

For a given acquisition date, we use the two polarimetric chan-
nels of Sentinel-1 and their ratio (VV/VH), three topographic
channels (elevation, orientation, and slope), and the ratio of the

polarimetric channels of the date with the one considered as a
reference. These three additional channels of ratio with respect to
the reference allow us to avoid the nonlinear calculation step that
some algorithms, such as those based on decision trees, cannot
perform, but also to study the decisions taken by the algorithm
in the presence of only these three channels with respect to the
threshold given by [65]. All channels are sampled to have a
pixel size of 10 m×10 m. The pixels of the polarimetric and
ratio channels are transformed in dB. All dates are used in the
creation of this database. The separation of the training and test
dataset is purely spatial and allows to avoid biasing the classifier
by test data strongly spatially correlated to the training data. The
training and test dataset creation chain is based on nine channels.

Selection of Areas: We divide the data into three categories.
The training data used for learning, the test data needed for
the quantitative evaluation of the model (Fig. 2 and finally the
validation area used for the qualitative evaluation of the method
from a spatial and temporal point of view and comparison with
existing Copernicus products (Fig. 3. We have selected six
massifs to built the training dataset (Beaufortain, Belledonne,
Chartreuse, Maurienne, and Vanoise) and one massif for the test
and validation (Grandes Rousses). The geographical distribution
of these massifs is illustrated in Fig. 2. This choice was made to
avoid obtaining good results due to the strong spatial correlation
of the distribution of the zones. Moreover, these seven massifs
are present on the 31TGL tile that we used. The selection of
six massifs to train the model allows the model to be robust
to the intrinsic characteristics of each massif, without resorting
to domain adaptation techniques. We cut each massif using a
16 × 16 sliding window, and selected one window out of nine
as shown in Fig. 2. The window size of 16 × 16 pixels was
chosen empirically by experimental cross-validation study. It
allows us to have enough sample in the patch to be statistically
significant, its size being a multiple of 2, offers perspectives on
the use of possible feature extractions (DWT,5 CNN). This way
we keep the spatial extent and diversity of the dataset, but we

5Discrete Wavelet Transform.
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Fig. 5. Topographical distributions of the test and training samples according
to the discretisation given by CROCUS, for slope, orientation, and elevation. (a)
Distribution of training areas for three slopes. (b) Distribution of test areas for
three slopes.

reduce the number of samples to reduce the computation time
and reduce the spatial correlation between each sample. This
paving represents, respectively, 1.4% and 1.1% of the training
and test surface area of the massifs. The validation data uses the
test dataset with a cutting similar to the one used for the test
dataset but with a dense mesh, i.e., a stride of one instead of
nine. The choice of the test massif results from the comparison
made in Fig. 5.

The latter illustrates the distribution of areas in km2 for the
three topographic parameters of the CROCUS model (elevation,
orientation, and slope). We note the interest of using six massifs
in training by the variety of topographic characteristics that they
represent together [see Fig. 5(a)]. We note that the Grandes
Rousses test massif is homogeneous in terms of the distribution
of these zones for all orientations and mainly for the medium to
steep slopes [see Fig. 5(b)]. However, for low slopes (0◦), some
zones do not exist in the training dataset but appear in the test
dataset. The impact of this gap is measured by the average size
of these areas (of the order of 10−4 km2), which is much smaller
than for larger slopes (of the order of 10−2 km2). Given Fig. 5(a),
the training dataset is also homogeneous with ∼ 10 times more
surfaces for each topographical feature studied, than the selected
test area. We assign the wet snow label, as defined in (1), to each
patch. This label is obtained from the simulated snowpack by
CROCUS at 6:00 P.M., taking into account the slope, altitude,
orientation, and massif information of the respective patch.

The monthly distribution of the training dataset samples ac-
cording to the wet and nonwet classes is given in Fig. 6. It is
interesting to note that the nonwet class is evenly distributed
across all the massifs, while the wet class is mainly represented
by the Vanoise and Beaufortain massifs. The month of February

Fig. 6. Distribution of the number of samples between August 2020 and 2021,
according to six training massifs considered for the two classes wet and non wet.

also saw a large number of wet label samples. This can be
explained by the mild weather in February 2021 [66], and the
presence of Saharan dust, which accelerates the warming of the
snowpack [67]. This results in a classifier that performs well
during this period of the year, but is less efficient in the rest of
the year. The final dataset is open and available online [68].

III. Machine Learning Framework

A. Machine Learning Models: In a first step, we evaluate
seven algorithms commonly used in machine learning, and select
one of the best, for with the dataset. The idea is to see the per-
formance of common solutions in this classification. Theoretical
descriptions of the algorithms can be found in [69] and a brief
presentation of their use in remote sensing problems [70]. The
proposed selection are the following: Adaboost [71], random-
forest (RF) [72], support vector machine (SVM) with Gaussian
kernel [73], K-nearest neighbors (KNN) [74], logistic regression
[75], multilayer perceptron (MLP) [76], and a convolutional
neural network (CNN) architecture based on [77]. This choice
highlights three categories of algorithms. The algorithms based
on which is based on learning a set of weak classifiers (Adaboost
and RF). These algorithms are well-suited to binary classifi-
cation and have the advantage of allowing an interpretation
of the result obtained, and thus to keep an understanding of
the algorithm. The categories of algorithms are based on the
concept of separation or distance. These algorithms perform the
classification task by projecting the data to better distinguish
classes, in other words, to maximize the separation or distance
between classes (SVM). Either they directly determine the class
of a new sample in relation to the distances of neighboring
samples and their labels (KNN). The last category covers neural
self-learning algorithms. They are based on weight learning
for linear combinations and coupled with nonlinear functions.
Where logistic regression learns only one level of weights, MLP
is made up of a number of successive learning layers. The
CNN is an extension of the MLP, using convolutions rather
than direct linear combinations. Learning was achieved using
the Scikit-Learn and Keras library from Python. The codes
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TABLE II
PARAMETERIZATION OF THE ALGORITHMS USED

are available online: https://github.com/Matthieu-Gallet/ML-
WetSnowSAR. The main parameters of the algorithms are given
in Table II.

B. Preprocessing: The last step of preparation consists sim-
ply in normalizing in 0 and 1 by taking the extreme values
on the set of training, test, and validation data. The minimum
and maximum of all samples are used to normalize the first six
channels. For the three channels built on the ratio with a snow
free reference image, the extreme values used for normalization
correspond to the average of the minimum and maximum of
all the samples. At the end, we obtain a dataset consisting of
4 87 157 samples of size 16 by 16 by 9 for training and 3668
for testing. From a dataset in RN,Wx,Wy,C , with N the number
of samples, Wx,Wy the size of the windows and C the number
of channels, we study a preprocessing step upstream of these
algorithms based on two solutions:

1) The first approach consists in calculating the histogram
of each channels of the data to go from RN,Wx,Wy,C to a
representation RN,Hbins . This processing allows the patch
information to be synthesised and was used extensively
in images classification [78], [79]. In the context of pro-
cessing large images or large datasets, this solution allows
us to keep a certain computational frugality while giving
interesting performances. However, this strategy fails to
take into account potential spatial structure. In order for
the histogram to be statistically reliable and homogeneous,
a optimal number of bins Hbins = 16 is used. This choice
comes from the Freedman–Diaconis rule [80], where the
optimal number is calculated with

Hbins =

⌈
3
√
n(maxx−minx)

2 · (Q3 −Q1)

⌉
(2)

with n the number of pixels of the sample x, Q1, and
Q3 are the first and third quantile of the sample. We use
the maximum integer value of Hbins over the dataset and
the channels. The calculation of the histogram is done on
a dynamic range between 0 and 1, ensuring that all the
histograms of the samples have the same support. This
approach is used for the comparison of the models, except
for the CNN where the images are directly given using
the C channels considered, as well as for the study of the
different input channels.

2) The second study focuses on the restriction of the his-
togram to channel statistics. Thus, it is interesting to
study which statistical information takes precedence over
the classification decision, and if so which statistics are

significant for distinguishing the classes. In this context,
we are interested in the mean μ, standard deviation σ,
skewness γ1, and kurtosis γ2. The latter two are defined
as follows:

γ1 =
μ3

μ
3/2
2

γ2 =
μ4 − 3μ 2

2

μ 2
2

(3)

where μi represents the i− th central moment. We apply
this transformation on the best algorithm and the best
combination of input bands. The interest of this analysis
is its ability to give explainable results, based in the KNN
framework, on the Euclidean distance between a small
number of variables (maximum 4) directly correlated to
the nature of the signal.

The test dataset is balanced to have an equal number of sam-
ples from the wet and nonwet classes. However, balancing the
training dataset by undersampling would result in a significant
proportion of samples being removed and hence reducing the
variability of the dataset (the wet class being in the minority
with 13 975 samples, we would reduce the size of the dataset
of nearly 95%). To address this issue, we propose a variation of
the K-Fold technique [81]: the balanced stratified K-Fold. We
divide the majority class of the dataset into K sub-datasets of a
size equal to the number of samples in the minority class. Each
subdataset of the majority class is combined with the minority
class to form a fold. This way, we can sweep across the entire
dataset and study the variability of the models across all the
balanced folds. In our case, we obtain K = 34 fold with 13 975
samples of each class.

C. Evaluation: Quantitative Analysis: In order to evaluate
the performance of each method, associated with transforma-
tions or auxiliary data, we first focus on a quantitative analysis.
We choose four metrics to characterize each model with TP , TN

the true positives and negatives, FP , FN the false positives and
negatives, and N the number of samples considered

1) Accuracy = (TP + TN )/N .
2) F1-score = TP /[TP + 0.5(FN + FP )].
3) Kappa [82].
4) Receiver operating characteristic (ROC) curves.
The first three metrics are used to analyze the results of the

classification of wet snow using all algorithms and only the
polarimetrics channels VV and VH. We then use specifically
the F1-score to study the sensitivity of the four best algorithms
previously tested with respect to various channel combinations.
All the bands combinations are presented in Table III. We have
selected 13 different band combinations. The ones specific to
the polarimetric information of the SAR signal can be grouped
together (A, B, H, Hr). Note that the G combination is simply
the Nagler case when a fixed thresholding classifier is used
directly. This band is therefore important for the comparison of
the performances with respect to the other combinations. We also
consider the groupings made up of the VV and VH polarimetric
channels augmented with topological information (C,D,E,F).
The idea is to see if the topological information is decisive in

https://github.com/Matthieu-Gallet/ML-WetSnowSAR
https://github.com/Matthieu-Gallet/ML-WetSnowSAR
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TABLE III
DESCRIPTION OF THE TESTED CHANNEL COMBINATIONS

addition to the backscatter signal to differentiate the classes. The
counterpart of this grouping is made up of the remaining classes,
and the contribution of the ratio of a sample at a current date to
a reference date is studied in addition.

We select four different input combinations to plot ROC
curves. On the ROC curves, we study more particularly the
thresholding giving the maximum precision (BAROC) and
the thresholding giving a false positive rate lower than 5%
(FCROC). These values are obtained by computing the ROC
curve from the probabilities provided by the classifier. We then
recover the thresholding that maximizes the accuracy and the one
that gives a false positive rate of 5%. In this way, we measure
what can be the maximum performances of the model, but also
the performances with a low false positive rate compensating a
poor or noisy labeling.

Qualitative Analysis: In a second step, we are interested in
the qualitative evaluation of the methods and their comparison
with existing products (FSC and SWS). The FSC product is
produced using optical satellite data from the Sentinel-2 (revisit
time of 5 days). This product provides the percentage of the
surface covered by snow at the top of the canopy (FSC-TOC)
per pixel, with a spatial resolution of 20 m. To ensure accuracy,
atmospheric correction, and cloud masking are utilized. The
snow-covered area is identified using a thresholding method
based on the NDSI and a digital elevation model. The fractional
snow cover of the snow-covered pixels is then calculated using
an empirical relationship with NDSI that has been calibrated
with higher resolution satellite images [22].

The SWS product is based on Sentinel-1 satellites. To map
the extent of snowmelt areas, the process depends on change
detection, which involves comparing the reduced backscatter
coefficient of wet snow to conditions where the surface is free of
snow or covered by dry snow. Specifically, this product is based
on Nagler’s method [65], and uses S1 Interferometric Wide
Swath (IW) mode with dual-pol (VV, VH) acquisitions. The
resulting product offers wet snow extent data for high mountain
regions, with a spatial resolution of 60 m. To ensure accuracy,
the product masks radar shadow, layover, and foreshortening,
as well as water bodies, forests, urban areas, and nonmountain
regions.

TABLE IV
RESULTS FOR 3 METRICS FOR THE SEVEN CLASSIFIERS CONSIDERED FOR THE

SNOW DETECTION PROBLEM USING K-FOLD

These evaluations are done on the specific area of the vali-
dation dataset (Grandes-Rousses massif) as illustrated in Fig. 3.
We utilize a set of two distinct dates that are carefully selected to
ensure that both the SWS and FSC products are available within
2 days of the target date. Furthermore, these dates are chosen to
give an observation of the classification results:

1) during snowmelt, when wet snow represents a significant
part of the snowpack,

2) and in the middle of winter, when the snow cover is
important but mainly made up of fresh or dry snow.

On each of the dates, we use two spatial tools:
1) Geographical maps of wet snow probability. The resulting

maps are the probabilistic output of the classifier Pwet

(the probability of wet snow). This information is dis-
cretized into three levels:Pwet > 0.5,Pwet > FCROC, and
Pwet > BAROC. The BAROC and FCROC thresholds are
determined from the training dataset and are the average of
the thresholds on each fold. This gives us the information
of the wet snow extension if the maximum accuracy is
considered, if a lower false alarm rate of 5% is considered,
and finally the classical binary output of a classifier.

2) Topographic diagram. It gives the percentage distribution
of wet pixels for a slope and orientation slice as a function
of altitude. It allows us to compare the quality of clas-
sification with respect to the products and its sensitivity
according to the topological characteristics.

IV. PERFORMANCE EVALUATION AND MACHINE LEARNING

PRODUCTION OF WET SNOW MAPS

A. Evaluation of Models

The results of the evaluation of the seven models for the 34
folds with the two bands VV and VH are given in Table IV. We
can see that the best results for the three metrics are obtained with
the KNN model. In our case, we use this model with K = 50,
the number of neighbors. It is interesting to note that the results
of the KNN model are better than the results of the CNN model,
although the CNN model is a deep learning model, which is
more complex than the KNN model.

In addition, the variability of the two model of the family
of deep learning models (CNN and MLP) is higher than the
other models. This factor is quite important, because it shows
the overfitting of some of the models. This can be explained by
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Fig. 7. Evaluation of the F1-score for the four best algorithms obtained in Table IV as a function of the combinations of the considered channels.

the fact that each of the folds, an instance of a classifier is trained
and then tested on the same dataset. If the variability across folds
is large, this means that each instance of the classifier is more
concerned with maximizing the metrics specific to the training
dataset than with finding a sufficiently general model. This
reduction in variability goes hand in hand with the generalization
of the model over all folds, but leads to a slight decrease in
some criteria such as accuracy compared to other models such
as the KNN. In terms of needs, the two best classifiers in this
study are the KNN, for its overall average performance, which
is better than the other classifiers. But also the SVM, which
is close to the KNN metrics with a good stability on all folds.
Given these results, we chose to select the four best algorithms
in terms of F1-score (SVM, RF, MLP, and KNN) to evaluate the
performance of theses models as a function of the combinations
of the input bands (see Table III). This selection details the
behavior of the three main proposed families. More results can
be found in [83], where the authors focus specifically on the RF
and CNN studies.

B. Evaluation of Auxiliary Data

The results are given in Fig. 7. For the KNN algorithm, it
can be noted that the solution using the VV and VH channels
(A) alone gives a baseline for the other combinations with a
value around 0.76 and a low variability. The addition of the
VV/VH ratio (B) slightly degrades the performance. The most
striking feature is the addition of topographical information. The
elevation in particular does not allow to refine the results, on the
contrary to the orientation, which improves the F1-score by more
than 2%. It can be seen that the combination (G) only composed
of the VV and VH ratios of the current dates with respect to the
reference date gives better results than the combinations using
both the simple polarimetric channels and the topographical
information. The attempt to use all the channels to have the
best possible performance is not the best solution, but rather
the H and I solutions, which offer a compromise between the
best performance and a lower variability over all the K-Folds. It
is observed that the performance of the considered algorithms
is fairly consistent across the channels examined. However, the
MLP approach exhibits a significant degree of variability when
applied to combinations. The RF algorithm is noteworthy for
its good performance at large and minimal variability across all

folds. This methodology has been previously utilized in [48].
For the remainder of this study, our focus will be on the KNN
algorithm due to its ability to incorporate a distance measure
between samples. Additional analyses can be found in [83] on
RF and CNN.

Fig. 8 gives the ROC curves for a selection of combinations
for the wet class. On the left figure, BAROC (×) and FCROC (+)
thresholds have been added. These thresholds were calculated
from the training data. This explains why the FCROC thresholds,
calculated for a false positive rate of 5%, are shifted. The best
classifiers on this criterion are those with the lowest false positive
test rate of 5%. The G combination performs best on this criterion
with a false positive test rate of 8% against ∼ 10% and 16%
for the others. On the criterion of the area under the curve, the
two combinations I and J give the best performances in terms
of detection, with a slight advantage for combination I, which
gives its maximum accuracy with a false positive rate lower than
that of combination J.

These results can be linked to the right part of the Fig. 8,
where we studied the ability of the mean backscattering of the
VV and VH channels to detect the wet snow class. To do this,
we used the training dataset and calculated the average value of
each sample for VV and VH. We notice that both thresholds are
obtained for a lower true positive rate than the methods proposed
in the right part of the figure, demonstrating the benefit of both
the additional channels and a classification based on a more
complex algorithm than a thresholding.

On Nagler’s Thresholding: The thresholding algorithm can
then be considered and the ROC curve and the BAROC and
FCROC thresholds associated with this mean can be calculated.
The FCROC value gives a threshold value between 0 and 1 for
which only 5% of false positives are obtained (and similarly
for the BAROC value). Thus, from these threshold values, and
knowing the dynamics used to normalize the data, we can
arrive at a threshold value in dB that can be compared to that
traditionally used by the Nagler method. The results obtained are
given in Table V. It can be seen that the traditional thresholding
value of −3 dB is close to the threshold obtained with the
FCROC thresholding. The thresholding based on the average
of a 16 × 16 pixels window, to obtain a false positive rate of
the wet snow class compared to the labeling rule given in 1 is
similar to the threshold proposed in [35]. This result validates the
proposed labeling based on CROCUS. We also notice that when
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Fig. 8. ROC curve for four input channel combinations for the KNN classifier and their associated BAROC and FCROC metric at 5% (left). ROC curve for the
simple thresholding type classifier on the mean of each sample for the VV and VH channels (Nagler thresholding), with BAROC and FCROC metrics (right).

TABLE V
THRESHOLD VALUE FOR BAROC AND FCROC METRICS FOR LEARNING ON

THE SAMPLE MEAN FOR VV AND VH

TABLE VI
DESCRIPTION OF THE TESTED STATISTICAL COMBINATIONS, WHERE μ, σ ARE

THE MEAN AND STANDARD DEVIATION AND γ1, γ2 ARE GIVEN IN (3)

we select the BAROC thresholding which gives the thresholding
for the maximum accuracy, the detection threshold tends to
be higher than −3 dB. Consequently, we can deduce that in
the framework of this labeling, the optimal threshold to detect
samples respecting the proposed labeling is about 2 dB higher
than the Nagler threshold. This results in the detection of a larger
area. This conclusion is based on a learning of the threshold
respecting the CROCUS labeling from ascending data.

C. Statistics Set

We study the performances of the KNN classifier, when using
statistics as presented in Section III-A. We study four combina-
tions described in Table VI, with μ the mean, σ the standard
deviation, and γ1, γ2, respectively, the skew and kurtosis. These
statistics are calculated on the G-band combination, in order to
observe results that depend only on polarimetric data. The results
obtained are given in Fig. 9.

We notice at first that the use of the mean of each of the
four channels (L) considered gives a difference of more than
14% on the F1-score. However, we reduced the number of
features for each sample by 16 to perform this task with only
4 features. The addition of second-order moments improves
the performance. The addition of the third-order moment (N)

Fig. 9. F1-score for the KNN classifier as a function of the combination of
statistics described in Table VI on the G channel combinations.

reduces the variability of the score over all the folds. However,
the O combination has a lower F1 score than N, and M and shows
increased variability, and the addition of the fourth moment P
brings the f1 score down to 60%. The best score is obtained
using the mean and standard deviation combination (N) of each
channel. It is interesting to note that with only the first two
moments calculated for each channel, we obtain ∼ 99% of the
F1-score obtained using the full histogram on each channel. We
observe that moments of order higher than two reduce the F1-
score drastically. This may be due to two factors. The first is the
imprecision that increases when trying to estimate higher order
moments. The second is due to the nature of the distributions of
the two classes, where the Gaussian character takes precedence,
giving rise to superior performance only thanks to the first two
moments.

Fig. 10 illustrates the distributions of each of the six possible
combinations for the four channels as a function of the mean
and standard deviation, i.e., the 2-D histogram for the sample
mean [see Fig. 10(a)] and the sample standard deviation [see
Fig. 10(b)].

It can be seen that the distributions associated with the mean
of the samples are more distinct for the two classes than those
associated with the standard deviation. However, the latter show
significant differences in shape ( R_VV versus VV) and even
in mode (R_VV versus R_VH). The distributions related to the
mean are more different between the two classes: while the dry
class appears to be strongly Gaussian, which can be explained
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Fig. 10. Comparison of 2-D histogram for both mean and standard deviation of each samples, for the two classes wet and not wet, and between the different
channels for (V V, V H R_V V and R_V H). R_V V and R_V H represent the ratio between the current acquisition and the reference image described in I,
respectively, in V V and V H polarization. (a) Comparison of the mean for each samples of the four considered channels. The first line of plots corresponds to the
wet class and the second to the nonwet class. (b) Comparison of the standard deviation for each samples of the four considered channels. The first line of plots
corresponds to the wet class and the second to the nonwet class.

by the averaging of 256 of medium resolution, that of the wet
class is more complicated.

There are marked differences in the mode of some of the distri-
butions (R_VV versus R_VH), but above all we can observe a bi-
modal aspect, especially in the distributions between the primary
polarimetric channels (VV,VH) and the ratios. We analyzed the
composition of the modes present in the distribution formed
by the VH and R_VV channels. We selected 5000 samples of
the wet class around the two main modes Mb1 and Mb2 whose
barycenters are located, respectively, around (xMb1

, yMb1
) =

(∼ 0.3,∼ 0.42) and (xMb2
, yMb2

) = (∼ 0.4,∼ 0.48). The first
difference between the samples is the acquisition date. While
the samples composing the first mode Mb1 are homogeneously
distributed between February and June, the samples of the
second mode Mb2 are mainly concentrated on February. The
second distinction between the two modes is the geographical
position of the samples. We note that the samples belonging to
the Mb1 mode are mainly located in rocky areas, on plains or
bare ground. On the other hand, the samples from the Mb2 mode
are mainly located in forest areas. It is interesting to note that the
position of Mb2 is very close to the single mode for the nonwet

class samples. This is due to the fact that in the presence of a
drill the wave penetration is too weak to reliably distinguish the
presence of wet snow, at least from a point of the signal average
on the resolution cell. However, the presence of such samples
may allow the use of the histogram to differentiate certain areas
with low forest cover.

D. Focus on Specific Situations

The study area on which the wet snow map is made is shown
in Fig. 3. Two acquisition dates are considered: January 18,
2021 and March 31, 2021. The Copernicus SWS products are
obtained for these same dates, while the optical FSC products are
obtained for January 19, 2021 and March 30, 2021, respectively.
To perform this study, we use the results obtained by the KNN
classifier using the histograms on each of the bands of the I
combination.

Wet Snow Map: Based on this combination, the training
dataset allows us to calculate the BAROC and FCROC thresh-
olds. Traditionally, classifier outputs are thresholded at 0.5,
with higher values considered as belonging to the class under
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consideration. It is proposed to add the two additional thresh-
olds BAROC and FCROC. The maximum accuracy is reached
at 79.7% with a BAROC threshold of 0.48. We obtained an
accuracy of 75.2% with a constant false positive rate of 5%,
for an FCROC threshold of 0.72. The classification results are
performed using a sliding window. The classification value of
the central pixel is, respectively, 0,1,2, or 3 if there is no wet
snow, wet snow obtained by BAROC thresholding, wet snow
by classical thresholding at 0.5, and wet snow by FCROC
thresholding. The results are shown in Fig. 11(a).

We first notice is that the addition of the BAROC threshold
does not bring much to the results obtained with the KNN
compared to the usual thresholding (0.5). However, we can
see the advantage of using the thresholds together, with higher
resulting pixel values in areas where the threshold above which
the training classifier made few misclassification.

We need to be careful about directly comparing results on
January 18, 2021. Indeed on this date, the CROCUS model
classify ∼ 5% of the pixels in this area as wet snow according
to the proposed criterion. The FSC product does not detail the
difference between wet and dry snow and gives the overall snow
cover result, while the SWS product, because of its threshold,
tends to overestimate our criterion.

On the date of 31 March 2021, this time we are in the melting
period and we can see a more marked correlation between the
three results. Where the SWS product gives large homogeneous
areas, we find a more important clipping, as in the extreme
right part of the image, where we find the five diagonal bands
corresponding to bowl faces. This clipping has the opposite
effect of obtaining more heterogeneous maps.

Fig. 11(b) represents a zoom in Fig. 11(a) on the Alps d’Huez
for March 31st 2021. For SWS products, we have added the
product mask categories. In this way, the SWS product masks
both city and forest areas. Interestingly, the KNN result offers a
finer segmentation of wet snow. In addition, based on the variety
of samples, we can see that city areas are correctly taken into
account compared to the FSC optical product, as are forest areas.

Wet Snow Topographic Repartition: We then evaluated the
distribution of pixels considered as wet snow for the topograph-
ical parameters of orientation and altitude, for the two dates (31
March 2021 and 18 January 2021), but over the whole Grandes
Rousses massif (given in green in Fig. 2). We considered a
step of 100 m for the altitude and 12.5◦ for the orientation. To
simplify the analysis we did not consider the slope variable,
and calculated this distribution on all slopes below 45◦. This
evaluation was carried out on the same results as in Section IV-D,
i.e., KNN with the bands combination I. We studied separately
the results obtained by the FCROC thresholding, the BAROC
one, and compared with the distribution calculated for the SWS
products. We also compared the snow cover distribution of the
FSC product. The representation in Fig. 12 gives in percentage
for each cell over the whole area considered without clouds for
the FSC and without geometric distortion.

For the date of January 18, 2021, we find that the three results
based on the SAR and therefore sensitive to wet snow, are less
distributed than the true snow extension. It can be seen that the
FCROC, BAROC and SWS give a maximum of wet snow for
elevations between 1800 m and 2400 m facing East.

For the date of 31 March 2021, we notice that the BAROC
threshold diagram is closer to that of the FSC than the SWS,
notably in terms of percentage, we find the two main modes
for elevations between 1800 and 2400 m with an East and West
orientation, respectively, and this in a marked way in the two
diagrams, whereas the SWS is slightly more homogeneous on
all orientations.

A number of pixels are detected as wet snow for elevations
below 1800 m for orientations between West and South West, but
only in the FCROC and BAROC results. These areas correspond
to the detection of two lakes in the southern part of the Grandes
Rousses massif.

E. In-Situ Comparison

We consider the Lac Noir weather station, positioned as shown
in Fig. 3, providing the following daily in-situ measurements:
snow depth (cm), minimum daily temperature (degrees Celsius),
and precipitation (mm). To make the figures easier to read,
we have normalised precipitation between 0 and 1, where 1
is the maximum precipitation during the period considered
(corresponding to a precipitation of 23.5 mm). Fig. 13(a) and
(b) shows the temporal variation of wet snow prediction by the
KNN method, as a function of the three in situ information for
two combinations of channels ( A, I). The temporal window is
between January 2020 and early June 2020. The prediction is
made on a 2 by 2 pixel window centered on the station. We have
added to the figures the dates on which the Copernicus SWS
product indicated the presence of wet snow. It is interesting to
note that the A combination gives fairly homogeneous results
with no particular trends. If we set the probability threshold at
0.5, we find the information given by the SWS product. It is
difficult to see a clear correlation between these data and the in
situ measurements. From April onward, we notice that a trend is
emerging and the number of dates and the associated probability
of wet snow increases. This is explained by the progressive
increase in the temperature of the snowpack and the start of
snowmelt. Fig. 13(b) gives the variation for the combination
giving the best results in the tests proposed in the manuscript.
There are clearly two regimes, one before mid-March when
the probability is low even at times when there is a sudden
increase in temperature. The other regime, after mid-March,
shows an increase in the probability of detection, correlated with
the permanent increase in temperature. This probability is higher
than that given by combination A. In all scenarios, the drop in
the probability of wet snow at the beginning of June is explained
by a significant reduction in the snowpack, at the limit or even
below the labeling threshold (40 cm).

V. DISCUSSIONS

It is important to note that the information used for labeling
is imperfect. However, this allows us to add information on a
large number of samples and to use the diversity of the samples
to guide sufficiently generalized learning for the evaluation of
our problem. We note that the maps created using the KNN
algorithm have a higher degree of heterogeneity than the FSC
and SWS products. However, the resolution of SWS in particular
is 60 m per pixel, whereas we propose maps with 10 m per pixel.
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Fig. 11. Wet snow maps for different solutions using KNN, compared with existing products. (a) Maps of snow classification results for two dates in comparison
with Copernicus FSC and SWS products. (b) Map details and zoomed-in view of snow classification results for the two best combinations I and J comparing
Copernicus FSC and SWS products in the Alpe d’Huez, France during the melting period March 31st 2021.
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Fig. 12. Diagrams of the distribution of wet pixels (FRCOC, BAROC, SWS) and snow cover (FSC) as a function of altitude and orientation for a slope less than
45◦, for two dates. (a) January 18, 2021. (b) March 31, 2021.

Fig. 13. Comparison of Lac Noir station measurements with KNN’s prediction. (a) KNN’s prediction using A channel combinations. (b) KNN’s prediction using
I channel combinations.
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It may be interesting to carry out an analysis in further work on
the scores and classification quality as a function of the type of
soil. It can be seen that the solution using all the channels (I)
tends to overestimate the areas considered as wet snow. This is
clearly seen in Fig. 11(b), where areas that are not even detected
by the FSC product as having snow are detected as wet snow.

The results presented in Fig. 13(b) are interesting because the
Copernicus method clearly shows that snow is detected early
in the season where, for a snow depth of more than 40 cm, the
minimum temperature is low, mostly below 0 or even −2.5 ◦C,
whereas our proposals give low probability rates. This can be
explained by the impact of frost on the radar signal. General
studies have shown the sensitivity of the C-band radar signal
to the detection of frozen ground [84], causing a drop in the
backscattered signal in a similar way to the consequence of
the presence of wet snow [85]. We can hypothesise that the
thresholding method for Copernicus products is sensitive to this
frost and detects it as wet snow, whereas our method, by learning
from a large number of features associated with a rich training
data, does not consider these areas as wet snow.

VI. CONCLUSION

In this work, we have proposed a new dataset for the problem
of detecting wet snow with SAR images, based on the use of a
physical model of the snowpack covering the entire Alps. We
successfully demonstrated the effectiveness of machine learning
algorithms in classifying wet snow. Our approach involved using
a novel labeling method based on the physical model of the
snowpack CROCUS. We tested seven classifiers of a different
kind after implementing our new labeling framework. KNN
was the most effective. We analyzed input channels, includ-
ing histograms and topographical information, to inspect our
classification methods. We found that reducing the channels
to statistics of order 1–4 improved our understanding of the
classification decisions made by the classifier. We compare the
results at the scale of the Grandes Rousses massif with the main
reference snow products.

Interestingly, beyond the numerical performance in
Section IV, which notably outperforms the fixed threshold
approach, the classification results show coherent maps with the
existing products to be put in perspective with the proposed label.
Testing different classifiers helps us analyse the performance
of the training data, which is imbalanced because of the
object’s temporal nature. This can be seen when evaluating and
comparing the results with existing Copernicus products. There
has been a clear improvement in detection sharpness, although
this may tend to reveal heterogeneous detection zones. The size
and variety of the data used also makes it possible to dispense
with zone masks, which can be complex to manage in the case
of simple thresholds such as forest or city zones. A possible
improvement would be to restrict the temporality of the dataset
to the melting season, by increasing the spatial density, to have
a classification valid only for some months of the year when wet
snow can be found (this excludes cases of rain on snow events).
A second possible improvement would be the aggregation or
fusion of the different results in a supervised or unsupervised
ensemble approach. We have observed that the SWS maps and

the outcomes produced by our classifier, along with a blend
of different bands, yield comparable results. However, each
method possesses unique specificities that distinguish them
from one another. This specificity is generalized if we look at
the results of other classifiers or other band combinations. Thus,
the aggregation of these model outputs according to the same
criterion or another more general one would allow us to obtain
more detailed maps.
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