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High-Resolution Land-Cover Mapping Based on a
Cross-Resolution Deep Learning Framework and

Available Low-Resolution Labels
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Abstract—High-resolution land cover mapping (LCM) is pivotal
in numerous disciplines but still challenging to be acquired because
traditional supervised methods require a substantial number of
high-resolution labels that is labouring and expensive. To this issue,
abundantly available low-resolution land-cover maps are regarded
as alternative label sources, but the mismatch of spatial resolution
and the misidentification of different land-cover categories intro-
duced an amount of noisy labeled samples. This study introduces a
novel cross-resolution deep learning framework, termed CRNN,
to generate high-resolution LCM by leveraging low-resolution
mapping products. First, a high-resolution backbone is proposed
to safeguard the preservation of output resolution while simul-
taneously retaining the deep feature extraction capability of the
network. Furthermore, an attention module is incorporated into
the CRNN framework to alleviate the adverse impact of imbalanced
samples. More importantly, to address the label noise issue, a
weakly supervised loss based on feature similarity is proposed and
calculated for obtaining dependable supervision information from
low-resolution LCM products. The qualitative and quantitative
results demonstrate that the CRNN framework surpasses several
state-of-the-art methods. Moreover, based on the CRNN, the 10-m
resolution land-cover maps of Beijing and Shanghai for 2020 are
produced using 30-m resolution LCM products as reference data.
As a further application, CRNN provides a viable and promising
approach for reusing existing data products, contributing to some
extent toward achieving sustainability goals.

Index Terms—Attention module, deep learning (DL), land cover
mapping (LCM), noisy label, weakly supervised learning.

I. INTRODUCTION

H IGH-RESOLUTION land cover mapping (LCM) pro-
vides necessary information for detailed national land
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source surveys, spatial planning, and many sustainability-related
applications [1], [2], [3]. The maturation and development of
satellite and airborne remote sensing (RS) platforms have in-
creased the availability of imagery with high spatial resolution.
This abundance of data allows for the precise and periodic
production of LCM [1]. Hence, exploring suitable RS data
and mapping algorithms becomes particularly significant for
efficiently updating and refining large-scale LCM with high
spatial resolution.

Most existing LCM products, e.g., GLC_FCS30 [4],
FROM_GLC10 [5], and European Space Agency (ESA) global
LCM product at 10-m resolution for 2020 (called ESA10) [6],
were produced by supervised classification strategies, such as
support vector machine (SVM) [7], decision tree (DT) [8], and
random forest (RF) [9]. With the advancement of deep learning
(DL) techniques, convolutional neural networks (CNNs) have
brought about a transformative impact on the realm of automatic
learning, particularly concerning the acquisition of hierarchical
features for pixelwise classification tasks, thus, enabling achiev-
ing accurate and efficient LCM products [1], [10], e.g., Esri 10-m
LCM product during 2018–2021 (called Esri10) [11]. These
supervised classification methods depend highly on numerous
reference data with high accuracy [12]. In general, augmenting
the number and diversity of training samples tends to yield
more accurate and robust classification results [13]. Nonetheless,
annotating numerous training samples is widely acknowledged
as inefficient and expensive [12], [14].

As an alternative approach, several studies have explored the
utilization of available low-resolution LCM products to achieve
refined and accurate LCM results [1], [2], [15], [16], [17].
Although these products contain a considerable amount of noisy
labels due to the mismatch of spatial resolution or misidentifica-
tion of large-scale land types, they also encompass a wealth of
existing knowledge and information, which benefits the model
training for identifying the land cover types [15]. In previous
studies, Kaiser et al. [18] demonstrated that large-scale products
could serve as a substitute for manually annotated high-quality
training data. And it was proved that the network could still
achieve reasonable performance based on these imperfect large-
scale data. Notably, the endeavor of generating high-resolution
and accurate LCM through low-resolution labels holds the
potential to enhance the utilization of Earth observation data
in achieving sustainable development goals [16]. Nevertheless,
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along with these advantages, a significant challenge arises in
the form of potential classification errors present in public LCM
products and discrepancies in spatial resolution between these
products and the high-resolution RS data to be classified [4].
Moreover, most of these solutions for high-resolution LCM
based on low-resolution available products have not adequately
considered the impact of sample imbalance on the training of
models and also suffer from computational burden when the
complex frameworks are utilized.

To overcome the above deficiencies, we proposed a cross-
resolution CNN framework for high-resolution LCM, termed
CRNN. First, multisource high-resolution satellite imageries
are fused by a data fusion module, based on which the more
discriminative information is extracted and utilized for accurate
LCM. Second, a feature extraction module is utilized to extract
feature information, thus, preventing the resolution reduction
during the deep feature extraction. Followingly, an attention
module is introduced in this network to alleviate the impact
of imbalanced training samples. Finally, a weakly supervised
loss is designed based on feature similarity to alleviate the
adverse effects caused by noisy labeled samples contained
in low-resolution LCM products. The CRNN framework
aims to provide an alternative approach for automatically
updating the large-scale high-resolution LCM without relying
on high-resolution labels or ancillary information.

The main contributions of this study are as follows.
1) A novel CRNN for high-resolution LCM is designed,

introducing an attention module to alleviate the impact
of imbalanced samples.

2) Considering the feature similarity, a weakly supervised
loss is utilized in this framework, thus, alleviating the
adverse effects caused by noisy labeled samples present
in low-resolution LCM products.

3) A series of extensive experiments are conducted to verify
the tremendous potential of the proposed framework, and
the high-resolution (10 m) LCM products of Beijing and
Shanghai cities are obtained based on the high-resolution
satellite RS data and available low-resolution (30 m) LCM
products.

The rest of this article is organized as follows. Section II re-
views the related works. Section III introduces the study area and
data. Section IV represents motivation and the proposed CRNN
framework. Section V gives the qualitative and quantitative
results of the proposed framework and compared methods, and
ablation analysis is also given in this section. Finally, Section VI
concludes this article.

II. RELATED WORK

In this section, we introduce some related works for both
existing LCM products and cross-resolution LCM methods.
As for existing LCM products, we review some outstanding
products at both global and national scales. Moreover, we in-
troduce different cross-resolution LCM methods that tend to
solve the problem of lacking high-resolution accurate reference
data.

A. Development of Public LCM Products

Due to the constraints of the sensors, the imagery accessible
during the initial phases was predominantly acquired at low to
moderate spatial resolutions [e.g., moderate resolution imaging
spectroradiometer (MODIS)]. Over the past few decades, a
multitude of approaches have been employed to leverage the
abundant spectral information present in imagery for robust
pixel classification. These approaches have widespread adoption
in producing large-scale coarse (to 30 m) LCM products [19].
Examples of those products include 500-m MODIS land cover
type product (MODIS LCM) [20], 300-m ESA climate change
initiative land cover product [21], and 100-m Copernicus global
land cover [22].

Subsequently, to describe the land surface more finely, several
global land-cover products with 30-m spatial resolution were
produced using Landsat data and numerous training samples.
For instance, Gong et al. [14] produced the first 30-m resolu-
tion global LCM (FROM_GLC30) based on four supervised
classifiers, including the maximum likelihood classifier (MLC),
DT, RF, and SVM. Meanwhile, Chen et al. [23] developed a
pixel- and object-based method with knowledge (POK-based
approach) to automatically produce a global LCM at 30-m
resolution, called GlobeLand30. Recently, Zhang et al. [4] in-
troduced GLC_FCS30, providing an exemplary classification
system with high accuracy. These datasets have been widely
used in numerous tasks, e.g., environmental change studies,
sustainable development, etc.

The accessibility of high-resolution RS data, coupled with
advancements in computing and storage capacity, has facil-
itated the emergence of global LCM products with signifi-
cantly improved resolution, reaching up to 10 m. For instance,
Gong et al. [3] produced the first 10-m resolution global LCM
product in 2017, named FROM_GLC10, based on Sentinel-2
images. Moreover, the ESA provided a global LCM product
at 10-m resolution for 2020 (ESA10) based on Sentinel-1 and
Sentinel-2 data [6]. Meanwhile, Karra et al. [11] developed
a DL segmentation model utilizing Sentinel-2 data to gen-
erate a global LCM at a spatial resolution of 10 m, called
Esri10.

As for the national scale, numerous outstanding high-
resolution LCM products are continuously produced [24], [25],
[26], [27], [28], [29]. For instance, the United States Geological
Survey published the 30-m resolution National Land Cover
Database (NLCD) encompassing the entirety of the United
States [27], [28]. Using Sentinel data, Marston et al. [29] pro-
duced the annual U.K. LCM at 10-m resolution based on the RF
classifier. For China, some studies have released high-quality
national-scale LCM. For example, using Landsat images on the
Google Earth engine (GEE) platform, Yang and Huang [24]
produced the 30-m resolution LCM of China (CLCD) from 1985
to 2019 based on the RF classifier. Moreover, Gong et al. [26]
released a novel urban land use map for the entire China
(EULUC-China) based on 10-m resolution Sentinel-2 A/B im-
ages and other auxiliary data. More importantly, Li et al. [25]
developed the first 1-m resolution LCM of China, SinoLC-1,
using a DL-based method and high-resolution Google Earth
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TABLE I
DETAILS OF DIFFERENT GLOBAL- AND NATIONAL-SCALE LCM PRODUCTS WITH A SPATIAL RESOLUTION OF 30 m OR 10 m

(GE) imagery. The details about these high-resolution global
and national scale LCM products are represented in Table I.

B. Development of Cross-Resolution LCM Methods

As mentioned above, numerous LCM products, e.g., Glo-
beLand30 [23], GLC_FCS30 [4], ESA10 [6], etc., have
been produced by supervised classification strategies, such as
SVM [7], DT [8], and RF [9]. However, these supervised
classification methods depend highly on numerous reference
data with high accuracy [12]. In general, annotating numerous
high-quality training samples is widely acknowledged as labo-
rious and expensive [12], [14]. To this issue, several studies
have explored the utilization of available low-resolution LCM
products to achieve refined and accurate LCM results [1], [2],
[15], [16], [17]. Nevertheless, a significant challenge arises in
the form of potential classification errors present in public LCM
products and discrepancies in spatial resolution between these
products and the high-resolution RS data to be classified [4].

To overcome the above deficiencies, Zhang and Roy [30]
derived a continent-wide LCM at a spatial resolution of 30 m
by leveraging the 500-m MODIS LCM product. Lee et al. [31]
utilized an enhanced version of the Bayesian updating of land
cover method to fuse unsupervised Landsat classifications to
GlobCover2009, effectively enhancing the spatial resolution of
classification from 300 to 30 m. Moreover, the 10-m spatial
resolution FROM_GLC10 was obtained by a classifier trained
directly on the 30-m resolution freely accessible data [3]. Mean-
while, Schmitt et al. [32] provided a large-scale dataset fusing the
high-resolution (10 m) Sentinel-2 image data and low-resolution
(250 m–1 km) MODIS land cover products. The relative ex-
periment of CNN-based semantic segmentation revealed that
the resolution of the MODIS-derived LCM was effectively
enhanced, enabling the retrieval of more detailed information.
However, it should be noted that the studies mentioned above
directly train their models using imperfect low-resolution data
without explicitly addressing the negative impact caused by the
presence of significant noise. In general, classification accuracy
depends not only on the classifier but also on the quality of the
reference dataset [33].

Therefore, some studies utilized a small number of high-
quality samples to refine the classifier trained on imperfect
samples [34], [35], [36]. For instance, Hermosilla et al. [34]

produced annual LCM from the Landsat time series by training
the model on existing LCM products and refining it using lidar
data. Moreover, Maggiori et al. [35] addressed the issue of
imperfect training data by initializing the CNNs using many
potentially imperfect reference data and then refining the CNNs
using a smaller set of accurately annotated data. Besides, Robin-
son et al. [36] integrated a 30-m resolution publicly available
LCM product with 1-m resolution reliable labels to enhance
the generalization ability of the model and produced the first
1-m resolution LCM product of the contiguous US. In general,
annotating high-resolution label data is often challenging and
resource-intensive, significantly limiting the practical imple-
mentation of the abovementioned approaches.

Therefore, some studies attempted to utilize some noise-
robust methods for mitigating the impact of noise and enhancing
the accuracy of the LCM process [1], [25], [37], [38], [39]. For
instance, Schmitt et al. [37] explored the utilization of weakly
supervised learning strategies, by which valuable information
was extracted for accurate high-resolution LCM. Besides, Li
et al. [38] introduced four different high-resolution LCM meth-
ods using only low-resolution and noisy LCM products as
training labels, all awarded as winners of the DFC2021 Track
MSD. Remarkably, these methods involved different strategies,
including specialized architectures, multimodel fusion, semisu-
pervised learning approaches, etc. Subsequently, Li et al. [1] in-
troduced a low-to-high network (L2HNet) designed to generate a
high-resolution LCM based on high-resolution satellite data and
low-resolution LCM products across the entire state of Maryland
in the United States. L2HNet innovatively incorporated a DL
backbone to extract high-resolution features from satellite im-
agery. In addition, it devised a low-to-high (L2H) loss function to
acquire dependable supervised information from low-resolution
labels. Based on this framework, Li et al. [25] established the
first 1-m resolution national-scale LCM of China (SinoLC-1)
based on GE imagery and other open-access data. Moreover,
Huang et al. [39] adopted a simplified L2HNet (called SL2H in
this study) to produce the 1-m resolution LCM of Wuhan city
in China using high-resolution GE images and low-resolution
LCM products.

On the other hand, the solution that corrects noisy labels
at the training phase becomes a novel attempt for cross-
resolution LCM. For instance, Dong et al. [15] proposed a noise
correction method to rectify noisy samples based on the
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Fig. 1. Illustration of the study areas. (a) Location of two study areas. (b) Digital elevation model (DEM) maps of Beijing. (c) DEM maps of Shanghai.

predicted distribution of the CNN backbone. This proposed
method successfully generated a high-resolution (3 m) LCM
product using the high-resolution satellite data and a low-
resolution (10 m) LCM product in China. In addition, Liu
et al. [2] introduced a cross-resolution LCM framework to com-
plete accurate LCM of China with the 10-m spatial resolution
by taking the 30-m resolution historical product as the basis.
They introduced a conditional random field model to refine the
low-resolution reference labels.

III. STUDY AREA AND DATA

In this section, a comprehensive description is provided for
the experimental materials, including the study area as well as
the dataset.

A. Study Area

In this study, two study areas, i.e., Beijing and Shanghai, were
selected to perform the experiments, as shown in Fig. 1. Beijing
(39◦54′N, 116◦23′E), located in the northern region of the North
China Plain, serves as the capital city of China. It encompasses

a total area of 16 807.8 km2, with approximately 62% moun-
tainous terrain and 38% plains. It comprises 16 administrative
country-level subdivisions visually depicted in Fig. 1(b). As
of the year 2020, the population of the Beijing metropolitan
region was over 20 million. Moreover, Beijing is characterized
by a temperate continental climate strongly affected by the wet
monsoon. There are distinct seasonal variations, with shorter
spring and autumn seasons and relatively more prolonged winter
and summer seasons. The mean annual temperature hovers
around 10–12 °C in Beijing. The winter season is generally
dry and cold, owing to the penetration of the cold Siberian air
mass southward over the Mongolian Plateau. At the same time,
the summer is marked by hot and humid conditions caused by
warm and moist monsoon winds originating from the southeast.
The annual precipitation in Beijing is around 640 mm, with the
majority (60%–70%) occurring in July and August.

Shanghai (31◦12′N, 121◦30′E), located on the eastern coast
of China, occupies a prominent position in national and global
contexts. Shanghai boasts a vast urban expanse covering ap-
proximately 6340.5 km2. As one of the most populated cities
globally, the population of the Shanghai metropolitan region
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in 2020 was over 27 million, making it a bustling hub of cul-
tural diversity and economic activity. The municipal boundary
consists of 16 administrative country-level subdivisions visually
depicted in Fig. 1(c). Shanghai experiences a humid subtropical
climate, which is characterized by distinct seasons. Summers
are hot and humid, whereas winters are generally temperate
to cold and damp. The average annual temperature is 17.6 °C.
Precipitation is moderate throughout the year, with the heaviest
rainfall in summer. Shanghai’s terrain primarily comprises flat
coastal plains, and the few hills of the city lie to the southwest.
Shanghai boasts a wealth of rivers, canals, streams, and lakes,
making it renowned for its abundant water resources as an
integral part of the Lake Tai drainage basin.

B. Data and Preprocessing

1) Sentinel-1 Data: Synthetic aperture radar (SAR) im-
ageries offer considerable advantages, especially in adverse
meteorological conditions where acquiring optical data becomes
challenging. Unlike optical satellites, SAR satellites have the
capability to provide cloud-free images, making them a valuable
alternative in such situations. Numerous studies have demon-
strated that combining SAR data with optical data can improve
land cover classification results [40], [41], [42].

In this study, the Sentinel-1 data in interferometric wide-swath
mode was utilized. Specifically, the Sentinel-1 ground range
detected (GRD) data were collected from the GEE platform.
Each scene obtained from the GEE platform has undergone
preprocessing with the Sentinel-1 toolbox. This preprocessing
includes thermal noise removal, radiometric calibration, and
terrain correction to ensure the accuracy and suitability of the
data for further analysis. It should be noted that the Sentinel-1
GRD data on the GEE platform has been resampled to 10-m
spatial resolution.

Sentinel-1 data is available in two polarization channels:
vertical–vertical (VV) and vertical–horizontal (VH). Each polar-
ization channel provides valuable and specific information about
different land cover types [43]. Therefore, combining the VV and
VH polarization channels is expected to produce superior LCM
results compared with using either channel independently. In this
study, the backscatter amplitude for both VH and VV polariza-
tions served as the R and G channels for the Sentinel-1 satellite
data. As the B channel, a VH-to-VV amplitude ratio (cross-pol
ratio) was calculated [44]. This dataset is commonly referred
to as the RGB SAR dataset. The normalized channel values for
RGB SAR were scaled to (0, 255) to ensure compatibility with
the expected RGB pixel values [45].

2) Sentinel-2 Data: Sentinel-2 provides multispectral RS
imageries with high resolution for land monitoring, covering
various aspects such as vegetation, soil, water cover, coastal
areas, and emergency rescue services [46]. In this study, six
bands with a resolution of either 10 m or 20 m and three most
regularly used spectral indicators, i.e., the normalized differ-
ence vegetation index (NDVI) [47], enhanced vegetation index
(EVI) [48], and normalized difference water index (NDWI) [49],
were utilized as training data. The NDVI, EVI, and NDWI have
been frequently utilized in the task of LCM [50], [51], [52].

TABLE II
DESCRIPTION OF BANDS FOR THE SENTINEL-2 DATA USED IN THIS STUDY

In this study, Sentinel-2 satellite data were collected from
the GEE platform. Given the GEE platform lacks abundant
surface reflectance (SR) data, the study resorted to using top-
of-the-atmosphere (TOA) reflectance data as a substitute. The
Sentinel-2 TOA data on the GEE platform was meticulously cor-
rected radiometrically and geometrically [53]. Although TOA
reflectance is not as persuasive as SR data, earlier studies have
revealed that it is a suitable substitute for assessing land cover
and conducting further analysis without SR data [54].

The preprocessing of Sentinel-2 satellite data encompassed
several vital steps: clouds and shadow masks, indexes calcula-
tion, spatial resampling, and temporal aggregation. First, cloudy
observations were evaluated using the QA60 band, and then
corresponding cloudy and shaded pixels were removed. Then,
the three spectral indicators were calculated and integrated into
the Sentinel-2 data as additional bands. Furthermore, all the
bands were resampled to 10-m spatial resolution using bicubic
interpolation. This resampling step ensured consistency and
compatibility among the different input variables during further
analysis. Following these, cloud-free imagery for the study area
was created by calculating the median value of one-year satellite
data, thus, effectively addressing the spatial heterogeneity in the
observed data. Finally, single-composed satellite data with nine
potential features were acquired by preprocessing, as shown in
Table II.

3) Reference Data: The low-resolution (30 m) LCM product
for 2020 was obtained from the publication of Zhang et al. [4],
which was termed GLC_FCS30. This dataset was considered a
groundbreaking achievement as it marked the first global LCM
dataset with an exemplary classification system (total of 30
classes) comprising 16 comprehensive global land-cover types
and 14 additional detailed and regional land-cover types. As
the description in [4], the exemplary classification system of
GLC_FCS30 can be described with the GlobeLand30 [23] Level
0 classification system (nine land-cover types). For GLC_FCS30
data, the preprocessing mainly comprised resampling, repro-
jection, and reclassifying. To ensure consistency with satellite
data, the 30-m LCM production was resampled to a 10-m spatial
resolution and, then, reprojected to the World Geodetic System
1984. Referring to the similar study of Li et al. [1], we merged the
nine level-0 classes of the low-resolution LCM product into four
classes for conducting the quantitative assessment to demon-
strate the effectiveness of the CRNN framework, which was
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TABLE III
DEFINITIONS AND CODES OF LAND COVER TYPES USED IN THIS STUDY

Fig. 2. Illustration of the class imbalance of GLC_FCS30 data for Beijing
(BJ) and Shanghai (SH).

shown in Table III. It should be noted that the class “permanent
ice and snow” is absent within the study area and will not be
considered in the subsequent discussion.

To illustrate the class imbalance of GLC_FCS30, the number
of pixels in each class is shown in Fig. 2. It is worth noting that
class imbalance is inherent in the reference data of both study
areas. As for Beijing city, the low vegetation and tree canopy
are majority classes, but the water class is the minority class
with few training samples. However, due to the urbanization of
Shanghai, a few samples belong to the tree canopy class in the
reference data. Faced with this situation, the problem of class
imbalance should been considered during the design of the LCM
method for improving the accuracy of LCM products.

4) Validation Data: For evaluating the performance of differ-
ent methods, 3662 ground survey samples for Beijing and 1360
samples for Shanghai were obtained by visual interpretation of
high-resolution satellite imagery, as shown in Fig. 3. Meanwhile,
the numbers of annotated samples for different classes are also
listed. All the validation samples have been released at GitHub:
https://github.com/cugbrs/ValidationData_Beijing-Shanghai.

Moreover, we attempted to produce LCM products consis-
tent with the public high-resolution LCM products based on
available low-resolution LCM products. Therefore, the public
high-resolution LCM products were also selected as valida-
tion data to assess and compare the performance of various
LCM methods. Zanaga et al. [6] developed and validated the

first global LCM products, termed ESA10, for the years 2020
and 2021 at a high resolution of 10 m. Benefiting the pub-
lic of SinoLC-1 data [25], the satisfactory spatial resolution
(1 m) of LCM is available for evaluating the performance of
high-resolution LCM. Therefore, the ESA10 and the SinoLC-1
datasets can also be regarded as the reference data in this study.
As shown in Table III, the 11 classes of the ESA10 and the
SinoLC-1 were reclassified to four classes consistent with the
low-resolution training label data. It should be noted that the
class “snow and ice” is absent within the study area and will not
be considered in the subsequent discussion.

As publicly available products, ESA10 and SinoLC-1 data
contain partial classification errors. According to the valida-
tion results of [6] and [25], it is known that the ESA10 and
the SinoLC-1 achieved an overall accuracy (OA) of 75% and
73.61%, respectively. Therefore, we compare the consistency
of the classification results with these data only as an auxiliary
result to demonstrate the validity of the methodology proposed
in this study. Also discuss whether the method can generate
LCM results that are comparable with publicly available product
quality using only noisy labels.

IV. METHODOLOGY

A. Motivation

Assuming that each RS image X = {x1, x2, . . ., xn} has a
label map Y = {y1, y2, . . ., yn}, where xi is the ith pixel in
image X , and n represents the total number of pixels in a
single image, yi ∈ [C] represents the corresponding label of the
pixel xi, and C denotes the number of land cover types. Given
a training dataset D = {(Xk, Y k)}Nk=1, where N represents
the total number of training samples in the dataset. This study
attempts to develop a model that can predict the accurate label
Ŷ = {ŷ1, ŷ2, . . ., ŷn} of one image, and Ŷ = f(X, θ), where
f refers to the function of generating prediction from input
data.

B. Proposed Method

In the common segmentation task, U-Net, constructed with a
deep encoder–decoder structure, is widely used and has achieved
well-done segmentation performance [55], [56]. Inspired by the

https://github.com/cugbrs/ValidationData_Beijing-Shanghai
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Fig. 3. Distribution and numbers of ground survey samples. (a) Beijing. (b) Shanghai.

U-Net structure, a new simple semantic segmentation model
for land use mapping (called CRNN) was proposed in this
study, as shown in Fig. 4, which aims to preserve the deep
feature extraction capability while simultaneously retaining a
high output spatial resolution. This section provides a sequential
introduction to the CRNN framework, its key components, and
the loss function used for training the model. The proposed
CRNN framework is a trainable DL network for producing
high-resolution LCM results based on high-resolution satellite
imageries and available low-resolution labels.

1) Backbone Network: As shown in Fig. 4, the proposed
network can be partitioned into three distinct components: data
fusion, feature extraction, and attention module.

The data fusion module can extract abundant features from
multiple data and enhance the semantic information for classifi-
cation. In this module, the features of Sentinel-1 and Sentinel-2
data were extracted by 3 × 3 convolutional layer and a batch
normalization layer, respectively. Then, they were fused by
concatenation in depth dimension, as shown in Fig. 4(a).

The feature extraction module contains high-resolution and
deep feature extraction, as shown in Fig. 4(b). In the part of
high-resolution features extraction, the resolution of the feature
map remains constant to ensure consistency with the input high-
resolution image. This component involves extracting spatial
and spectral information through a series of 3 × 3 convolutional
layers, followed by batch normalization, and activation layers.
In the deep feature extraction part, the feature maps were scaled
down in resolution to extract deeper semantic information with
a larger receptive field and then scaled up in resolution to keep
the resolution consistent with the initial image, similar to the
encoder–decoder structure of the U-Net model. In this part, a
2 × 2 max pooling layer and a 2 × 2 average pooling layer were
utilized for downsampling simultaneously. Once the two pooling

operations were applied, we combined them through concate-
nation to produce a deep fusion feature, which has been ac-
knowledged as an effective method for feature concentration [1].
Within the part, a concatenation operation was performed with
the corresponding feature map from the same depth. This step
ensures the preservation of shallow features and facilitates the
application of residual learning techniques [57]. After these, the
feature maps generated by the high-resolution feature extraction
part and deep feature extraction part were concatenated. Then,
the concatenated feature was fused by applying a sequence of
3 × 3 convolutional layers, followed by the batch normalization
layer and activation layer. This process enables the integration
of different features for enhanced representation.

Following, an attention module was utilized to make the
network pay more attention to uncertain pixels, as shown in
Fig. 4(c). Class imbalance causes the problem that the model
tends to overfit the easily classified class, making it challenging
to learn the discriminative information from the hard classified
class [58]. Therefore, land cover types with fewer training sam-
ples are often challenging to learn adequately, resulting in lower
prediction probabilities. To overcome this problem, information
entropy was introduced in the attention module. Information
entropy is an index to measure the level of information clutter.
The specific and unitary information tends to have small entropy,
and the uncertain and chaotic information tends to have large
entropy. Therefore, information entropy can effectively guide
the selection of learned features before classification. That is,
the pixels with large entropy need to incorporate more semantic
features to improve the accuracy of classification, which can
mitigate the negative effect of imbalanced samples.

This attention module first used a 1 × 1 convolutional layer
(conv) to map the fused featureF = {f1, f2, . . ., fn} to different
categories, then normalized the results of the different categories
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Fig. 4. Structure of the proposed backbone network. (a) Data fusion. (b) Feature extraction. (c) Attention module.

to [0, 1] using the softmax function, i.e.

P = Softmax(conv(F )) (1)

P = {p1, p2, . . ., pn}, and pi ∈ [0, 1] represent the probability
of different class for ith pixel. Subsequently, the information
entropy of ith pixel ei was calculated based on (2), and the
result was used as the spatial attention weight

ei = −
C∑

j=1

pji log p
j
i . (2)

Finally, the feature was multiplied by the spatial attention weight
in a pointwise manner to generate the weighted feature, and the
fusion feature and weighted feature were fused by a pointwise
summation, as shown in the following:

Oi = fi + fi × ei. (3)

At the end of the CRNN, the classification probability was
obtained through a 1 × 1 convolutional layer.

2) Loss Function: Due to the challenge of obtaining ac-
curate supervision information from low-resolution labels for
high-resolution mapping results, the optimization criterion in
this task differs significantly from the conventional LCM task.
In particular, the coarse labels contain a significant number of
noisy samples due to the mismatch between high-resolution RS
data and low-resolution labels, along with the misidentification

of various land cover types for low-resolution LCM products.
Hence, the low-resolution LCM products cannot be considered
a reliable supervised source, as they may hinder the effective
training process of the network. Nevertheless, despite their
limitations, the coarse labels still exhibit a certain degree of
reliability in matching corresponding parts of high-resolution
imagery [3].

To this issue, a weakly supervised loss was employed to
identify and retain the reliable portions of the coarse labels.
This loss effectively alleviated the influence of noisy labels
during the model training process, enhancing the robustness and
accuracy of the network’s performance. First, the confident area
was calculated according to the input features since pixels of the
same class often have more similar feature information [1], [17].
Formally, the input features for pixel (i, j) can be represented
as Iij , where i ∈ [0, H] and j ∈ [0,W ], H and W represent the
height and width of each image, respectively.

Furthermore, due to the majority of the annotations in the
coarse labels being correct, we calculated the average vector of
input features Î(l) for each special class l in a minibatch, which
was regarded as the standard feature representation

Î(l) =
1

N (l)

H∑
i=1

W∑
j=1

Î
(l)
i,j (4)
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whereN (l) is the number of pixels for each special class l. Then,
the distanceS(l)

i,j between the standard vector Î(l) and the vectors

for each pixel I(l)i,j was calculated

S
(l)
i,j =

∥∥∥I(l)i,j − Î(l)
∥∥∥
2
. (5)

Finally, a threshold t(l), which was calculated by averaging
the distance values for specific class l, was utilized to obtain
a selective mask for the confident area (maskCA). It is crucial
to emphasize that the threshold used in this process is class-
conditional, thereby preventing difficult and rare classes from
being incorrectly identified as label noise. The abovementioned
processes can be represented as

t(l) =
1

N (l)

H∑
i=1

W∑
j=1

S
(l)
i,j (6)

maskCA =
{
(i, j)|S(l)

i,j < t(l)
}
. (7)

The reliability of the pixels included in the confident area is
sufficiently high, and the training loss could be calculated as

LW = −
H∑
i=1

W∑
j=1

[
y(i,j)∈maskCA

log ŷ(i,j)∈maskCA

+
(
1− y(i,j)∈maskCA

)
log

(
1− ŷ(i,j)∈maskCA

)]
(8)

Meanwhile, due to the coarse labels still containing partial
reliable semantic information, the original noisy label Y was
also incorporated for training purposes, and LN was formulated
as

LN = −
H∑
i=1

W∑
j=1

[y(i,j) log ŷ(i,j)

+
(
1− y(i,j)

)
log

(
1− ŷ(i,j)

)
]. (9)

Therefore, a joint loss function Ljoint was applied in this study,
and it could be expressed as

Ljoint = LW + αLN (10)

where α = 0.3 represents a hyperparameter that balances the
two loss terms during the training phase.

Previous research has demonstrated that DL models tend to
learn from simple and clean labels before adapting to label
noise [2]. Therefore, the traditional cross-entropy loss with all
coarse labels, i.e., LN , was used to warm up the model, after
which the model was trained using the joint loss Ljoint.

C. Experimental Settings

In this study, the high-resolution satellite imageries, the re-
sampled low-resolution reference data, and the ESA10 product
were all cropped into patches of 128 × 128 pixels with 20%
overlap. Moreover, we fused the satellite data and the resampled
low-resolution reference data to build the training datasets. The
high-quality ground truth samples and high-resolution LCM
products were utilized to validate the performance of different
models. The CRNN was first trained for 20 epochs at a fixed

learning rate of 0.01 with LN , after which the network was
trained for 80 epochs at a fixed learning rate of 0.001 with
Ljoint. The PyTorch framework was employed to train all the
networks, utilizing the AdamW optimizer. The algorithms were
executed on an NVIDIA GeForce RTX 2080Ti GPU for efficient
processing and computation.

D. Compared Methods

In this study, seven outstanding classification methods in the
task of LCM were chosen as comparison methods, i.e., SVM [7],
RF [9], U-Net [57], SegNet [60], NCLCM [15], L2HNet [1], and
SL2H [39]. SVM and RF, which are traditional machine learning
methods, are commonly used baseline models for RS due to their
capability to handle high-dimensional input variables [1], [17].

Ronneberger et al. [57] introduced a U-Net model with an
encoder–decoder architecture designed for biomedical image
segmentation tasks. The U-Net model enhances the reusability
of features in image segmentation tasks by utilizing the concate-
nation of multilevel feature maps with matching dimensions.
Numerous studies have proven that the U-Net model is efficient
in the task of LCM [10], [17], [59].

The SegNet model was introduced for semantic pixelwise
segmentation, whose distinctive feature lies in its approach to
upsampling the lower resolution input feature map(s) within the
decoder. In particular, the decoder leverages the pooling indices
obtained during the maxpooling step in the corresponding en-
coder for nonlinear upsampling, eliminating the need to explic-
itly learn the upsampling process [60]. Moreover, SegNet has
been widely utilized in RS image classification tasks [31], [61].

To obtain the high-resolution LCM based on low-resolution
and low-accuracy products, Dong et al. [15] proposed a noise
correction method, i.e., NCLCM, to rectify noisy samples based
on the predicted distribution of CNN backbone. This proposed
method successfully generated a high-resolution (3 m) LCM
product using the high-resolution satellite data and a low-
resolution (10 m) LCM product in China.

Moreover, to overcome the barrier of unmatching resolution
between satellite images and label data, Li et al. [1], [25]
introduced a novel network architecture called L2HNet to ob-
tain high-resolution LCM results automatically and produced a
national high-resolution LCM product. L2HNet accomplished
this without relying on accurate high-resolution annotated la-
bels during the large-scale land-cover map-updating process.
Besides, Huang et al. [39] adopted the SL2H method to produce
the 1-m resolution LCM covering Wuhan city of China based
on high-resolution satellite data.

E. Evaluated Metrics

To evaluate the LCM performance of various methods, OA,
mean producer accuracy (mPA), mean user accuracy (mUA),
mF1, and the mean intersection over union (mIoU), all of which
are commonly used in relative tasks, were selected to evaluate
the classification results derived by different methods in this
study. Assume that TP represents the true positive sample, TN
is the true negative sample, FP is the false positive sample, and
FN is the false negative sample. The formulas of the metrics
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Fig. 5. LCM of proposed CRNN methods in (a) Beijing and (b) Shanghai for the year 2020. A, B, and C are three regions of interest (ROI-A, ROI-B, and ROI-C)
for showing details in the following discussion.

mentioned above are shown as follows:

OA =
TP+TN

TP+TN+FP+FN
(11)

PA =
TP

TP+FN
(12)

UA =
TP

TP+FP
(13)

F1 =
2× PA × UA

PA + UA
(14)

IoU =
TP

TP+FP+FN
(15)

PA, UA, F1, and IoU were computed independently for each
class and then averaged to obtain the final value, i.e., mPA, mUA,
mF1, and mIoU.

V. RESULTS AND DISCUSSION

In this section, qualitative and quantitative analyses were
utilized to evaluate the performance of the proposed CRNN
framework. Moreover, a series of ablation experiments were
performed to prove the efficiency of the modules and settings of
the CRNN framework.

A. Qualitative Results

For the qualitative comparison, the LCM results of the CRNN
method in Beijing and Shanghai for 2020 are described in
Fig. 5. Based on Figs. 1(b) and 5(a), it can be observed that
impervious surfaces in Beijing are predominantly distributed
in the relatively flat central-southern and southeastern regions,
whereas the northern and western high-altitude areas are pri-
marily covered by vegetation. Moreover, impervious surfaces,
mainly found in urban residential areas, are often accompanied
by a significant amount of low-growing vegetation. As shown in
Figs. 1(c) and 5(b), Shanghai has a flat terrain, with the primary
land cover types being impervious surfaces and low vegetation.

The central urban area is characterized by dense buildings,
whereas small and medium-sized towns are scattered in the
suburbs. Agricultural land, bare land, and other low vegetation
are mainly distributed on the outskirts of the city. Overall, the
above findings are consistent with other studies [62], [63]. For
a detailed visual comparison of the results obtained by different
methods, we selected three regions of interest (ROI-A, ROI-B,
and ROI-C) to showcase the mapping results, as depicted in
Figs. 6–8, respectively.

As depicted in Figs. 6 and 7, ROI-A and ROI-B encom-
pass all land cover classes considered in this study, enabling
a comprehensive assessment of the classification performance
of different methods. Through the comparison of Figs. 6(f) and
(g) and 7(f) and (g), the classification results of two traditional
machine learning methods (SVM and RF) exhibit good capa-
bility in predicting roads; however, they encounter difficulties
in accurately predicting the distribution of water bodies and
small-scale impervious surfaces. Figs. 6(h) and (i), and 7(h)
and (i) illustrate the classification results of two classic DL
methods, i.e., U-Net and SegNet. The classification results of
U-Net and SegNet are rough and close to the low-resolution
labels. The results indicate that due to the influence of the
deep downsampling structure, these two methods struggle to
accurately depict finer road distributions or the course of rivers.
Meanwhile, in the subplot of Figs. 6(j) and (k), and 7(j) and
(k), the results of two cross-resolution LCM methods (NCLCM
and L2HNet) show the difficulty in distinguishing the classes
with limited samples, e.g., water. This result can be attributed
to the confident area selection of both methods based on whole
class samples rather than class-conditional, which leads to the
model neglecting the classes with limited samples. As shown in
Figs. 6(l) and 7(l), SL2H as a simple version of L2HNet without
the L2H loss shows the difficulty in recognizing fine features,
such as road.

As depicted in Figs. 6(m) and 7(m), the proposed
CRNN framework demonstrates its superiority in qualitative
comparison. First, leveraging the high-resolution semantic
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Fig. 6. Comparison of the classification results of different methods for ROI-A. (a) Sentinel-2 RGB imagery (R: Band 4; G: Band 3; B: Band 2). (b) Sentinel-1
false RGB imagery (R: VH; G: VV; B: VH/VV). (c) GLC_FCS30_2020. (d) ESA10_2020. (e) SinoLC-1. (f) SVM. (g) RF. (h) U-Net. (i) SegNet. (j) NCLCM. (k)
L2HNet. (l) SL2H. (m) CRNN.

backbone network, the mapping results maintain a high consis-
tency with the input images, thereby preserving more detailed
information about the land cover. Second, benefitting from the
attention module, the proposed method can somewhat alleviate
the issue of poor model classification performance caused by
imbalanced training samples. Thus, the water category could be
described better by the CRNN than most of the other methods.
Finally, weakly supervised learning can mitigate the impact of
noise in low-resolution labeled data, thereby obtaining classifi-
cation products that are more consistent with the input imagery
data. However, there is a substantial difference in the distribution
of tree class between the predicted map of CRNN and the ESA
product, while the distribution of CRNN maps is generally con-
sistent with SinoLC-1 maps [Figs. 6(e) and 7(e)]. This disparity
may be due to the lack of training samples for the tree class in the
training labels, i.e., the GLC_FCS30 dataset. In addition, it is
also possible that the ESA product contains some classification
errors. Nevertheless, based on low-resolution products, we have
generated high-resolution products that are generally consistent
with ESA10, proving the efficiency of the CRNN method and
providing reliable insights for practical production needs.

Fig. 8 displays the qualitative comparison of different methods
for a bridge spanning a river. As can be seen from Fig. 8(f) and
(g), although SVM and RF can calculate labels for each pixel

more detailedly, their classification accuracy was not satisfac-
tory due to the influence of noisy labels. For example, SVM
misclassified water as low vegetation, whereas RF misclassified
the bridge as low vegetation. As shown in Fig. 8(h)–(l), the
five DL methods struggled to distinguish smaller land objects
accurately because of the limited capability for high-resolution
feature extraction or learning from noisy labels. Notably, CRNN
outperformed two traditional machine learning methods and
gave comparable results with five DL methods.

In summary, the two traditional machine learning methods
appear to have accurate predictions for fine details such as roads.
However, they exhibit weak discriminative power for confusable
land cover types, such as water bodies. On the other hand, the
two classic DL segmentation models are susceptible to network
structure and noisy labels, often leading to a loss of detailed
information in the prediction results. Although the NCLCM
and L2HNet methods can partially mitigate the impact of noisy
labels, their ability to handle imbalanced samples is limited
due to the lack of consideration for small-sample categories.
SL2H makes obtaining accurate LCM based on low-resolution
training labels challenging due to the lack of noise-robust loss
function. The proposed CRNN method demonstrates a balanced
performance compared with other methods, producing mapping
results that showcase both accurate land cover classification and
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Fig. 7. Comparison of the classification results of different methods for ROI-B. (a) Sentinel-2 RGB imagery (R: Band 4; G: Band 3; B: Band 2). (b) Sentinel-1
false RGB imagery (R: VH; G: VV; B: VH/VV). (c) GLC_FCS30_2020. (d) ESA10_2020. (e) SinoLC-1. (f) SVM. (g) RF. (h) U-Net. (i) SegNet. (j) NCLCM.
(k) L2HNet. (l) SL2H. (m) CRNN.

precise detail information, which may stem from the advantage
of the attention module and the weakly supervised loss function.

B. Quantitative Results

During the quantitative comparison, all metrics were cal-
culated based on the ground survey samples and the ESA10
datasets, respectively. The pixelwise OA, mPA, mUA,mF1, and
mIoU of different methods are represented in Tables IV and V.
Due to the SinoLC-1 data was developed by the L2HNet method,
SinoLC-1 was only used for qualitative comparisons.

As shown in Table IV, two traditional machine learning
methods (SVM and RF) obtained unsatisfactory performance
compared with most DL methods. Specifically, they obtained
about 76.09% and 67.79% for the average values of OA for
Beijing and Shanghai, respectively, indicating that these two
methods are unsuitable for the cross-resolution LCM task. For
two classical DL methods (U-Net and SegNet), the improvement
of OA was significant, with an increase of about 3.54% in
OA for Beijing and about 3.76% for Shanghai, which may be

attributed to the powerful feature learning capability of DL mod-
els. However, due to the impact of noisy labels and imbalanced
samples, these two simple segmentation models struggled to ac-
curately classify small-sample land cover types, leading to lower
mIoU value (about 69.74% and 49.43% for the average values
of mIoU for Beijing and Shanghai, respectively). Commonly,
deep encoder–decoder semantic networks tend to excessively
down-sample the feature maps, thereby, promoting consistency
with low-resolution LCM labels. As a result, these semantic
methods may not be well-suited for accurately mapping intricate
land-cover details when confronted with a substantial number
of incorrectly labeled samples. As for NCLCM and L2HNet,
benefiting the series L2H classification module, its prediction
obtained satisfactory OA results, averaging 81.09% for Bei-
jing and 73.02% for Shanghai. However, due to NCLCM and
L2HNet using the same threshold for all land cover types when
calculating confident areas, both methods were susceptible to
the influence of imbalanced samples, resulting in poorer mUA
values (about an average of 85.33% for Beijing and 58.97%
for Shanghai). Compared with L2HNet, SL2H yielded poorer
classification performance (81.19% OA for Beijing and 73.29%
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Fig. 8. Comparison of the classification results of different methods for ROI-C. (a) Sentinel-2 RGB imagery (R: Band 4; G: Band 3; B: Band 2). (b) Sentinel-1
false RGB imagery (R: VH; G: VV; B: VH/VV). (c) GLC_FCS30_2020. (d) ESA10_2020. (e) SinoLC-1. (f) SVM. (g) RF. (h) U-Net. (i) SegNet. (j) NCLCM.
(k) L2HNet. (l) SL2H. (m) CRNN.

TABLE IV
QUANTITATIVE RESULTS OF THE COMPARISON METHODS AND THE PROPOSED FRAMEWORK BASED ON THE GROUND SURVEY SAMPLES

OA for Shanghai) because of the lack of noise-robust L2H
loss. The proposed CRNN method generally demonstrated a
well-balanced performance compared with the other methods
and achieved the highest OA, mF1 scores, and mIoU. As dis-
played in Table IV, the CRNN method achieved 82.72% OA
and 74.55% mIoU for Beijing city and 74.26% OA and 54.35%
mIoU for Shanghai City, representing an improvement of around
0.73%–8.88% in OA and 1.46%–17.56% in mIoU compared
with baseline methods.

Moreover, it can be seen from Table V that CRNN also
obtained superior performance compared with baseline methods

when the ESA10 was regarded as validation data. In particular,
CRNN achieved the best OA compared with other methods,
with an increase of an average of 1.73% and 2.37% for Bei-
jing and Shanghai, respectively. Therefore, it proved that the
classification results of CRNN are consistent basically with the
existing high-resolution LCM product, indicating the proposed
framework is able to produce high-quality LCM product based
on available low-resolution LCM products rather than numerous
field survey samples.

To further discuss the LCM performance of various meth-
ods for different categories, taking Beijing as an example, we
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TABLE V
QUANTITATIVE RESULTS OF THE COMPARISON METHODS AND THE PROPOSED FRAMEWORK BASED ON ESA10

Fig. 9. Heatmaps of F1 and IoU for Beijing. Horizontal axis represents different methods, and the vertical axis represents different land cover types.

exhibited the F1 heatmap and IoU heatmap of all the methods
for the four land cover types in Fig. 9. It can be observed that the
SVM and RF showed poorer and more unbalanced classification
performance compared with four DL-based methods, with lower
F1 and IoU for most of the classes. Remarkably, the improve-
ment of six DL-based methods in F1 and IoU for tree canopy
and water classes was particularly noticeable, with an increase
of about 8%–26% in F1 and 12%–32% in IoU, respectively.
Moreover, the CRNN method exhibited a well-balanced per-
formance compared with other methods. It achieved robust and
satisfactory results for each class, with the highest F1 and IoU
scores on low vegetation and tree canopy. This result demon-
strates the superiority of the CRNN method, which benefits
from the attention module. This module pays more attention
to the uncertain pixels and improves the classification accuracy
of the CRNN method. Furthermore, it can be noticed that low
vegetation is the most challenging class to be recognized by the
models. This result may be due to the fact that low vegetation
consists of more different land cover types and introduces more
complex information, which can confuse the models.

In summary, the comparison methods were unable to achieve
the desired accuracy for LCM due to the challenges posed

by imbalanced and noisy labels. SVM and RF, two traditional
machine learning methods, obtained the low OA suffering from
the imperfect training label. U-Net and SegNet, two deep se-
mantic segmentation networks, tended to be consistent with the
distribution of the original label and were relatively unsuitable
for the accuracy mapping based on noisy training samples.
Furthermore, NCLCM and L2HNet acquired poorer classifica-
tion results, possibly due to the impact of imbalanced samples.
Besides, it is difficult for the SL2H method to alleviate the impact
of noisy samples in low-resolution LCM products due to the
lack of noise-robust loss function. The proposed CRNN method
achieved the best OA, mF1 scores, and mIoU. This may be
because the model considers high-resolution detail representa-
tion and the impact of imbalanced samples and mitigates the
influence of noisy labels through a loss function.

C. Ablation Experiments

To verify whether the proposed CRNN framework and cor-
responding modules are effective for the LCM process, sev-
eral ablation experiments were performed for both study areas.
We demonstrated the quantitative and qualitative results of the
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TABLE VI
QUANTITATIVE RESULTS OF ABLATION EXPERIMENTS

Fig. 10. Comparison of the classification results of ablation experiments for Beijing. (a) Sentinel-2 RGB imagery, (b) Sentinel-1 false RGB imagery.
(c) GLC_FCS30_2020. (d) ESA10_2020. (e) CRNN0. (f) CRNNAT . (g) CRNNWL. (h) CRNNS2. (i) CRNN.

CRNN framework trained with various settings, respectively.
The definition of different models is as follows:

CRNN0: Backbone model trained with CrossEntropy loss,
i.e., CRNN without attention module, and the weakly supervised
loss function.

CRNNAT : Backbone model with attention module and
CrossEntropy loss, i.e., CRNN without the weakly supervised
loss.

CRNNWL: Backbone model with the weakly supervised loss,
i.e., CRNN without attention module.

CRNNS2: Our proposed model with single Sentinel-2 data,
i.e., CRNN without data fusion.

CRNN: Our proposed model.

The quantitative results of the ablation experiments are shown
in Table VI, and the qualitative results are shown in Figs. 10 and
11.

From the results shown in Table VI, CRNN0 obtained ac-
ceptable quantitative results with 76.34% and 71.34% OA for
Beijing and Shanghai, respectively, which indicated that the
proposed backbone model could extract enough discriminat-
ing information and acquire accurate mapping results based
on coarse label. Furthermore, the CRNNAT obtained more
incredible classification results than CRNN0 with an average of
2.34% increase in OA for both study areas because the attention
module can pay more attention to unreliable pixels and, then,
improve the whole classification accuracy. From the quantitative
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Fig. 11. Comparison of the classification results of ablation experiments for Shanghai. (a) Sentinel-2 RGB imagery, (b) Sentinel-1 false RGB imagery.
(c) GLC_FCS30_2020. (d) ESA10_2020. (e) CRNN0. (f) CRNNAT . (g) CRNNWL. (h) CRNNS2. (i) CRNN.

results, when the backbone model was trained with a weakly
supervised loss, CRNNWL was more difficulty misguided by the
coarse labels and acquired better classification results compared
with the results of CRNN0, with an increase of an average of
2.19% in OA. Moreover, CRNN showed the best overall results,
benefiting from applying both the attention module and weakly
supervised loss function. Without a data fusion module, that
is, only Sentinle-2 data was utilized to train the CRNN, the
CRNNS2 produced lower quantitative results than CRNN, with
a decrease of an average of 3.00% in OA and 3.84% in mIoU,
proving that multiple satellite data fusion benefits the feature
extraction and land-cover classification.

As for the qualitative results, when the attention module was
trained in the CRNN framework, the result of CRNNAT shown
in Fig. 10(f) more easily identified the class with fewer training
samples, such as the water class, compared with the result of
CRNN0 shown in Fig. 10(e). This also proved that the attention
module is efficient for improving the classification performance
of the model trained on imbalanced samples. Meanwhile, as can
be seen from Fig. 10(e) and (g), it is evident that CRNNWL could
discern more successive roads than CRNN0, which benefits
from the weakly supervised learning strategy. However, the
absence of the attention module in CRNNWL caused difficulty
in identifying the water class for the CRNNWL model, further
showing the superiority of the attention module. Besides, as
shown in Fig. 10(h), the mapping result of CRNNS2 heavily
misclassified the low vegetation as impervious because of the
lack of Sentinel-1 features, which contain more discerning fea-
ture information about the impervious class. Similarly, as shown

in Fig. 11, the CRNN method acquired satisfactory results in
accurately portraying the water and impervious classes.

In general, the results of ablation experiments indicate that the
CRNN framework is effective in high-resolution LCM tasks,
and the various settings employed in the CRNN model are
reasonably designed. This model and its settings effectively uti-
lize reliable information from low-resolution labels, producing
accurate and stable high-resolution land cover maps.

VI. CONCLUSION

With the increasing availability of high-resolution satellite
data, the demand for high-resolution LCM has become im-
perative and urgent. However, generating accurate and current
high-resolution land cover maps remains challenging, primarily
due to the substantial requirement of high-resolution labels in
traditional supervised methods. To overcome this challenge, this
study presents a novel CNN-based framework, termed CRNN,
specifically designed to produce high-resolution land cover
maps using only low-resolution LCM products as training labels.
The qualitative and quantitative results showcase the superiority
of the CRNN method over several state-of-the-art approaches in
classification performance. Moreover, the ablation study reveals
that each module of the CRNN framework can effectively exploit
the coarse labels to supervise the training process more rea-
sonably. In addition, leveraging the CRNN framework, a 10-m
resolution land cover map for Beijing and Shanghai is generated
by utilizing 30-m resolution LCM products as training labels.
Furthermore, as a compelling application, CRNN demonstrates
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its potential in reusing existing data products, contributing to
the advancement of sustainable development goals in the field
of LCM.
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