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Multiscale Feature Reconstruction and Interclass
Attention Weighting for Land Cover Classification
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Abstract—Land cover classification has the goal to attribute each
pixel of high-resolution remoste sensing image with planimetric
category labels (such as vegetation, building, and water). In re-
cent years, many serial deep-learning architectures (features are
delivered through a single path, such as in ResNet, MobileNet, and
Segformer) based on convolutional neural networks and attention
mechanisms have been widely explored in land cover classifica-
tion. However, high-resolution remote sensing images typically
have abundant textual details, variable scales in objects, large
intraclass variance, and similar interclass correlation, which bring
challenges to land cover classification. In this work, we present two
pluggable modules to further boost serial learning architecture:
first, to cope with ambiguous boundaries caused by lost details
and fragmented segmentation stemmed from scale variances, a
combination of spatial attention and channel attention is proposed
for multiscale feature reconstruction (MSFR); second, to mitigate
the classification error caused by intraclass variance and interclass
correlation, we explore an interclass attention weighting (ICAW)
module, which builds feature vectors for each category, and applies
a multihead attention model to capture self-attention dependence
among different categories. The experimental results demonstrate
that the proposed modules are feasible to the existing serial learning
architectures and can improve overall accuracy (OA) by 5.64% on
the ISPRS Vaihingen two-dimensional dataset (using ResNet50 as
a backbone); in particular, the OA values are 80.68% and 86.32%
before and after using the proposed modules, respectively. In ad-
dition, compared with other state-of-the-art models, our method
can achieve similar or even better classification results, yet offer
superior inference performance.

Index Terms—Interclass attention, land cover classification,
multiscale feature reconstruction (MSFR), remote sensing image,
semantic segmentation.

I. INTRODUCTION

A S A significant component of remote sensing image inter-
pretation, land cover classification aims to parse each pixel

into meaningful category labels [1], [2], [3]. In the early times,
land cover classification was explored by index-based methods,
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Fig. 1. Qualitative illustration of several limitations in serial learning networks
for land cover classification (this result is generated by using backbone of
ResNet50 on ISPRS Vaihingen dataset).

such as normalized vegetation index (normalized difference veg-
etation index) [4] and built-up area presence index PanTex [5].
Later, traditional machine learning algorithms, such as wavelet
transform [6], superpixels [7], [8], support vector machine [9],
random forest [10], [11], [12], and Mahalanobis distance [13],
were widely studied and applied for substantial classification
performance in terms of robustness and overall accuracy [14],
[15]. Over the last years, remote sensing images can be easily
obtained by various sensors equipped in satellites, aircraft, and
unmanned aircraft vehicles [16], [17], [18], and these images
have been dramatically improved in terms of resolution and the
ability of observing larger areas, which pose challenges for the
mentioned traditional machine learning algorithms to deal with
remote sensing images with rich details, contextual textures,
variable intraclass differences, and similar interclass features
[19]. On the other hand, convolutional neural networks (CNNs)
and multilayer perceptron (MLP) have shown superiority on land
cover classification for high-resolution remote sensing images
[20], [21], [22]. And thanks to the remarkable achievements of
semantic segmentation methods in computer vision, variants of
fully convolutional neural networks (FCNs) based on encoder–
decoder architectures have become mainstream for land cover
classification [24], [25], [26].

Ample CNN variants have been studied to solve the task
of land cover classification by taking high-resolution remote
sensing images as input, such as these serial networks of the
authors in [27], [28], [29], and [30]. However, there are still
several issues that remain to be addressed, one of them is
fragmented segmentation caused by scale variance of objects in
high-resolution remote sensing images, as shown in Fig. 1(b). In
CNN-based methods, the feature maps from the high-resolution
layers typically have good focus on the tiny objects but observe
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large objects partly because of the smaller receptive fields,
while low-resolution feature maps with larger receptive fields
ignore details and have difficulties to identify adjacent objects
in tiny sizes [19]. Another limitation by CNN methods is the
lost details caused by downsampling operations in the encoding
stages [2], [3], which negatively affects the classification of
small objects as well as edges [32] [shown by Fig. 1(a)]. In
addition, the intraclass differences of the same objects [36]
and the interclass correlation between different objects are not
fully explored by most existing deep-learning-based methods,
leading to erroneous classification on corresponding objects.
For example, the phenomenon of “same object with different
spectra” and “same spectrum with different objects” causes
serious ambiguous classification between impervious surface
and building in Fig. 1(c). To reduce erroneous classification
caused by intraclass differences, Yuan et al. [36] propose the
object-contextual representations (OCRs) model; however, the
issue caused by interclass correlations remains unsolved.

To cope with the mentioned limitations, based on serial learn-
ing networks (ResNet [38] for example) whose features are
consecutively encoded from the high-resolution feature maps
to the low-resolution feature maps through a single path, we
proposed two corresponding pluggable modules: first, to take
care of both multiscale variance and lost details, we propose a
multiscale feature reconstruction (MSFR) module consisting of
two models. More specifically, our previous position-sensitive
attention (PSA) [3] model is run on the highest resolution
feature maps, which are more sensitive to local edges; then,
a new multiscale channel attention (MCA) is further applied
to reconstruct multiscale feature representation for the lower
resolution features. Second, to cope with erroneous classification
caused by intraclass differences and interclass correlations, we
present an interclass attention weighting (ICAW) module; it
first generates feature vectors for each category and applies the
multihead attention mechanism from transformer [39], [40] to
investigate a weighted fusion of interclass distances based on
per-class feature vectors. In summary, the contributions of this
work are given as follows.

1) We present two pluggable modules for improving serial
learning architecture on land cover classification.

2) A simple yet effective MSFR architecture is proposed to
take care of multiscale variance and lost details.

3) Inspired by the OCR model, an ICAW architecture is
designed to generate category-level features for improving
land cover classification.

The rest of this article is organized as follows. Related works
are reviewed in Section II. The details of our methods are
illustrated in Section III. The performance of our works on
different datasets and the corresponding ablation experiments
are reported in Section IV. Finally, Section V concludes this
article.

II. RELATED WORK

In this section, we briefly review some studies for land cover
classification, which are relevant to our works in terms of multi-
scale feature learning, recovering lost details, and segmentation
considering regional context.

A. Multiscale Feature Learning

The scale variance of planimetric features is very common
in high-resolution remote sensing images and brings difficulty
for segmentation models to estimate features appropriately [19].
One frequently used solution is to extract multiscale feature,
which perform elementwise addition or channelwise concatena-
tion on the feature maps generated by each layer from encoder
[1], [2], [24], [31]. Multiscale feature fusion based on channel-
wise concatenation and elementwise addition is an idiomatic
approach to enhance feature stability against scale variance
[24], [31] in which channelwise concatenation can preserve
multiscale features and perform convolution aggregation via
training, while elementwise addition can effectively reduce the
cost of parameters and computations. However, the insufficient
semantic information of large objects at high-resolution feature
maps may lead to ambiguous prediction.

Different from multiscale feature fusion using a direct skip
connection between encoder and decoder, parallel pyramid ar-
chitectures expand the receptive field and fuse multiscale con-
textual information systematically. For example, pyramid scene
parsing net obtains multiple receptive fields by convolutional
kernels of different sizes [41], and atrous spatial pyramid pooling
applies different dilation rates [20]. In addition, Zheng et al. [19]
apply asymmetric receptive fields to build the large kernel
pyramid pooling, which is able to capture multiscale correlation
between long-range features [42], avoiding the large number of
parameters caused by large kernel convolution and “gridding
issue” caused by dilated convolutions.

Thanks to the fact that the transformer is able to capture
long-range dependencies, Swin transformer (SwinT) [43] uses
the shifted window strategy to estimate the self-attention within
nonoverlapping local windows and dependency connections
across windows from different scales. Taking the superiority
of transformer, Segformer [44] applies a hybrid architecture to
improve the representation of multiscale features; UNetformer
[45] improves the conventional UNet by integrating global–local
transformer block and weighted sum in the decoder part; and
Gao et al. [46] use self-attention to adaptively fusion features
extracted from various scales. Instead of improving the network
structure, Tao et al. [47] feed images with various resolutions into
a constant backbone to obtain multiscale features and perform
hierarchical multiscale attention for feature fusion. Although
the hierarchical multiscale attention can adaptively integrate
dominant features at each scale, the reusing of backbone leads
to a relatively high computational cost.

In this work, we design a new architecture to reconstruct
multiscale features for serial learning networks in which the
attention mechanism is modified on different channels with an
effective model.

B. Details Refinement

The efficacy of CNN methods in integrating local texture
features has been proved [20]. However, in general, these net-
works become less sensitive to geometric features when pooling
and convolution operations impede the integrity of boundary
information, resulting in ambiguous classification of adjacent
categories [19]. To recover lost details, one strategy is to use
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dilated convolutions [32] or convolutions with a stride of 2 so as
to avoid pooling operations. Other solutions are to reintroduce
some details [31], [34] or revise the edges directly from the
classification results [32], [35].

In order to refine details after downsampling, UNet [31] uses
skip connections to reintroduce details from encoder, while
SegNet [25] tends to reconstruct details with the benefit of decon-
volutions. In addition, based on parallel learning architecture,
HRNet [48] exchanges features continuously on multiresolution
layers to preserve details. Some works try to refine lost details
via postprocessing; the conditional random field model [35]
calculates the relationship among pixels and formulates the best
classification for boundaries by posterior probability; adaptive
affinity fields [17], [49] build a collection of pixel-centric re-
lations and learns the optimal boundary structures adaptively;
SegFix [50] constructs a distance map and a direction map to
improve segmentation in boundary areas. Another direction for
refining details is to combine subnetworks of edge detection
as multitask learning, for example, Yu et al. [51] apply the
same encoder and different decoders to evaluate the loss of edge
detection and semantic segmentation simultaneously. ScasNet
[52] cascades edge detection branches to correct edge fitting
residuals. Zheng et al. [19] deploy image-level dice loss to im-
prove the sensitivity of the network to the geometric boundaries
of objects. Ding et al. [53] employ transformer and propose a
wide-context network for extracting features from both local
and global image levels, which can benefit prediction with more
details.

In general, the strategies of reintroducing details also deliver
ambiguous features [42], postprocessing methods rely on coarse
segmentation results, and subnetworks of edge detection in-
crease the computation cost and require ground truth of boundary
for loss evaluation. Based on our previous work on PSA model
[3], we incorporate PSA model into high-resolution details
refinement as a part of our MSFR architecture, which deals with
the multiscale feature and lost details at the same time.

C. Regionwise Segmentation

Contextual information around the local region where each
pixel is located is vital for land cover classification. Caesar
et al. [54] propose a free-form pooling layer for region-of-
interest (RoI), which in particular takes the representations of
the effective pixels in the region into account. Based on the
discriminative regions learned by CNNs on the task of image
classification, Wei et al. [55] improve an adversarial erasing
approach for regionwise segmentation progressively. Based on
the predetected RoI, Ye et al. [56] propose a semantic relation
learning module, which has two paths incorporated with bot-
tleneck structures and skip connections. In order to improve
the efficiency of regional representation aggregated by regular
receptive fields, Fu et al. [57] propose dual attention to weight
regional representations, and Dai et al. [37] apply the deformable
convolution to construct adaptive receptive field that is con-
sistent with objects inside the region. Tang et al..[22] propose
a hybrid solution via combining the traditional segmentation
method and MLP, which clusters similar pixels into superpixels

Fig. 2. Overall architecture of the proposed model. PSA means our spatial
attention, MCA is the channel attention, numbers 1–4 in blue circles represent
different resolution layers from encoder and numbers in green circles denote
different resolution layers from decoder. H denotes the height, W denotes
the width, C denotes the number of channels, and K denotes the number of
categories.

and identifies them with a classifier trained via MLP. Moreover,
Yuan et al. [36] propose the OCR model as well as Zhang
et al. [58] propose attentional class feature network (ACFNet) to
generate per-class feature vectors instead of fragmented regional
features, which is supposed to address the issue caused by in-
traclass differences. However, the problem caused by interclass
correlations remains unsolved.

In this article, we improve the per-class feature vector gen-
eration in the same way as in the OCR model and ACFNet
with ICAW, which is expected to reduce erroneous classification
caused by interclass correlations.

III. METHODOLOGY

In this section, we illustrate our framework for land cover
classification in detail to address the problems of object scale
variance, lost details, ambiguous classification caused by intr-
aclass differences, and interclass correlation. In particular, two
pluggable modules composed of the MSFR architecture and the
ICAW architecture will be explained.

A. Overview of Our Architecture

The workflow of our method is shown in Fig. 2. It mainly
consists of two parts, in which the first part is for MSFR and the
second part is to perform ICAW. The MSFR architecture takes
an image as input and outputs a quarter-sized feature map, which
will act as the input for the ICAW architecture. MSFR can be
deployed in different serial encoder and decoder structures in
which we generate the PSA with the feature maps from encoder
at the highest resolution (number 1 in blue circle) [3] and the
MCA at the rest two resolutions (numbers 2 and 3 in blue circles).
Based on PSA and MCA, we weigh the corresponding feature
maps from the decoder to provide multiscale information with
expectation of recovering more details. ICAW generates feature
vectors for each category and applies the multihead attention
mechanism [39] for weighting interclass correlation. Analogous
to the OCR model [36], ICAW is only activated when network
is training, providing an auxiliary loss. With the help of ICAW,
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Fig. 3. Example for feature map visualizations in ResNet50. The input images
contain NIR, red, and green bands, and we use pink, red, green, yellow, and blue
to represent the corresponding ground truth categories. a, b, and c denote the
visual feature maps extracted from different layers, and we upsample them to
the same size as the input image (i.e., 512× 512). The visualization strategy is to
build a pseudocolor map with the corresponding response peaks on the channel
dimension for each pixel, and the color is warmer where the response is higher.

guidance for object-level feature learning is supposed to be
provided. In the following sections, more details of both modules
are introduced.

B. Multiscale Feature Reconstruction

In order to mitigate the poor impact of object scale variance,
we propose the MSFR architecture, whose detail is illustrated
in this section.

1) Qualitative Analysis of CNN Feature Maps With Various
Resolutions: First of all, we investigate the architecture of serial
learning networks and explore the extraction of feature maps
(ResNet50 for example). As shown in Fig. 3, high-resolution
(one-quarter of the original image size) feature maps are always
extracted from the starting layers and then downsampled and
convolved, resulting in lower resolution feature maps. In other
words, features are always delivered from the high-resolution
feature maps to the low-resolution feature maps, and it is sup-
posed to be able to find multiscale features on various resolution
feature maps, which provides the possibility to gradually recon-
struct multiscale features. Meanwhile, details are gradually lost
during downsampling, and this means that the highest resolution
feature maps contain more abundant details (as shown in Fig. 3,
the corresponding response peaks on channel dimension are
visualized). Therefore, lost details can also be refined in the
MSFR architecture as a part of the highest resolution features.

In Fig. 3, feature map b shows both clear boundaries and
low detail redundancy inside objects, which might be the best
candidate for generating PSA. Similar visualization results of
feature maps can be found in other serial learning networks as
well.

2) Position-Sensitive Attention: To refine spatial details, we
apply the PSA module [3] to generate spatial attention, which
contributes to the reconstruction of the highest spatial resolution
features (feature map b in Fig. 3). Two 3 × 3 convolutions are
used to aggregate local context without changing the number of

Fig. 4. Workflow of attention generation for PSA module, where x◦
1 presents

the feature map, f is 3 × 3 convolution, g is 1 × 1 convolution, Sig means
Sigmoid activation function, and W is the attention.

Fig. 5. Workflow of attention generation for the MCA module. x◦ and x
present the corresponding feature maps from encoder and decoder, while Gap
denotes the 3× 3 convolution, l is the 1× 1 convolution, Sig denotes the Sigmoid
activation function, and ⊕ is the elementwise addition.

channels, and then the 1× 1 convolution is deployed to compress
the middle result into one channel. As shown in Fig. 4, the
Sigmoid activation function is inserted in the end to normalize
the values within the range of [0, 1]. With this structure, we
are able to assign a weight to each spatial element. According
to the visualization in Fig. 3, the highest spatial resolution
features contain abundant details around boundaries; thus, the
PSA model generated by these features is expected to boost the
representations near the boundary areas.

We can formulate the PSA module as follows:

PSA = ϕp (x◦
1 ) = Sigmoid (x◦

1 ⊗ f ⊗ f ⊗ g) (1)

where x◦
1 represents the feature map for attention generation,

while f denotes the 3× 3 convolution, g is the 1× 1 convolution,
Sigmoid means the Sigmoid activation function, ϕp denotes the
generation for PSA, and ⊗ denotes the convolution operation.

3) Multiscale Channel Attention: To obtain an effective inte-
gration of dominant features from various scales, we propose the
MCA module to estimate two-channel attentions, improving the
low-resolution features integration. For two lower spatial resolu-
tion maps, we add two corresponding feature maps from encoder
and decoder, and then global pooling contributes to the global
context for each dimension together with linear transformation.
Finally, the Sigmoid activation function is applied for ranging
the value between 0 and 1, as shown in Fig. 5. Similar to the
SE attention [59], the MCA module explores more expressive
feature dimensions. By applying the MCA module, we assign
a weight to each dimension for selecting more representative
features globally.

The MCA module is formulated as follows:

MCA = ϕm (x, x◦) = Sigmoid (Gap (x+ x◦)⊗ l) (2)

where ϕm denotes the attention generation for MCA, ⊗ is the
convolution operation, and + is the elementwise addition.

4) Attention Integration: As shown in Fig. 6, we integrate
the above two kinds of attention into the corresponding feature
maps from decoder. Specifically, the integration for the MCA
module is performed by progressively upsampling, and for the
PSA module, we upsample the lowest resolution feature map
(generated by encoder) directly to the highest resolution for
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Fig. 6. Workflow of attention integration for the PSA module and the MCA
module, whereby numbers in blue circles and green circles mean different
resolution layers from encoder and decoder, the same as Fig. 2.

integration. During each integration, we expand the attention
to the same size as the corresponding feature map and then
perform the elementwise multiplication between them to get a
weighted feature map. Eventually, we apply the elementwise
addition between the original feature map and the weighted
feature map, enhancing multiscale dominant features without
losing information or increasing ambiguous information.

We formulate the attention integration in the MSFR module
as follows:

x̂1 = ωp (x1, x
′
1, x

◦
1 ) = x1 + x′

1

· PSA = x1 + x′
1 · ϕp (x

◦
1 )

x̂i = ωm (xi, x
◦
i ) = xi + xi

·MCA = xi + xi · ϕm (xi, x
◦
i )

x◦
i−1 = up (x◦

i ) , i ∈ {2, 3} (3)

where x1 is the feature map with the largest size from decoder
(green circle 1 in Fig. 6), x′

1 is the result with the corresponding
resolution upsampled from the input feature map of decoder
(blue circle 4 in Fig. 6), x◦

1 is the corresponding feature map
from encoder (blue circle 1 in Fig. 6), x̂1 is the highest resolution
feature map integrated by PSA, ωp is the attention integration of
PSA,ϕp is the attention generation of PSA,+ is the elementwise
addition, and · is the elementwise multiplication; xi denotes the
low-resolution feature maps from decoder (green circles 2 and 3
in Fig. 6, i means the number for different layer), x◦

i represents
the corresponding feature maps form encoder (blue circles 2
and 3 in Fig. 6), x̂i are the feature maps integrated by MCA,
ωm is the attention integration of MCA, ϕm is the attention
generation of MCA, up denotes the upsampling unit composed
of convolution, batch normalization, ReLU activation function,
and bilinear interpolation.

Assigning each pixel with a corresponding weight on the
space, the spatial attention is supposed to have a good preser-
vation of geometrical information, and this is important for the
refinement of spatial details. Moreover, channel attention aims to
identify the effective dimensions of features, which can be used

Fig. 7. Workflow for generating per-class feature vectors, where F denotes
the feature map, X denotes the correlation map, F ′, X ′, and P ′ mean to be the
corresponding matrices, ⊗ means the matrix multiplication, C is the number of
channels, K is the number of classes, and Y is the per-class feature vectors.

to select the dominant features at each scale. In addition, self-
attention is expected to describe the distance between feature
elements so as to construct the correlation between the feature
vectors of each category.

C. Interclass Attention Weighting

In order to reduce the erroneous classification caused by
large intraclass discrepancy and strong interclass correlation, we
propose the ICAW architecture based on the OCR model [36]
and ACFNet [58]; more details are explained in the following
text.

1) Per-Class Feature Vectors: Taking intraclass changes and
the association between pixels and different categories into
account, we build per-class feature vectors to represent the
corresponding holistic features, which is similar to the OCR
model [36] and ACFNet [58].

In general, a series of 1 × 1 convolution and activation func-
tions are applied at the end of the network to generate a tensor
(it is named a correlation map for simplicity) with the number of
channels equal to the number of categories, in which the response
value on each channel represents the association between pixels
and the corresponding categories. After flattening, transposing,
and Softmax activation (as shown in Fig. 7), the correlation
map can be transferred into a matrix, where each row denotes
a category and the possibility of each pixel belonging to it
(indicated byP ′ in Fig. 7). On the other hand, the matrix flattened
by the feature map indicates the multidimensional features for
each pixel (indicated by F ′in Fig. 7). In addition, it is obvious
that the multiplication between the above two matrices leads to
the per-class feature vectors (indicated by Y in Fig. 7), which is
in fact a sum of the pixel features with categorical probabilities as
weights. Equation (4) shows the generation of per-class feature
vectors

F ′HW×C
= flatten

(
FH×W×C

)

XH×W×K = g′
(
FH×W×C

)
, g′ = conv (relu (conv (.)))

X ′K×HW
= flatten

(
XH×W×K

)Tran

P ′K×HW
= softmax

(
flatten

(
g′
(
FH×W×C

)))

Y K×C = P ′K×HW ⊗ F ′HW×C (4)

where g′consists of two 1× 1 convolutions and ReLU activation.
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Fig. 8. Workflow for generating interclass attention. f , g, and ϕ represent the
different linear layers, and ⊗ means the matrix multiplication.

2) Interclass Attention: For the interclass association, we
perform the ICAW on the per-class feature vectors from Section
III-C1 with the multihead attention mechanism [39]. As shown
in Fig. 8, different linear transformations are deployed to derive
different matrices for estimating corresponding self-attention, in
which the query aims to match other categories, key is designed
to be matched, and value means the information that is expected
to be extracted. The matrix multiplication between query and
key results in the interclass covariance matrix as the attention,
which represents the similarity measure between categories.
Finally, features for each class weighted by the interclass at-
tention can be obtained after the matrix multiplication between
the covariance matrix and value. Moreover, multihead strategy
makes it possible to get multiple weighted results, each head
may focus on a different range of information. In particular,
skip connection is applied to deliver the original per-class feature
vectors to prevent the information from vanishing or mutating.
Our interclass attention is formulated as (5), where three linear
projection layers (linear_f, linear_g, and linear_h) are used for
query, key, and value

query = linear_f
(
Y K×C

)
, key = linear_g

(
Y K×C

)Tran

attentionK×K = softmax (query, key)

Y ′K×C
= attentionK×K ⊗ linear_h

(
Y K×C

)
. (5)

3) Feature Augmentation: Considering category-level fea-
tures and reinforcing the representation for pixel-level classifi-
cation, the final step in ICAW is to integrate the per-class feature
vectors with the original features extracted by the network. As
shown in Fig. 9, the cross attention is applied in the OCR model
[36] to obtain OCRs, in which query is extracted from the
original feature map and the per-class feature vectors contribute
to key and value, the association between pixels and categories
is explored, similar to the decoder in Transformer [39]. Inspired
by the OCR model, a similar yet simple solution is proposed,
specifically, we directly use the matrix multiplication between
per-class feature vectors (indicated by Y ′ in Fig. 9) and the
probability that each pixel belongs to it (indicated by P ′′ in
Fig. 9), analogous to the generation of per-class feature vectors.
In addition, both methods concatenate the original feature map
and the corrected one on the channel dimension with skip
connection, improving the robustness of this model.

Fig. 9. Workflow for feature augmentation in the (a) original OCR model and
(b) in our method, whereF is the input feature map,X is the correlation map, F̂ is
the output feature map,S is the covariance matrix,P ′′ is the probability matrix,⊗
means the matrix multiplication, Y is the original per-class feature vectors, and
Y ′ is the per-class feature vectors weighted by the interclass attention.

D. Loss Function and Prediction

In essence, the fundamental categorical cross-entropy loss
that measures the discrepancy between predicted results and
ground truth labels is used, as (6) illustrates, K is the number
of categories, I is the input image whose pixel number is N,
pi = [p1, . . . , pK ] indicates the inferenced probability distribu-
tion, t = [t1, . . . , tK ] is the one-hot label of the corresponding
pixel, and ti = 1 if the related pixel belongs to class i, otherwise
ti = 0

Loss (pi, ti) = − 1

N

N∑
p∈I

K∑
i=1

ti log (pi) (6)

L = LossPL
(
pPL
i , ti

)
+ αLossAL

(
pAL
i , ti

)
. (7)

In this article, to better guide our model training, we employed
(7) as overall Loss L, which is linearly summed by two cat-
egorical cross-entropy losses: LossPL(p

PL
i , ti)—principal loss,

measuring the discrepancy between coarse segmentation and
ground truth before applying ICAW; and LossAL(p

AL
i , ti)—the

auxiliary loss, estimating the discrepancy between segmentation
results and labels after using ICAW. More specifically, α is the
balance parameters, which are set to be 0.5 in this work, pPL

i and
pAL
i are the predicted probabilities of each pixel before and after

using ICAW, respectively.
In order to reduce the influence of random errors on the

prediction results, we vote the predictions from three inde-
pendent training for testing precision metrics and analyzing
visualization. However, for efficiency metrics, we evaluate them
through one training process, taking ICAW into consideration.
For a single prediction, as shown in Fig. 10, we apply the 1 × 1
convolution to generate the correlation map from the last feature
map in the network, and the index of the response peaks on the
channel dimension is the forecasted category for each pixel in the
correlation map. In the voting strategy, we first apply Softmax
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Fig. 10. Workflow for voting predictions. F denotes the feature map, X , X1,
X2, and X3 represent the different correlation maps and P1, P2, and P3 means
the different possibility maps, and ⊕ is the elementwise addition.

activation to obtain the probability map from the correlation map
in which the value on each channel represents the probability
that pixels belong to the corresponding categories. Then, we use
elementwise addition for the three probability maps, which leads
to the final result. Consequentially, the voting strategy is able to
effectively evaluate different methods.

IV. EXPERIMENTS

To demonstrate the performance of our work, two ablation
studies are first conducted: first, experiments on the ISPRS
Vaihingen two-dimensional (2-D) dataset [60] and LoveDa
dataset [61] are tested to verify the synergy and efficacy of the
proposed modules; second, various serial learning backbones
(e.g., ResNet, SegFormer, MobileNet, etc.) are deployed with
the proposed modules and the results of 2020 National Artificial
Intelligence Competition (NAIC) in China are reported. In addi-
tion, we compare our method to several state-of-the-art methods
on the ISPRS Potsdam 2-D dataset [60]. In the following sec-
tions, we will introduce more details in regard to the datasets,
experimental settings, and our experimental results.

A. Experimental Datasets

1) ISPRS 2-D Challenge Dataset: It is a widely studied
benchmark dataset in the ISPRS community, including high-
resolution true orthophoto (TOP) images from two different
regions acquired by aircraft, Vaihingen, and Potsdam [60]. Both
of them contain a normalized digital surface model (NDSM),
and six land cover classes are investigated, including impervious
surface (imp. surf.), building (build.), low vegetation (low veg.),
tree, car, and clutter. In particular, Vaihingen is a rural area
containing three spectral bands of NIR, red, and green, and has
33 images with size of about 2500 × 2000 pixels (11 images
are selected as training data, 5 are used as validation sets, and
17 are divided into test sets), and the areas of low veg. and tree,
which have similar spectral response, are relatively higher than
that of car and clutter. On the contrary, Potsdam is basically an
urban region containing four spectral bands of NIR, red, green,
and blue, where the areas covered by low veg. and tree (most of
which are branches with few leaves) are relatively small; there
are 38 images of 6000 × 6000 pixels, which are divided into 17
training samples, 7 validations, and 14 test sets.

In our experiments, only TOP images are exploited. For
Vaihingen, we crop training samples into images with size of
512 × 512 pixels and generate 4326 training images and 111
validation images through augmentations (such as rotation and

flip); the performance of the proposed modules is ablatively
analyzed and evaluated based on the whole image from the
17 test samples. For Potsdam, to cope with the imbalanced
allocation of training and testing samples, the original training
and validation images are cut into 8664 images with the size of
512 × 512 pixels for our training. Four images are randomly
selected from the original test images, which are then cropped
into 1444 images for validation, and the remaining ten original
test images are cropped into 3610 images as our test images.
The Potsdam dataset is employed to demonstrate the efficacy
of our whole framework composed of MSFR and ICAW when
compared with other relevant existing methods.

2) LoveDa Dataset: Deriving from Google Earth, the
LoveDa dataset [61] constitutes 5987 high-resolution re-
mote sensing images of urban and rural scenes in Nanjing,
Changzhou, and Wuhan, whose spatial resolution is 0.3 m and
image size is 1024 × 1024 pixels; the original image number
for training, validation, and testing is 2522, 1669, and 1796,
respectively. Similar to the ISPRS challenge dataset, after data
augmentation and cropping into size of 512 × 512 pixels,
28 288 images are input for training, 1053 images are validated
during training, and 7739 images are tested. Seven land cover
categories are studied, including background (B.G.), building
(build.), road, water, barren, forest, and agriculture (Agr.) [61].
In this dataset, the characteristics of ground objects in urban and
rural areas are quite different, including spatial distribution and
spectral response; the scales of ground objects vary a lot as well;
furthermore, the contents of B.G. are very complicated, which
results in high intraclass variance. Therefore, this dataset is also
tailored to be applied for ablatively proving the efficacy of the
proposed two pluggable modules (MSFR and ICAW).

3) NAIC Dataset: The NAIC dataset is a hybrid imagery
benchmark for land cover classification competition,1 it is com-
posed of 100 000 RGB images collected from satellites and
aircraft in China, and the spatial resolution is between 0.1 and
4 m. Each image has been cropped to the size of 256 × 256
pixels. As the image sources are complex in NAIC dataset,
the differences in spatial resolution and spectral radiation are
very explicit among images, resulting in large-scale variance
as well as different spectral responses inside each category.
We randomly use 89 000 images for training, 1000 images for
validation, and 10 000 images for testing. The eight categories
to be discerned in this dataset are: waters, buildings (build.),
transportation (trans.), arable land (ara.), grass, forest, bare soil
(soil.), and others. This dataset is used to test the feasibility when
MSFR and ICAW are both deployed on different backbones.

B. Implementation Details

1) Experimental Settings: Our method is implemented with
the Pytorch framework. The base learning rate is set to 0.001. A
poly learning rate policy is employed in which the initial learning

rate is multiplied by (1− epoch
total_epoch )

0.9
during each epoch. All

models in the reported experiments are trained with the SGD

1More details related to NAIC can be found at https://naic.pcl.ac.cn/contest/
6/track/24

https://naic.pcl.ac.cn/contest/6/track/24
https://naic.pcl.ac.cn/contest/6/track/24
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optimizer on NVIDIA GTX 3090. The momentum value is
0.9 and the weight decay value is 1e-4. For each experiment,
the training procedure is with 300 epochs and the validation is
conducted every five epochs. During each training epoch, we use
all training images in the ISPRS Vaihingen dataset, while half of
the images are taken randomly for training in the Potsdam dataset
and quarter in the LoveDa dataset and the NAIC dataset. The
number of all iterations for each epoch is determined by the batch
size accordingly; more training information is introduced in the
following sections. For the experiment with SwinT [43], we use
pretrained models based on the COCO dataset [62], and for other
experiments, we apply corresponding pretrained weights from
ImageNet dataset [63], except the experiments with SETR [40]
and ABCNet [64].

2) Evaluation Metrics: To evaluate the results, we use sev-
eral common metrics of intersection over union (IoU), precision,
recall, F1-score, overall accuracy (OA), and Kappa. The eval-
uation was based on an accumulated confusion matrix from all
test images, whereby IoU, precision, recall, F1-score, OA, and
Kappa can be derived

IOUk =
TPk

TPk + FPk + FNk
(8)

Precisionk =
TPk

TPk + FPk
, Recallk =

TPk

TPk + FNk
(9)

F1− scorek = 2 · Precisionk · Recallk
Precisionk + Recallk

(10)

OverAccuracy =

∑N
k=1 TPk∑N

k=1 TPk + FNk

(11)

pe =

∑N
k=1 (TPk + FPk) · (TPk + FNk)(∑N

k=1 TPk + FNk

)2 ,

Kappa =
OverAccuracy − pe

1− pe
. (12)

TPk,FPk, and FNk denote the true positive, false positive, and
false negative pixels, respectively, and k is the category index.
We use mean intersection over union (mIoU) and average F1-
score (avg. F1) to represent mean results for all classes. For
evaluating the efficiency of methods, we apply giga floating-
point operations per second (GFLOPS) to measure the cost of
computation and capacity of weights (#Params.) to measure the
cost of parameters. In addition, we compute the average time
of eight inferences (Time) on one image using the GTX 3090
GPU during training, which assesses the inference time of each
method.

C. Internal Ablation Studies for the Proposed Modules

In this section, experiments are conducted on the Vaihingen
and LoveDa datasets for testing modules of MSFR (PSA and
MCA) and ICAW individually and mutually. We use ResNet50
[38] as the backbone (upsampling and convolution layer-by-
layer), and the batch size is set to 16 (360 iterations per epoch
on the Vaihingen dataset and 442 iterations per epoch on the
LoveDa dataset).

1) Results on Vaihingen Dataset: For Vaihingen, three spec-
tral bands of NIR, red, and green are used; the classification
accuracy and inference efficiency with/without the proposed
pluggable modules are quantitively shown in Table I (eight
variants are compared). The configuration of baseline is to
simultaneously switch OFF our MSFR and ICAW modules. As
expected, the full variant with the two modules of MSFR and
ICAW plugged is always the best in terms of Kappa, mIoU,
avg.F1, and OA. In particular, comparing with the baseline,
the improvements of Kappa, mIoU, avg.F1, and OA are 7.45%,
10.46%, 8.39%, and 5.64%, respectively. In addition, the superi-
ority of each proposed module can be numerically demonstrated:
the variant with MCA improves the OA by 3.6%, the one with
PSA can make an improvement of 3.97%, and the one with
ICAW increases OA by 1.28% inc. On the other hand, as Table I
lists, there are extra overheads in terms of “GFLOPS” and
“#Params.” after embedding our modules. However, comparing
with the baseline, the full variant with MSFR and ICAW only
needs about 3 ms more for inference, which is almost negligible.
Therefore, the proposed modules can significantly improve the
classification performance of baseline with backbone ResNet50,
yet with negligible extra inference time.

In order to qualitatively demonstrate the effect of PSA and
MCA, we visualize these two attentions in Fig. 11. Specifi-
cally, the visualization of the MCA model is applied after the
multiplication with the corresponding feature map. The PSA
model can observe more details on Build. and Imp. Surf., which
might predict clearer boundaries; however, the PSA model also
captures redundant details, the edge of shadows for example
(shown in black circle of Fig. 11). As for the MCA model,
MCA(1/8) of higher resolution is more sensitive to Tree and the
van (shown in red rectangular of Fig. 11), while MCA(1/16) of
lower resolution pays more attention to the cars (shown in white
rectangular of Fig. 11). MCA model of various resolutions also
shows some global consistency and makes responses to Car at
different scales; this reflects the capability against multiscale
variation. In general, the attention from MSFR (including PSA
and MCA) focuses on objects of various sizes, leading to abun-
dant features from the image.

As shown in Fig. 12, we plot bar graphs with avg.F1 and
visualize corresponding classification results to illustrate the ef-
fectiveness of PSA, MCA, and ICAW models when dealing with
the problems of inaccurate edges, fragmented segmentation, and
erroneous classification. Fig. 12(a) indicates the improvement
after deploying PSA, and the ambiguous boundaries on Car
(white box) basically do not exist anymore. Fig. 12(b) shows the
improvement from MCA, the baseline generates some incorrect
fragmented segments (as the black circles show), which are
refined by plugging our MCA model. Combing PSA and MCA,
the generated MSFR module is supposed to be capable to deal
with the ambiguous edge prediction and fragmented segmenta-
tion, Fig. 12(c) depicts that the boundaries of Car (black circle)
are more accurate and the fragmentation noise inside Build.
(black box) is erased; however, the erroneous classification on
Build. (red box) still exists, i.e., the shadow increases feature
discrepancy inside Build. and makes features similar between
Build. and Imp. Surf. Fig. 12(d) indicates the improvement of
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TABLE I
QUANTITATIVE RESULTS OF LAND COVER CLASSIFICATION FOR ABLATION STUDY ON THE VAIHINGEN DATASET

Fig. 11. Visualization of the attentions from the MSFR architecture, in which MCA(1/8) denotes the heatmap of one-eighth the size of the input image, and
MCA(1/16) denotes the heatmap of 1/16 the size of the input image. Black circle contains the shadow captured by PSA, white rectangular contains cars captured
by MCA(1/16), and red rectangular contains the trees and the van captured by MCA(1/8).

ICAW on erroneous classification, e.g., more correct classifica-
tion results are obtained in spite of large intraclass differences
inside Build. and similar interclass distances between Build.
and Imp. Surf. (black box). Note that the ICAW model does
not completely eliminate the erroneous classification; significant
improvement is made over the baseline method.

Furthermore, a more comprehensive internal ablation study
is provided with detailed qualitative results, i.e., more classi-
fication results are visualized in Fig. 13. The baseline model
performs smooth predictions with ambiguous boundaries, while
the PSA model shows clear edges, especially on cars (shown in
white rectangular of Fig. 13). However, the PSA model also
generates noisy fragmented details inside objects (shown in
white circle of Fig. 13), as well as jagged edges on buildings
due to shadows (shown in black rectangular of Fig. 13). On
the contrary, the MCA model generates less noise with poor
boundaries and tends to be more representative in global due to
the reconstructed multiscale features. Moreover, the proposed
ICAW works well with shadows, which is probably because the
interclass correlation and intraclass variance are considered. In
addition, the classification results after deploying both MSFR
and ICAW are rewarding, in which the global segmentation
looks more reasonable and the local boundaries are basically
improved; this in turn demonstrates that the combination of the
two proposed modules is effective.

From Table I and Fig. 13, the proposed modules can signifi-
cantly improve the baseline with just slightly extra computation
cost. Nevertheless, ambiguity still exists between Tree and Low.
Veg., especially shrubs (shown in the black circle of Fig. 13),
which are challenging without using the information of NDSM.

2) Results on LoveDa Dataset: To further explore the gen-
eralizability of our proposed modules and avoid the coincident
superior performance obtained just on Vaihingen, we also con-
duct the internal ablation study using LoveDa dataset, which
is composed of both satellite remote sensing images and aerial
images. The image resolution of LoveDa dataset is generally
lower than that of Vaihingen and two different areas are ob-
served, urban and rural, making it more challenging for am-
biguous boundaries, fragmented segmentation, and erroneous
classification. The number of training batches is set as the same
as Vaihingen in this experiment.

Table II provides the classification results and time efficiency,
similar to Vaihingen; all the proposed modules are able to
improve the classification performance, while the magnitude
of improvements is in general slightly smaller than that of
Vaihingen. Specifically, comparing with baseline, PSA, MCA,
and ICAW are able to improve the avg.F1 by 1%, 1.01%, and
0.87%, respectively. When investigating the performance of
combinations between various modules, it can be found that
MSFR consisting of PSA and MCA can further improve avg.F1
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Fig. 12. Visualization of results on the ablation study with the Vaihingen dataset.

Fig. 13. Examples for classification results of ablation studies on the Vaihingen dataset. We visualize the results of PSA, MCA, and ICAW via deploying on the
baseline individually and together (ours for together). White rectangular contains cars, white circle contains noise, black rectangular contains edges of buildings,
and black circle contains ambiguity between trees and low vegetation.
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TABLE II
QUANTITATIVE RESULTS OF LAND COVER CLASSIFICATION FOR ABLATION STUDY ON THE LOVEDA DATASET

Fig. 14. Bar chart of the avg.F1 for ablation study on the LoveDa dataset.

by 1.09% and 1.08%, and the integration of PSA and ICAW
improves the avg.F1 by 1.15% and 1.23%. Plugging in both
MSFR and ICAW is always the best, whose avg.F1 is 1.08%
higher than only applying MCA and ICAW. For the other eval-
uation metrics, comparing with the baseline, utilizing proposed
MSFR and ICAW can improve Kappa, mIoU, OA, and avg.F1
by 2.22%, 2.85%, 1.61%, and 2.31%, respectively. As for the
computational cost, the metrics of “GLFOPS” and “#Params.” in
Table II are consistent with the corresponding values in Table I,
whereas “Time” only varies very slightly, this is because the
experimental settings are basically the same (constant running
machine and tested models) and the experimental image size
(512 × 512) is identical with Vaihingen.

To explicitly highlight the ablation results, the avg.F1 of
various variants with different modules is plotted in this section
as a bar chart, as shown in Fig. 14; it can clearly depict that
all the proposed modules and their corresponding combinations
can apparently improve the baseline, in which PSA is of the best
portability, as the avg. F1 scores typically show a significant
increase after embedding PSA into other variant models.

Similar to Fig. 13, the classification results of LoveDa us-
ing various model configurations are qualitatively compared
in Fig. 15. Akin to Vaihingen, the baseline method obtains
smoother edges as a whole, and PSA predicts more accurate
boundaries while adding fragmented segmentations, redundant
internal features, and jaggedness around boundaries, as shown
in Fig. 15(black boxes). Both MCA and ICAW are capable to
eliminate some incorrect fragmented segmentations and erro-
neous classifications (as shown by the black and white circles in
Fig. 15), but boundaries are yet not refined. From the last column
of Fig. 15, deploying all the proposed modules together into the

baseline can basically maintain their original superiority, which
results in more accurate boundaries and less fragmentation
segmentation, and erroneous classification.

Comparing the quantitative and qualitative results between
Vaihingen and LoveDa, the LoveDa dataset contains very rich in-
ternal features of objects, especially inside Build. in urban areas,
as shown by the white boxes in Fig. 15, and PSA may pay more
attention to some redundant but useless details, which might lead
to that the corresponding improvement on LoveDa is not as good
as Vaihingen. In addition, Barren, Forest, B.G., and some Agr. in
LoveDa show a similar spectral response and texture, and Road is
also much narrower and longer than Imp. Surf. in the Vaihingen,
which is a very challenging task for land cover classification.
Therefore, the improvement of our proposed modules (including
each individual module or their combinations) on LoveDa is a
little bit lower than that on Vaihingen. Nevertheless, the efficacy
and superiority of embedding the proposed MSRF and ICAW
are successfully demonstrated on both LoveDa and Vaihingen;
we can expect a high possibility for effectively generalizing our
method on other datasets.

D. Ablation Study on Different Backbones

To validate the effectiveness and feasibility of the proposed
MSFR and ICAW modules on various backbones, based on the
NAIC dataset, the performance of MobileNet [65], GoogleNet
[66], Xception [67], HRNet [48], SETR [40], and SegFormer [44]
are explored in which the first one is a relatively lightweight
model, HRNet is parallel architecture, and the last two are
transformer-based architectures. In addition, each baseline
applies the multiscale feature fusion architecture proposed by
FCN [24]. In this section, the batch size is set to 12 (1854
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Fig. 15. Examples for classification results of qualitative ablation studies on LoveDa dataset.

TABLE III
CLASSIFICATION RESULTS ON THE NAIC DATASET

iterations per epoch) for Xception and 16 (1391 iterations per
epoch) for the rest. Table III present the numerical results, and
Table IV gives details of the computation costs.

According to Table III, comparing with the original base-
line, our proposed modules can generally lead to classification
improvement. Over all the backbones, MobileNet obtains the
most explicit improvements, in which Kappa, mIoU, avg.F1,
and OA are increased by +6.93%, +8.02%, +6.55%, and
+5.86%, respectively. The reason could be that the number of
unknowns in MobileNet is relatively low; thus, the ability to
capture more powerful representations might be enhanced after
integrating with the proposed modules. For the other backbones,
various degrees of improvement are made by embedding our
MSFR and ICAW. For instance, comparing with the original
baseline of ResNet, Xception, and GoogleNet, the corresponding

improvements of kappa, mIoU, avg.F1, and OA are between
1.11% and 2.11%, 1.38% and 2.99%, 0.9% and 2.12%, and
0.92% and 1.8%, respectively. However, the overall evaluation
metrics of HRNet, SETR, and SegFormer show that only limited
improvements can be made (up to+0.5% and+0.7% for HRNet
and transformer-based models, respectively), and the F1 scores
of some categories get slightly worse; this could be explained
by the fact that HRNet deploys parallel learning architecture and
our methods are more tailored for serial learning networks, and
the transformer-based methods themselves have already applied
attention mechanism to improve the model (e.g., enlarge the
reception field, learning to connect encoder and decoder, etc.),
which might make extra attention operations be a little superflu-
ous. In addition, our modules yield extra computation cost, i.e.,
+0.46–3.93G of “GFLOPS,” +0.48–2.36M of “Params.,” and
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TABLE IV
COMPUTATION COST OF ALL MODELS ON THE NAIC DATASET

Fig. 16. Examples for classification results of the NAIC dataset using various backbones, i.e., MobileNet, ResNet, Xception, and GoogleNet as well as the variants
deployed with our proposed modules.

0.87–5.85 ms of “Time,” which is in fact negligible for general
land cover classification task.

In general, the proposed modules can be feasibly plugged
into various serial learning networks and improve their corre-
sponding land cover classification performance; in particular,
the lightweight model can typically get better improvement.

Fig. 16 shows some visualization of classification results on
several serial convolution networks, and we can find that the ex-
periments on ResNet and Xception are the best. Our modules can
significantly improve boundaries, especially on Forest, Trans.,

and Build. (black box in Fig. 16), mainly due to the details
refined by the proposed PSA model. Moreover, our methods
also show advantages in correcting some wrong segmentations
for Soil., Grass, Waters, etc. (black circles), which could be
attributed to the consistent multiscale features generated by our
MCA model and identifiability for various categories improved
by our ICAW architecture. However, some noises inside the
predictions exist for the proposed method; this is possibly caused
by redundant details from the PSA model or ambiguous category
features.
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TABLE V
QUANTITATIVE RESULTS COMPARED WITH STATE-OF-ARTS ON POTSDAM DATASET

Fig. 17. Examples for classification results of our method and the state-of-the-art methods on the Potsdam dataset.

E. Comparison With the State-of-Arts

In this section, based on Potsdam dataset, several state-of-
the-art methods are compared, i.e., SwinT [43], HRNet+OCR
[36], SegFormer [44], ABCNet [64], and ConvNeXt [1], and
the backbone (ResNet50 [38] is selected to see how far we
can benefit on a middle-level backbone when comparing with
other methods) integrated with our proposed MSFR and ICAW
is indicated as our method. The training batch size is set to 8
(540 iterations per epoch) for HRNet+OCR and SwinT, and 16
(270 iterations per epoch) for all the others.

The classification results and relevant computation costs are
listed in Table V; we can easily figure out that HRNet+OCR
basically performs the best, whose Kappa, mIoU, avg.F1, and
OA are 0.62%, 1.06%, 0.86%, and 0.44% than our method. Nev-
ertheless, HRNet+OCR is more costly, which needs three times
“GFLOPS,” twice the “Params.,” and about five times inferenc-
ing “Time” as our method does. ABCNet shows the worst results,
e.g., the corresponding avg. F1 is 8.6% poorer than our method;
this is mainly due to that ABCNet is trained from scratch without
pretrained model and still underfitting when implementation
settings are as the same as other methods, whereas the cost of
this method is the least. In addition, our method also outperforms
ConvNeXt 0.71% and SegFormer 0.37% in avg.F1, and is 0.39%
inferior to SwinT. In general, the discrepancies of classification
performance among compared methods (except for ABCNet)
are close; this is probably due to some inherent characteristics of
Potsdam, e.g., number of training, validation and testing images,

sample ground object distribution, etc., which might lead to
limited classification improvement even if a larger model is
trained. When investigating the computation cost, our method
needs more parameters and computation with less inference time
than SegFormer and SwinT do, this is because GPU offers algo-
rithmic acceleration for kernel-based convolutional operations,
while linear layers are the fundamental units in transformer-
based methods.

In general, it can be found that our method takes the middle
land on both accuracy and efficiency, and obtains the best
balance when similar performance is achieved among the meth-
ods, especially comparing with HRNet+OCR of the highest
accuracy with the lowest efficiency and the opposite ABCNet.
In summary, our method deployed with MSFR and ICAW on
a simpler backbone achieves a reasonable balance between
model accuracy and inference efficiency compared with other
methods.

Classification results are visualized in Fig. 17. HRNet+OCR
shows clear boundaries on Car and Build., but there is also quite a
lot of noise and fragmented segmentations (black boxes), which
result from the redundant and incomplete features exchanged
among the parallel branches at different scales. Our method
predicts refined boundaries that are close to HRNet+OCR and
SwinT; however, there is still some noise and erroneous classi-
fication in the results (black circles), especially on Build. and
Imp. Surf. with extremely similar features, which means that the
robustness of ICAW needs to be further strengthened. In general,
our method provides acceptable results, and the limitation is also
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clear that our method cannot identify objects with extremely
similar spectral features, such as tiny buildings, a part of Imp.
Surf. and Clutter built by cement, as well as noises in objects
with large coverage areas.

V. CONCLUSION

In this article, two pluggable modules are proposed to improve
the serial learning architectures on land cover classification task,
i.e., the MSFR and the ICAW module. The first module focuses
on solving the problems of multiscale variance and lost spatial
details, and the second one is expected to mitigate the negative
influence of large intraclass difference and strong interclass
correlation. The extensive experiments on different datasets
have shown that our proposed modules are able to improve the
land cover classification in a remarkable degree. In particular,
compared with the original backbone of ResNet50, the improve-
ments are 7.45% in Kappa, 10.36% in mIoU, 8.39% in avg. F1,
and 5.64% in OA, yet with only 9.07 GB extra GFLOPS and
4.7M more parameters. Deployed on different serial backbones,
our methods show superior portability. Compared with state-of-
the-art methods, our methods achieve comparable results, yet
offer a better balance between inference time efficiency and
accuracy. In future work, we would like to explore the possibility
of integrating our modules into the transformer-based networks.
In addition, we also want to improve our modules for better
performance via investigating more datasets, such as RSIPAC2

and Ali Tianchi.3
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