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MAST: An Earthquake-Triggered Landslides
Extraction Method Combining Morphological

Analysis Edge Recognition With Swin-Transformer
Deep Learning Model

Yu Huang , Jianqiang Zhang , Haiqing He , Yang Jia , Rong Chen , Yonggang Ge , Zaiyang Ming ,
Lili Zhang , and Haoyu Li

Abstract—Earthquake-triggered landslides (ETLs) are charac-
terized by their extensive occurrences, having wide distributions.
The conventional human–computer interaction extraction method
is often time-consuming and labor-intensive, failing to meet the
demands of disaster emergency response. There is a pressing need
for a swift detection of ETLs. In this study, we introduce an ETLs
extraction method (MAST) combining morphological analysis edge
recognition with a Swin-Transformer (SWT) deep learning model,
which is specifically designed for landslide extraction. The MAST
model adopts a hierarchical construction approach akin to con-
volution neural networks, aiding in tasks such as target detection
and semantic segmentation. To enhance the accuracy of landslide
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edge extraction, we incorporate an edge recognition algorithm
based on the morphological analysis into the MAST model. This
algorithm leverages morphological operations to extract the fea-
tures of landslide boundaries. It effectively addresses issues such
as discretization and irregularization of the extracted landslide
boundaries, leading to more precise delineation of landslide bound-
aries. Drawing on UAV data collected from Wan Dong Village, De
Tou Town, Sichuan Luding, China, during the 2022 Ms 6.8 Luding
Earthquake, we conducted automated extraction of ETLs utilizing
the MAST model. Experimental results demonstrate the superior
performance of the MAST model compared to the traditional full
convolution neural network (FCN) model and normal SWT model.
The MAST model exhibits enhanced value in landslide extrac-
tion. Notably, it demonstrates a significant advantage in boundary
extraction. Employing the Boundary IoU metric to evaluate the
accuracy of ETLs extraction, the MAST model outperforms the
SWT and FCN models at various distances.

Index Terms—Deep learning, earthquake-triggered landslides
(ETLs), edge recognition, morphological analysis, transformer.

I. INTRODUCTION

ON SEPTEMBER 5, 2022, a seismic event of magnitude
6.8 shook Luding County, situated in the Ganzi Tibetan

Autonomous Prefecture within Sichuan Province. This seismic
activity resulted in a considerable number of landslides, trig-
gered by the ground shaking and surface rupture stemming from
the earthquake. These earthquake-triggered landslides (ETLs)
have effectively obstructed roads and rivers, engulfed towns,
and villages, severely impeding postdisaster rescue operations.
Consequently, they have exacerbated the direct damage caused
by the earthquake and stand as one of the natural disasters
responsible for severe human casualties and extensive property
damage. Given these implications, the precise identification of
ETLs emerges as an urgent and indispensable task in earthquake
rescue and relief efforts [1], [2].

ETLs are typically analyzed through visual or automated
methods. Visual extraction primarily relies on the expertise
and experience of specialists in landslides, involving manual
analysis of remote-sensing images to determine the location
or boundaries of the landslides. Visual extraction takes into
account the color tone, texture, development location, geometric
shape, and other features of the landslide on the remote-sensing
image, and the extraction results have high accuracy, but it is
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time-consuming and laborious, and in addition, this method is
affected by individual experts, which leads to differences in
the results of the judgment. The automatic extraction method
is to transform the experience of visual extraction into the meth-
ods and rules of remote-sensing software and utilize comput-
ers to automatically identify landslides. Compared with visual
interpretation, automatic extraction is greatly affected by the
quality of remote-sensing images, and the recognition accuracy
is relatively low. In recent years, the development of machine
learning methods has brought new opportunities in the automatic
extraction of ETLs, such as support vector machine (SVM) and
random forest. SVM is a supervised learning algorithm, and in
automatic ETLs extraction, SVM can be trained with labeled
landslide and nonlandslide samples to learn the boundary fea-
tures and classification rules of landslides [3], [4], [5], [6]. SVM
exhibits superior classification performance and generalization
ability in the context of landslide boundary extraction. It excels
at accurately delineating boundaries from new ETLs data. On
the other hand, random forest employs an integrated learning
approach by constructing multiple decision trees and amalga-
mating them for classification or regression tasks [7], [8]. In the
automated extraction of ETLs, RF leverages the aggregated deci-
sions from multiple decision trees to ascertain landslide bound-
aries. RF demonstrates robustness and resistance to overfitting,
proficiently managing noise and uncertainty present in ETLs
data [9], [10], [11], [12]. In addition to SVM and RF, various
enhanced machine learning approaches have found application
in automated ETLs extraction. For instance, neural-network-
based methodologies, such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), can adeptly
discern spatial and temporal features of landslides from seismic
data, significantly enhancing the precision of landslide extrac-
tion [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28]. For instance, Ramdhoni et al. [14] em-
ployed the Smorph method to perform landslide extraction. This
method involves utilizing slope and slope shape to construct a
transformation matrix, achieving a landslide extraction accuracy
of 79.54%[14]. Sameen and Pradhan [20] introduced a landslide
detection method utilizing residual networks. This approach
enhances network performance by fusing feature information
within the same design, with the F1 score of 77% and mIoU
of 77.20% [20]. Meanwhile, some cutting-edge research has
combined multisource remote-sensing data for land cover clas-
sification. Li et al. [29], [30] proposed a spatial logic aggregation
network with morphological transformation for tree species
classification. Additionally, they introduced a Representation-
enhanced Status Replay Network (RSRNet), which includes
modal and semantic augmentation enhancement to enhance
the transferability and discreteness of feature representation,
reduces the impact of representation bias in the feature extractor,
and alleviates the bias of the classifier while maintaining the
stability of the decision boundary. The SRS was built to regulate
the learning and optimization of the classifier. The RSRNet has
demonstrated superiority in multisource remote-sensing image
classification [29], [30].

In recent years, self-attention networks, such as the trans-
former, have emerged as a groundbreaking approach in nat-
ural language processing and image segmentation [31], [32].

For instance, Van Nguyen et al. [33] developed a lightweight
transformer-based toolkit for multilingual natural language
processing. This toolkit surpasses previous multilingual NLP
pipelines in tasks, such as sentence segmentation and part-of-
speech tagging [33]. Maria et al. [34] conducted an investigation
into the viability of transformer-based solutions for medical
image segmentation tasks. The study introduces the medical
transformer, which undergoes evaluation using three distinct
medical image segmentation datasets. The results demonstrate
its superior performance [34]. The transformer architecture has
shown remarkable advancements in image analysis tasks, such
as image categorization and object detection. For instance, Zhao
et al. [35] explored its potential in 3-D point cloud process-
ing. They developed self-attentive networks for semantic scene
segmentation, part-of-speech segmentation, and object catego-
rization. The achieved mean Intersection over Union (mIoU) on
region 5 of the S3DIS dataset, commonly utilized for large-scale
semantic scene segmentation, reached 70.4%[35].

Various enhanced machine learning methods have demon-
strated promising performance in the automated extraction of
ETLs. However, several challenges persist. First, labeling ETLs
data demands substantial time and expertise. Additionally, the
morphology and features of landslides are influenced by multiple
factors, including geological conditions, surface morphology,
and seismic intensity, necessitating robust boundary extraction
algorithms. Accurate identification of ETL edges enables early
implementation of appropriate measures to mitigate potential
risks. Nevertheless, traditional semantic segmentation detection
methods such as average intersection and merger ratio, and
F1 score often struggle to yield satisfactory results due to the
complexity and noise interference in ETL images [36].

Therefore, in this study, we introduce an ETLs extrac-
tion method (MAST), which combines morphological analysis
edge recognition with Swin-Transformer (SWT) deep learning
model. It integrates a morphological edge detection algorithm
for precise landslide extraction. The research focused on seismic
landslides in the Wan Dong Village of Detuo Town, Luding
County. The introduction of the Boundary IoU value as a novel
evaluation metric for landslide boundary extraction precision
allowed for a targeted, detailed, and quantitative comparison
of the results obtained by the MAST, normal SWT, and tradi-
tional full convolution neural network (FCN) model. The study
demonstrates the applicability of MAST in the field of ETLs
extraction and its superiority in landslide boundary extraction.
Moreover, it provides support for the enhanced applicability and
effectiveness of deep learning methods in the domain of seismic
landslide extraction.

II. STUDY AREA AND DATASETS

On September 5, 2022, a magnitude 6.8 earthquake struck
Luding County, Sichuan Province, China, at a depth of 16 km.
The epicenter was pinpointed at 29.59◦N latitude and 102.08◦E
longitude, triggering over 8000 earthquake-induced avalanches
and landslides. For this research, the study area was designated
as Wandong Village in Detou Town, Luding County, spanning
from 102.05◦ to 102.26◦ east longitude and 29.33◦ to 29.70◦

north latitude, covering approximately 9.26 km2. The area is lo-
cated 9.43 km from the earthquake center, experiencing a seismic
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Fig. 1. (a) Location map of the study area. (b) Terrain schematic of the study
area.

intensity of magnitude 8. In the aftermath of the Luding earth-
quake, the Sichuan Geographic Information Bureau employed a
UAV to capture aerial photographs of the earthquake-affected re-
gion on September 6, 2022. The UAV imagery was obtained at a
spatial resolution of 0.2 m and underwent geometric corrections
using ground control points. The Institute of Mountain Hazards
and Environment, Chinese Academy of Sciences (CAS), utilized
these images for ETL investigation using the visual extraction
method. Concurrent field inspections were carried out to validate
the findings. Ultimately, a total of 434 ETLs were identified in
the study area, covering an area of 1.49 km2 (Fig. 1). This catalog
of ETLs serves as the reference data for automated identification
in this study.

This study establishes a high-quality dataset of landslide
samples to serve as the foundation for training the landslide
recognition model. The UAV image is segmented into 512 ×
512 pixel unit images, from which the landslide inventory map is
generated. Data augmentation techniques are applied to enhance
dataset diversity, mitigate overfitting, and bolster the model’s
generalization capability. The original landslide sample data
are expanded by rotating, flipping, and mirroring the images,
resulting in the acquisition of approximately 3000 images, con-
stituting a set of highly precise landslide sample data. In the
case of the landslide sample data, 70% is randomly chosen as
the training set for model development while the remaining 30%
is designated as the test set. All the experiments in this study are
conducted with Python.

III. METHODS

In this research, we introduce the MAST approach, which
integrates the SWT deep learning method with the morpho-
logical edge detection method. SWT, equipped with a hybrid
loss function, serves as a feature extractor to capture crucial
features in ETLs images. This extracted information is then
combined with the morphological edge detection to improve the
identification of ETL boundaries (see Fig. 2). MAST harnesses
the outstanding performance of SWT in computer image recog-
nition. Additionally, it addresses issues such as the discretiza-
tion and irregularity of extracted landslide boundaries through

Fig. 2. Schematic diagram of MAST structure (SWT: This section illustrates
the structure employed by Swin Transformer, where Dn represents the image
being divided into blocks, and Mn represents the calculation of RGB channels.
MA: This part pertains to the morphological analysis algorithm section, and
different treatment methods are adopted for different ETLs).

the morphological edge detection method, thereby enhancing
accuracy in the automated extraction of ETLs.

A. Improved SWT With Hybrid Loss Function

SWT stands out as an advanced deep learning model for
exceptional performance in computer vision. Its architecture
resembles the hierarchical structure of convolutional networks,
progressively halving the resolution and doubling the number
of channels through successive layers. The model adopts a
hierarchical design comprising four stages, each of which in-
corporates two components: 1) patch merging and 2) SWT [37],
[38]. The patch merging process initiates at the beginning of
each stage, involving downsampling. Its purpose is to lower
resolution and fine-tune channel numbers, creating a hierarchi-
cal design. Notably, this approach, unlike traditional pooling,
avoids information loss. The structure of the SWT block closely
resembles that of the standard transformer block. However,
a key distinction lies in its innovative hierarchical attention
mechanism. This mechanism confines attention computation
(multihead self-attention) to specific windows. By substituting
the conventional multihead self-attention (MSA) with the mov-
ing window multihead self-attention (SW-MSA), the image gets
broken down into mask blocks of varied scales. Subsequently,
a moving window is employed to establish connections among
these mask blocks. This alteration significantly enhances target
detection and image classification performance. Consequently,
the SWT showcases notable attributes including high scalability,
adeptness in handling diverse image sizes, and outstanding para-
metric and computational efficiency. In this article, the number
of transformer layers is set to 10, attention head count 8, the
SW-MSA window size is set to 15 × 15, and the optimizer is
selected as the Adam optimizer.

The calculation of the loss function l for the transformer model
is

ι = λclsιcls. (1)

The variable λcls represents the cross-entropy loss function,
often utilized to gauge the disparity between two probability
distributions, particularly in classification scenarios. It quantifies
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the dissimilarity between the predicted probability distribution
generated by the model and the actual label distribution. In the
context of binary classification, the formulation of the cross-
entropy loss function is as follows:

ιcls = − 1

n

K∑
k

[
yklog

(
1

1 + e−Zk

)

+(1− yk)log

(
e−Zk

1 + e−Zk

)]
. (2)

Given the challenges associated with vanishing gradients and
the insufficient uncertainty captured by the cross-entropy loss
function λcls, this study adopts a hybrid loss function, encom-
passing the cross-entropy loss function λcls and region contrast
loss functions λac, the combined loss function is computed as a
weighted sum of these components using the following equation:

ι = λclsιcls + λacιac (3)

In the formula, λcls = 0.7, λac = 0.3; ιac represents a region
contrast loss function utilized to guide the original class activa-
tion mapping to emphasize absent objects in the image, offering
supplementary constraints on the feature representation. This
function is predominantly invoked in this article to address the
issue of vanishing gradients associated with the cross-entropy
loss function, which is calculated as

ιac =
1

n

K∑
k

SL1

(
Mk, M̂k

)
(4)

SL1(y, ŷ) =

{
0.5(ŷ − y)2, |ŷ − y| < 1

|ŷ − y| − 0.5, |ŷ − y| ≥ 1
. (5)

SL1 stands for smooth L1 loss function.
The enhancement of the loss function in this article enables

the model to optimize its performance in the landslide extraction
task. It effectively addresses the issue of gradient vanishing,
consequently reducing overfitting to local details in the training
data. This refinement facilitates a more accurate capture of the
data’s overall structure and key features.

B. Landslide Edge Detection Using Morphological Analysis

Conventional machine extraction methods operate at the pixel
level and interpret slope edges as jagged boundaries in many
cases, which do not align with reality; the results often contain
numerous fragmented polygons, requiring time and effort to
manually integrate and rectify. In this study, we utilize mor-
phological analysis and SWT-result-based edge detection to
rectify the fragmented, jagged, and irregularly defined landslide
boundaries [39], [40], [41].

The steps for landslide edge detection based on the morpho-
logical analysis are as follows.

1) In image preprocessing, we utilize sample quantization or
coding to transform the initial continuous space and lumi-
nance into discrete representations. To enhance computa-
tional and output efficiency, the raw image is partitioned

into an M×N array with a fixed unit size

FM (x, y)=

⎧⎪⎨
⎪⎩

F (0, 0) . . . F (0, N − 1)
...

. . .
...

F (M − 1, 0) . . . F (M − 1, N − 1)

⎫⎪⎬
⎪⎭ .

(6)

Preprocessing of landslide images involves noise reduc-
tion and enhancement of edge information. During this
step, voids within the landslide are filled, and any debris
or deformations resulting from the interpretation are re-
moved. The UAV image resolution in this study is 0.2 m.
To reduce noise and facilitate the subsequent extraction
of landslide edge structures, we uniformly remove debris
polygons at the pixel level in a 5 × 5 pattern.

2) Defining Structural Elements: Given that the landslide
comprises irregular polygons of various sizes, this study
addresses the attribution of deciphering result fragments
in small areas. This study employs the nearest neighbor al-
gorithm, attributing deciphering result fragments of small
areas to the landslide body with the nearest Euclidean
distance. Concurrently, the connecting area between them
is replenished

FL = KNN(Fl, FL) (7)

where Fl represent deciphering result fragments in small
areas; FL represent the landslide structural elements;
KNN represent the nearest neighbor algorithm.

3) Expansion Operation: Conducts an image expansion op-
eration using the updated defined structural elements. This
operation expands the brightly lit regions, enhancing the
edge features of the landslide. This process widens the
region at the landslide’s boundary, filling cavities, and
narrow gaps in the foreground, enhancing edge continuity

FL ⊕D = FL|(D)F
⋂

FL �= � (8)

where FL represent the landslide structural elements; D
represent the area which to extend.

4) Corrosive Operation: Applying an erosion operation to
the image using structural elements. This operation de-
creases high-brightness areas, resulting in more compact
boundary features for the landslide

FL �D = FL|(D)F ∈ FL (9)

where FL represent the landslide structural elements; D
represent the area which to corrode.

5) Fitting Extraction: The morphology of landslide edges is
complex and influenced by various factors, and different
types of landslides may show different morphologies.
However, it is difficult for the edges of landslides to show
multiple consecutive turns or high curvature changes. In
this article, by calculating the difference between the
expansion operation and the erosion operation, we can
approximate the location of the landslide boundary and
extract its structural elements.
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Fig. 3. (a) Visually interpreted landslide area. (b) FCN extracted landslide
area. (c) SWT extracted landslide area. (d) MAST extracted landslide area.

6) Boundary Optimization: Employ smoothing algorithms
and other edge optimization methods to eliminate un-
necessary noise and details, enhancing the clarity and
continuity of the landslide boundary. This process aims
to optimize the boundary and improve accuracy.

IV. RESULTS

A. Remote-Sensing Extraction Results for ETLs

Landslides were extracted from UAV images using the MAST
model [see Fig. 3(b)]. These extractions were then compared
and analyzed in comparison to those obtained through the SWT
model [see Fig. 3(c)] and the deep fully CNN model [see
Fig. 3(d)] [38]. Specifically, FCN extracted landslides covering
an area of 1.43 km2, SWT extracted landslides covering 1.46
km2, and MAST extracted landslides covering 1.46 km2. This
analysis indicates that landslides extracted using the SWT and
MAST models more closely align with the reference ETLs cat-
alog. The comparison of landslide area and distribution reveals
notable differences. The FCN model tends to fragment large
landslides (e.g., landslide A), forming multiple smaller ones,
whereas the SWT and MAST models better capture the entire
landslide. Similarly, for extensive landslides (e.g., landslide B),
the FCN model often misconstrues them as several smaller
landslides while the SWT and MAST models accurately identify
the complete landslide. However, in cases where landslides are
interconnected, distinguishing and decomposing them proves
challenging for all three methods. For instance, landslide C,
situated on the right bank of a river, is identified by all three
models as a single landslide, conflating it with a landslide on the
left bank of the river. The MAST model displays an advantage
in certain cases, such as landslide D, where the FCN and SWT
models misidentify it while the MAST model closely aligns with
the parameter data for the identified landslides.

B. Semantic Segmentation Accuracy

According to the results obtained from different models for
ETL extraction, we constructed a confusion matrix for ETLs and

TABLE I
CONFUSION MATRIX FOR LANDSLIDE EXTRACTION RESULTS

TABLE II
LANDSLIDE EXTRACTION AREA RESULTS FROM REMOTE-SENSING IMAGE

no ETLs (refer to Table I). In the matrix, “P” denotes the positive
region, signifying the area where ETLs are present, and “N” in-
dicates the negative region, representing the area without ETLs.
“TP” refers to the true-positive region, where ETLs are accu-
rately identified, aligning with both actual and predicted positive
conditions. On the other hand, “TN” signifies the true-negative
region, correctly capturing the absence of landslides in both
actual and predicted negative conditions. “FN” stands for the
false-negative region, denoting areas misclassified as nonland-
slides despite being actual landslides. Finally, “FP” refers to the
false-positive region, representing areas incorrectly identified as
landslides when they are not. Analyzing the confusion matrix
results in Table I, we observe that FCN accurately extracted
landslides covering an area of 1.23 km2. In comparison, SWT
and MAST demonstrated improved performance by identifying
landslides covering 1.27 km2 and 1.28 km2, respectively. These
values were 0.03 km2 and 0.04 km2 higher than FCNs extrac-
tion results. Notably, FCN failed to extract landslides covering
0.26 km2, the highest among the three methods. In contrast,
MAST achieved the best results with only 0.21 km2 of extracted
landslides.

Based on the confusion matrix, five metrics (see Table II)
were calculated to obtain the overall accuracy, positive precision,
recall, F1 score, and mean intersection and merger ratio (mIoU)
to quantitatively compare the accuracy of different models for
ETLs extraction.

Accuracy is the proportion of correct predictions to the total
number of results and is given as

Accuracy = (TP + TN)/(TP + TN + FP + FN). (10)
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Positive precision (precision) is the proportion of positive
correct areas to the total positive data and is given by the formula

Precision = TP/(TP + FP). (11)

The recall rate (recall) reflects the ratio of ETLs samples
predicted as correct to all actual ETLs samples and is given
by the formula

Recall = TP/(TP + FN). (12)

The F1 index (F1-score) is the harmonic mean of precision
and recall and is given by the formula

F1 = 2(precision × recall)/(precision + recall). (13)

The mean intersection and merger ratio (mIoU) is the average
of the ratio of the intersection and merger sets of the 2 sets of
true and predicted values and is given as

mIoU = (TP/(TP + FP + FN) + TN/(TN + FP + FN))/2.
(14)

The eight metrics presented in Table II are highly representa-
tive within the chosen domain of image semantic segmentation.
It is evident that both the MAST and SWT algorithms consis-
tently outperform the FCN algorithm across most metrics. In
terms of overall accuracy, both SWT and MAST surpass FCN
by over 1%, with MAST exhibiting a slight advantage over SWT
by 0.17%. Positive accuracy is notably higher with SWT at 1.3%
over FCN; however, MAST further improves by 1.6% compared
to SWT, showcasing its superior accuracy in ETLs extraction.
This trend is similarly reflected in the mIoU values, where
MAST exceeds FCN by 2.85% and surpasses SWT by 1.11%. In
summary, the MAST algorithm consistently achieves superior
accuracy in the task of landslide extraction. Nevertheless, it is
essential to acknowledge that due to the relatively small landslide
area in comparison to the nonlandslide area, traditional accuracy
evaluation metrics may not effectively represent the disparities
in ETLs extraction accuracy across various machine learning
models.

V. DISCUSSION

A. Impact of Morphological Analysis on Landslide Boundary
Extraction

In this study, we present a detailed comparison of land-
slide extraction boundaries using FCN, SWT, and MAST on
UAV imagery (see Fig. 4). The MAST model, incorporating
a morphological analysis step, demonstrates significant advan-
tages in identifying landslide areas on an individual landslide
level. Its extraction results align more closely with the objec-
tive characteristics of ETLs boundaries. By synthesizing deep
learning models and morphological analysis, MAST effectively
addresses morphological features inherent to landslides. It com-
pensates for the limitations of deep learning models in handling
complex features’ boundaries, overcoming issues, such as debris
polygons, incomplete landslide interpretation, hollow areas, and
rugged landslide boundaries. Consequently, the boundary of the
landslide is smoothed, eliminating the jagged state. This under-
scores MASTs performance in landslide extraction and analysis,

Fig. 4. Schematic diagram illustrating the extraction results of each method
for a single landslide. (a) SWT landslide extraction result: contains numerous
debris polygons. (b) SWT landslide extraction result: interprets a single landslide
section as two separate landslide regions. (c) SWT extraction result: shows
hollow areas within the landslide.

showcasing its prowess in integrating diverse technological tools
to enhance model performance.

First, the MAST method effectively eliminates debris poly-
gons. Both the SWT and FCN models tend to generate numerous
debris polygons within landslide areas due to surface complexity
and image coverage. This issue is nearly unavoidable following
a landslide event. However, the introduction of morphological
analysis in the MAST model allows for the removal of these
debris polygons, thus rectifying the oversegmentation of indi-
vidual landslides [see Fig. 4(a)]. In our study, FCN resulted in
37 609 debris polygons and SWT in 4978 debris polygons while
the MAST model yielded none. Automated removal of debris
polygons significantly reduces the time and labor required for
manual clean-up.

Second, the MAST method addresses the challenge of a single
landslide being extracted as multiple smaller landslides. This
often arises due to the decomposition of ETLs into various
stacking zones, with vegetation cover further complicating the
situation. The SWT model, in particular, tends to classify these
zones as distinct small landslides, a limitation not fully resolved
by deep learning algorithms alone. The MAST model effectively
separates these smaller landslides, reaggregates them into their
primary landslide form [see Fig. 4(b)], and fills in the interven-
ing connectivity, rectifying the problem of mistaking a single
landslide for multiple smaller ones.

The third crucial improvement involves resolving hollow
areas within landslide bodies. In some larger ETLs, fragmen-
tation leaves parts of the vegetation intact within the land-
slide body, often unconnected to surrounding vegetation. Both
the SWT and FCN models tend to misinterpret these vege-
tated areas within the landslide body as nonlandslide areas,
resulting in hollow boundaries [see Fig. 4(c)]. To enhance
extraction accuracy, the MAST model employs morphological
analysis to fill these hollow regions. Utilizing area operations,
it identifies independent areas within the polylines, examines
their topology, and identifies overlapping regions. Since the
ETLs considered occurred within a relatively recent timeframe,
without overlapping old and new landslides, these identified
overlapping regions are reassigned as parts of the landslides,
effectively addressing the issue of hollow areas within the
landslides.
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Fig. 5. Schematic diagram of Boundary IoU and mIoU calculation methods.

B. Boundary Segmentation Calculation Metrics—Boundary
IoU

The traditional parameters for evaluating the accuracy of
automatic landslide extraction are predominantly influenced by
the landslide area in relation to the nonlandslide area. Given that
the landslide area is typically much smaller compared to the
nonlandslide area, even a correct extraction of landslide areas
with a low accuracy would result in a large correctly extracted
nonlandslide area, inflating the overall accuracy. Furthermore,
these evaluation metrics emphasize overall variability and may
not effectively account for boundary consistency. In the domain
of computer vision, deep learning has attained a high level of
proficiency in landslide extraction applications. However, the
differences in ETLs extraction among various deep learning
models are marginal, rendering traditional accuracy evalua-
tion parameters inadequate for characterizing extraction accu-
racy differences. To better elucidate these disparities in ETLs
extraction achieved by distinct deep learning methodologies,
this study employs Boundary IoU (see Fig. 5), a computational
metric for boundary segmentation, to evaluate landslide extrac-
tion accuracy [42].

Boundary IoU represents an extension of IoU-based met-
rics, specifically designed for pixel-level boundary segmentation
tasks aimed at accurately delineating object boundaries. Conse-
quently, this parameter stands as a highly effective measure of
the consistency between automatically extracted boundaries of
ETLs and their true boundaries. Within the domain of image
segmentation, the quality of boundary segmentation serves as
a crucial reference index for determining the effectiveness of
an algorithm. Currently prevalent mIoU-based AP metrics often
lack sensitivity toward the segmentation quality of mask bound-
aries, contributing to the limited enhancement of mask boundary
segmentation quality despite ongoing algorithmic optimizations
in recent years. In contrast, Boundary IoU demonstrates sensi-
tivity to the segmentation quality of object boundaries, providing
a robust assessment of different segmentation algorithms con-
cerning object boundaries.

Boundary IoU is calculated as

Boundary IoU =
|(Gd) ∩G) ∩ (Pd) ∩ P )|
|(Gd) ∩G) ∪ (Pd) ∩ P )| (15)

TABLE III
BOUNDARY IOU CALCULATION INDICATORS

Fig. 6. Variances in values calculated by FCN, SWT, and MAST across various
metrics are examined.

where Gd denotes the set of pixels whose distance from the
contour of the ground truth mask is not greater than d, and Pd

denotes the set of pixels whose distance from the contour of the
predicted mask is not greater than d (see Table III).

The distanced controls the sensitivity of Boundary IoU. When
d is sufficiently large, Boundary IoU is equivalent to Mask IoU.
On the other hand, when d is relatively small, Boundary IoU
disregards pixels in the mask that are distant from the boundary,
placing more emphasis on segmentation quality near the object’s
boundary, even for larger-sized objects. The range of Boundary
IoU values is from 0 to 1. A value closer to 1 indicates a higher
overlap between the predicted boundary and the real boundary,
signifying a more accurate prediction. The goal of the boundary
segmentation algorithm is to strive for a Boundary IoU as close
to 1 as possible to achieve precise boundary segmentation.

The calculation of Boundary IoU values for ETLs extracted by
FCN, SWT, and MAST methods (see Fig. 6) demonstrates that
MAST exhibits superior performance for d values of 2 m, 5 m,
and 10 m, followed by SWT. The Boundary IoU values vary with
different d values and display a discernible pattern. As the d value
increases, the differences in Boundary IoU values of landslides
extracted by different methods become more prominent, offering
a clearer demonstration of the extraction boundary differences.
For instance, at a d value of 2 m, the Boundary IoU values for
the three methods are 23.7%, 25.12%, and 26.56%, respectively.
The differences among the three methods are relatively small,
with SWTs Boundary IoU being 1.42% higher than that of FCN,
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and MASTs being 1.44% higher than SWTs. At a d value of 5 m,
the Boundary IoU values for the three methods rise to 44.37%,
49.29%, and 51.46%, respectively. The differences between the
three methods also escalate, with SWTs Boundary IoU being
4.92% higher than FCNs, and MASTs being 2.17% higher than
SWTs. At a d value of 10 m, the Boundary IoU values for
the three methods increase to 59.23%, 68.11%, and 70.26%,
respectively. The differences between the three also intensify,
with SWTs Boundary IoU being 8.88% higher than FCNs, and
MASTs being 2.15% higher than SWTs. These fluctuations
in Boundary IoU values for different methods illustrate that
compared to the FCN model, the SWT model significantly
improves accuracy in ETLs extraction. Moreover, MAST also
enhances the accuracy of ETLs extraction, although the degree
of improvement is relatively moderate. Simultaneously, this
study aims to demonstrate the stability of the MAST model
by calculating the variance of the boundary IoU results. At
d values of 2 m, 5 m, and 10 m, the variances are 0.68,
0.39, and 0.34, respectively. These results indicate that MAST
can maintain a relatively stable performance across different
ETL scenarios.

In comparison to the traditional semantic segmentation index
mIoU, FCN, SWT, and MAST all achieved scores higher than
83% (see Fig. 6). However, because the mIoU algorithm places
greater emphasis on overall region identification, the differences
in mIoU scores between different algorithms are relatively mi-
nor, making it less effective in reflecting MASTs enhancement
in the landslide boundary extraction segment.

The disparity between MAST and SWT becomes more notice-
able at mIoU and BIoU for d values of 2 m and 5 m. Specifically,
at a d value of 5 m, SWT exhibits a 4.92% higher BIoU than
FCN, and MAST surpasses SWT by 2.17% in BIoU. The BIoU
difference is nearly twice that of mIoU. At a d value of 10 m,
SWT achieves an 8.88% higher BIoU than FCN, with MAST
exceeding SWT by 2.15% in BIoU. Here again, the difference in
BIoU is considerably more pronounced than in mIoU. Notably,
the BIoU difference between MAST and SWT stabilizes at
approximately 2.17% for a d value of 5 m and 2.15% for a
d value of 10 m, indicating a leveling off. Consequently, this
study posits that the influence of morphological analysis on
the specific boundary range between MAST and SWT remains
within 10 m. This conclusion is substantiated by the fact that a
range exceeding 10 m is sufficiently broad for seismic landslides,
adequately covering the landslide range. The results of numeri-
cal BIoU calculations no longer yield significant differences. For
d values of 5 m and 10 m, MAST outperforms SWT by 2.17%
and 2.15%, respectively. Hence, beyond a distance value of 5 m,
the integration of morphological analysis yields approximately
a 2% improvement for MAST. However, due to the constraint
imposed by the area of earthquake-induced landslides, the d
value cannot be boundlessly increased.

VI. CONCLUSION

In this study, we enhance the SWT model by modifying
its hybrid loss function and integrating a morphological edge
detection method with morphological analysis, resulting in the
MAST ETLs extraction model. We also introduce the Boundary

IoU method to evaluate ETLs extraction accuracy and draw the
following conclusions from the comparison experiments.

1) The MAST model excels in landslide extraction. Com-
pared to the traditional FCN model, MAST exhibits supe-
rior feature extraction and context understanding capabil-
ities when processing landslide images. Its self-attention
mechanism and hierarchical structure enable the capture of
both detailed and global landslide information, thereby en-
hancing edge extraction accuracy at the semantic segmen-
tation level. Overall, MAST achieves a 1.23% higher ac-
curacy than FCN and a 0.17% higher accuracy than SWT.
Positive accuracy is 2.92% higher than FCN and 1.62%
higher than SWT. The mIoU is 2.85% higher than FCN
and 1.11% higher than SWT. The morphological edge
detection integrated into MAST significantly contributes
to landslide boundary extraction. Through morphological
operations such as swelling and erosion, it enhances the
continuity and accuracy of landslide boundaries. This
method effectively reduces noise and unnecessary de-
tails, especially in the treatment of debris polygons and
segmented small broken landslides, thus improving edge
detection accuracy and stability while preserving the shape
and structural characteristics of the landslide boundary.

2) The introduced Boundary IoU in the experimental results
showcases that more accurate landslide extraction results
are achievable using the MAST method. According to the
B IoU results, MAST performs better at d values of 2 m,
5 m, and 10 m. At a d value of 2 m, MASTs B IoU is 1.42%
higher than FCN and 1.44% higher than SWT. At a d value
of 5 m, MASTs B IoU surpasses FCN by 4.92%, and SWT
by 2.17%. At a d value of 10 m, MASTs B IoU exceeds
FCNs by 8.88%, and SWTs by 2.15%. This substantiates
that MAST and SWT outperform the FCN model not only
in traditional semantic segmentation but also in critical
edge recognition. It highlights MASTs superior ability to
recognize boundaries accurately and segment object edges
precisely. Additionally, the introduction of morphological
analysis has a limited effect on the specific boundary range
of both MAST and SWT, staying within 10 m.

This study verifies the outstanding performance of the SWT
model in the realm of ETLs machine learning. Moreover, the
MAST model, an extension of the SWT model, enhances ETLs
extraction accuracy further. Future efforts should concentrate
on strengthening multisource data fusion, integrating various
remote sensing, geographic information, and seismic monitoring
data to enhance comprehensiveness and accuracy of extraction.
Also, since the model used in this article is a UAV image,
the data source is single and is affected by the nature of the
UAV itself, which is subject to weather conditions. In addition,
the ETLs extraction model needs to be enhanced with its gen-
eralization capability to incorporate multisource data in order
to have wider applicability in landslide extraction in different
regions, under different incentive conditions and with different
geological scenarios. Integrating the results of the study with
disaster emergency response and decision support systems is
essential to provide timely and accurate information for disaster
management and to minimize disaster losses.
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