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Hyperspectral Image Denoising via L0 Regularized
Low-Rank Tucker Decomposition

Xin Tian , Kun Xie , Member, IEEE, and Hanling Zhang

Abstract—This article studies the mixed noise removal problem
for hyperspectral images (HSIs), which often suffer from Gaussian
noise and sparse noise. Conventional denoising models mainly
employ theL1-norm-based regularizers to remove sparse noise and
ensure piecewise smoothness. However, the denoising performance
is poor for highly structured images with severe noise since the L1-
norm overpenalizes large entries. To tackle this limitation, we pro-
pose a denoising model that combines tensor decomposition with
two kinds of L0-norm-based regularizers. First, we use low-rank
Tucker decomposition with the Stiefel manifold to characterize the
global correlation of HSIs. Then, we utilize theL0-norm to leverage
the intrinsic sparsity information of the corruption domain, thereby
enhancing the effectiveness of sparse noise removal. Simultane-
ously, we introduce a weightedL0-norm regularizer on the gradient
of each pixel to promote the local spectral-spatial smoothness. To
solve the proposed model, we design a hard-thresholding-based
alternating direction method of multipliers algorithm. Instead of
spending time to find a proper rank in advance, we adopt a rank-
increasing scheme to dynamically adjust the tensor rank during
the optimization procedure. In this way, our algorithm avoids
the rank selection burden and improves computational efficiency.
Finally, we test the proposed method on both synthetic and real
datasets. Numerical results demonstrate its superiority, especially,
the improvements of our method over the best-compared results
up to 2.07 dB for mixed noise removal.

Index Terms—Low-rank, piecewise smooth, rank-increasing,
sparse.

I. INTRODUCTION

DUE to the rapid advancement of digital imaging tech-
nology, hyperspectral images (HSIs) have become in-

creasingly prevalent in real-life applications, such as medical
diagnosis, military surveillance, food quality testing, etc.
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However, HSIs are vulnerable to severe noise corruption, thus
leading to a significant degradation in the image quality and lim-
iting the precision of the subsequent works. Hence, separating
the clean HSI from the raw observation corrupted by the noise
is of acute and growing importance.

To date, various denoising techniques have been proposed for
HSI restoration. These techniques can be primarily divided into
two types, namely deep learning (DL)-based and model-based
techniques. Existing DL-based methods [1], [2], [3], [4], [5], [6]
have obtained excellent denoising results through learning non-
linear mapping directly from the image data, but these methods
lack interpretability, thus difficult to provide the reliability of
performances. In contrast, the model-based methods are easily
understandable. This kind of method mainly describes the prior
knowledge of HSIs through mathematical formulas, so as to
make use of the essential features. Considering this advantage,
we mainly research the model-based method.

As the strong correlations and redundancy between the pixels
in the spectral and spatial modes, HSIs typically exhibit a low-
rank structure [7], [8]. To utilize the low-rank prior knowledge,
tensor decomposition has become an effective tool in signal pro-
cessing. Recently, several tensor decomposition methods have
emerged for high-dimensional data analysis, such as CP decom-
position (CPD) [9], Tucker decomposition (TKD) [10], tensor
train decomposition (TTD) [11], and tensor ring decomposition
(TRD) [12], etc. Among these types of decomposition, TKD
can be seen as a multilinear extension of principal component
analysis (PCA) [10], making it a valuable tool in various signal
processing domains. Furthermore, the factors of the TKD are
linked via a core tensor, which allows us to model more complex
hidden data structures. To this end, we focus on the TKD in this
article.

In real scenes, HSIs are inevitably affected by mixed noise,
including Gaussian noise, impulse noise, deadlines, stripes, etc.
Conventional TKD-based denoising methods mainly employ the
L1-norm minimization for non-Gaussian noise removal [13],
and exhibit promising performance. Simultaneously, the visual
image often exhibits local piecewise smoothness structure due
to the presence of objects or edges. To concurrently preserve this
edge information, an anisotropic spatial-spectral total variation
(SSTV) regularizer, defined as the L1-norm of gradient values,
has been widely used for HSI restoration and shows reasonable
performances [8], [14].

Although existing TKD-based methods combined with the
L1-norm-based regularizers have shown strong denoising abil-
ity [8], [15], [16], there still exist the following limitations:
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1) Fail to recover the image corrupted by severely sparse
noise: From a statistical perspective, solutions derived
through L1-norm minimization deviate significantly from
both the prior and data acquisition models [17]. There-
fore, L1-norm minimization may not provide the optimal
estimation performance for sparse noise removal, partic-
ularly when the sparse noise dominates. To overcome the
shortcoming of L1-norm, some nonconvex sparse regu-
larizations such as minimax concave penalty (MCP) [18],
[19], smoothly clipped absolute deviation (SCAD) [20],
ε-penalty [21], and L0-norm [22] have been proposed
for the sparse noise removal, but these methods cannot
take advantage of global correlations of HSIs as much as
TKD-based methods.

2) Fail to protect the intrinsic smoothness structure of the
HSIs: For a natural image, the large gradient magnitudes
are closely associated with essential edges. However, the
L1-norm-based SSTV regularizer shrinks all gradient val-
ues equally, which makes those large gradient magnitudes
overpenalized, thus leading to spatial oversmoothing. Al-
though some improved TV regularizers [23], [24], [25]
have been proposed, there is still room for improvement
in the performance of these methods.

3) Suffer from high sensitivity of rank selection: For the TKD-
based models, the Tucker rank should be predefined in
advance. As is well known, determining the tensor rank is
an NP-hard problem, and inappropriate ranks may result
in unsatisfactory recovery results. Generally, we try to find
a proper rank by tuning it as a hyperparameter manually,
then fix this rank in the denoising algorithm, referred to
as the rank-fixed scheme. However, we need to repeatedly
execute the denoising algorithm multiple times to find a
proper rank, which is time-consuming, and impractical in
practice.

To overcome the above drawbacks, we propose a mixed noise
removal model through the low-rank TKD with two kinds ofL0-
norm-based regularizers. We summarize the main contributions
as follows:

1) Under the low-rank TKD framework, we employ the L0-
norm for sparse noise removal, which alleviates the biased
estimators caused by the L1-norm.

2) We introduce the L0-norm to directly control the number
of nonzero gradients, which helps the low-rank Tucker
model to capture the local spatial-spectral smoothness of
the nature HSIs.

3) We adopt a rank-increasing scheme to dynamically adjust
the tensor rank for the proposed TKD-based denoising
algorithm, which avoids the rank selection burden, and
reduces the computation time.

The rest of this article is organized as follows. Section II
introduces basic notations and related works. Section III
presents the proposed model with the corresponding opti-
mization algorithm. Section IV demonstrates the results of
extensive experiments and provides the ablation experiments
of the proposed model. Finally, Section V concludes this
article.

TABLE I
BASIC NOTATIONS AND THEIR DESCRIPTIONS

II. PRELIMINARIES AND RELATED WORKS

A. Preliminaries

Tensor is an extension of vectors and matrices in high-
dimensional space, its order is also referred to as the number
of dimensions or modes. In this article, we adopt the notations
in [9]. Some basic notations are presented in Table I.

Definition 1 (see [9] (n-Rank)): The n-rank of a tensor
X ∈ RI1×I2×...×IN corresponds to the column rank of the mode-
n unfolding X(n), which is denoted rankn(X ). We say X is
(approximately) low-rank if X(n) is (approximately) low-rank
for all n.

Definition 2 (see [9] (TKD for the third-order tensor)): Sup-
pose that X = (Xijk) ∈ RI1×I2×I3 . Let U=(Uip) ∈ RI1×P ,
V = (Vjq) ∈ RI2×Q, W = (Wkl) ∈ RI3×L. C = (Cpql) ∈
RP×Q×L. Here, I1, I2, I3, P,Q, L are positive integers. If

Xijk =

P∑
p=1

Q∑
q=1

L∑
l=1

UipVjqWklCpql (1)

for i ∈ [I1], j ∈ [I2], k ∈ [I3], then X has a TKD X = C ×1

U×2 V ×3 W. The tensor C is called Tucker core, and the
matrices U,V,W are called factor matrices of TKD. For a given
N th-order tensorX ∈ RI1×I2×...×IN , we can easily find an exact
TKD of rank r = (r1, r2, . . ., rN ), where rn = rankn(X ), n =
1, . . ., N .

B. Related Works

In recent years, the tensor robust principal component anal-
ysis (TRPCA) framework [26], [27], [28] gained popularity
due to its effectiveness in handling signal recovery. Within
this framework, the degraded HSI Y ∈ RI1×I2×I3 is divided
into two components, a low-rank component representing the
clean HSI X ∈ RI1×I2×I3 and a sparse corruption component
S ∈ RI1×I2×I3 . TRPCA framework can be mathematically for-
mulated as follows:

min
X ,S

M1(X ) + λM2(S)

s.t. ‖Y − X − S‖ � ξ (2)

where M1(X ) and M2(S) represent the prior knowledge of
the noiseless HSI X and sparse noise S , respectively. λ is a
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positive regularization parameter, ξ is related to the variance of
the nonsparse noise density.

According to the choice of low-rank regularizer M1, frame-
work (2) can be categorized into two types: 1) tensor
decomposition-based methods, and 2) rank minimization-based
methods. To avoid the high computational cost associated with
large-scale singular value decomposition (SVD), tensor decom-
position has been widely used in recent works, showing a strong
ability to explore global information in visual data recovery [29],
[30].

The TRPCA framework with low-rank tensor decomposi-
tion has achieved satisfactory results for noise removal. To
further improve the denoising performance, L1-norm and TV
regularizer have been extensively incorporated into this frame-
work. For instance, Wang et al. [8] embedded the L1-norm
and SSTV regularizer into the low-rank tensor decomposition
for mixed noise removal; To exploit the shared group sparsity
pattern of the HSIs, Chen et al. [15] proposed a weighted group
sparsity-regularized low-rank tensor decomposition method by
combining the L1-norm and L2,1-norm-based TV regularizer.
Furthermore, Xu et al. [31] validated that the gradients of an
HSI are heavy-tailed, and then proposed a hyper-Laplacian TV
to replace the SSTV and L2,1-norm-based TV. Mathematically
speaking, both the non-Gaussian noise removal and the local
smoothness prior are essentially sparse optimization problems in
different domains, the convexL1-norm or nonconvex regularizer
is not the optimal choice to depict the sparsity [32].

Different from the aforementioned methods, in this article,
we consider: 1) how to character the intrinsic sparsity of the
corruption domain, 2) how to enhance the sparsity of the gradient
image domain, thus promoting the local smoothness of HSIs,
and 3) how to alleviate the burden of rank selection problem for
low-rank TKD-based approaches.

III. HSI DENOISING VIA L0 REGULARIZERED

LOW-RANK TKD

In this section, we first introduce a TV-based denoising
framework. Second, we formulate our model which joins low-
rank TKD and two kinds of L0-based regularizers. Third,
to efficiently solve the proposed model, we develop a hard-
thresholding-based alternating direction method of multipliers
(ADMM) algorithm with the rank-increasing scheme. Mean-
while, we give the computational complexity analysis.

A. Total Variation-Based HSI Restoration Framework

As introduced before, the combination of low-rank tensor
decomposition with TV regularization can achieve satisfactory
restoration results for HSIs by simultaneously considering the
global spatial-spectral correlation and local piece-wise smooth-
ness. We formulate the TV-based HSI restoration framework as
follows:

min
X ,S

M1(X ) + λM2(S) + τ ‖ �X ‖p,1

s.t. ‖Y − X − S‖ � ξ (3)

where λ and τ are the regularization parameters, p is a positive
parameter, � = (�h,�v,�s) is the gradient operator along
two spatial dimensions and one spectral dimension of an HSI,
and ‖ �X ‖p,1 represents the TV regularizer used to explore
the piecewise smooth structure of HSIs. Denote �X (i, j, k) as
the gradient operator at (i, j, k) of X , then its components are
defined as follows:⎧⎨

⎩
�hX (i, j, k) = Xi+1,j,k −Xi,j,k

�vX (i, j, k) = Xi,j+1,k −Xi,j,k

�sX (i, j, k) = Xi,j,k+1 −Xi,j,k.

Next, we show how to derive formulations for the M1(·), M2(·),
and ‖ �X ‖p,1.

1) The Selection of M1: M1 is the regularizer to reveal the
low-rankness of clean HSI X . We empirically interpret this
property via showing the singular value curves of the unfolding
matrices for an HSI. In Fig. 1, we can apparently see only a small
fraction of singular values are greater than zero in all modes,
which indicates the high-dimensional HSI essentially lies at a
low-dimensional space.

Inspired by this property, we adopt the well-known TKD in
Definition 2 to model the global spatial—spectral correlations
of an HSI. Meanwhile, we also consider the orthogonality of the
factor matrices. Specifically, a rank-(r1, r2, r3) TKD for a given
third-order tensor X ∈ RI1×I2×I3 is expressed as

M1 : X = C ×1 U1 ×2 U2 ×3 U3,Ui ∈ St(Ii, ri), i = 1, 2, 3.

where C is the core tensor, Uis are factor matrices, St(Ii, ri) =
{Ui ∈ RIi×ri : UT

i Ui = Iri} denotes the Stiefel manifold, i.e.,
the set of columnwise orthonormal matrices of size Ii × ri. On
the one hand, the unconstrained TKD is in general not unique,
imposing the orthogonality constraint on the factor matrices
can assist in guaranteeing the uniqueness of the Tucker rep-
resentation. On the other hand, the Tucker model with factor
orthogonality constraint can be regarded as an extension of the
SVD model, we can employ algorithms like HOSVD or HOOI
to find solutions with high accuracy, thereby preserving the key
features of HSIs [33].

2) Selection of M2: The regularizer M2 is used for sparse
noise removal, it is essentially a combinatorial optimization
problem with L0 minimization, i.e., M2(S) can be modeled as

M2(S) := ‖S‖0 (4)

where ‖ · ‖0 represents the number of nonzero elements. How-
ever, L0-norm is nonsmooth, which leads to an NP-hard prob-
lem. To overcome this problem, previous denoising works
always used the convex L1-norm as the relaxation to restrict
this sparsity, i.e.,

M2(S) := ‖S‖1 (5)

where ‖ · ‖1 is defined as the sum of absolute values of all
elements.

Actually, if the degraded data Y is not severely corrupted
by sparse noise, the sparse fitting term should be less or null
penalized, while enforcing those data that are more likely to be
severely damaged. However, L1-norm adds the absolute values
of all elements together, which indicates that larger elements
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Fig. 1. Singular values of the unfolding matrices. (a) Mode-1 unfolding. (b) Mode-2 unfolding. (c) Mode-3 unfolding.

Fig. 2. Illustration of convex and nonconvex functions.

are penalized more heavily than smaller ones, thus resulting in
a biased estimator [32].

In order to obtain more desirable sparsity solutions, some
nonconvex data fitting terms were discussed to approximate
the L0-norm. In Fig. 2, we plot the L0-norm, L1-norm, L1−2-
norm, and some nonconvex functions, including L1/2-norm,
MCP [18], [19], and SCAD [20] penalized likelihood functions
for scalars. It is easy to see that the L1-norm, L1−2-norm, as
well as the nonconvex functions, deviate significantly from 1
when the elements are greater than 1, thus can not provide the
accurate sparse measurement.

To this end, we employ the L0-norm directly as the sparsity
measure for sparse noise removal, which makes our model utilize
the intrinsic sparsity information.

3) Selection of ‖ �X ‖p,1: Due to the edge of the object,
HSIs always exhibit piecewise smoothness [23], [34]. To verify
this structure, we plot the distribution histogram of gradient
values along with different modes of an HSI in Fig. 3. The
histogram shows that most gradient values between adjacent
pixels in both spatial and spectral domains are close to zero,
which demonstrates the piecewise smoothness of the HSI. To
characterize this prior information, the TV regularizer has been
widely used in the computer vision field, which can be formu-
lated as

‖ �X ‖p,1:=
∑
i,j,k

(w1| �h X (i, j, k)|p + w2| �v X (i, j, k)|p

+ w3| �s X (i, j, k)|p)1/p

where wi(i = 1, 2, 3) are the weights to control the smoothness
strength.

When p = 1(or p = 2), ‖ �X ‖p,1 represents the well-known
anisotropic (or isotropic) spatial-spectral TV (SSTV) [8], [19],
[25], i.e.,

‖ �X ‖ani
SSTV:=

∑
i,j,k

w1| �h X (i, j, k)|+ w2| �v X (i, j, k)|

+ w3| �s X (i, j, k)|

‖ �X ‖iso
SSTV:=

∑
i,j,k

(w1| �h X (i, j, k)|2+w2| �v X (i, j, k)|2

+ w3| �s X (i, j, k)|2)1/2.

Xu et al. [31] pointed out that the gradient distributions of
HSIs are heavy-tailed, and the anisotropic (isotropic) SSTV can
not precisely describe this feature. To this end, they proposed a
hyper-Laplacian spectral-spatial total variation (HTV)

‖ �X ‖HTV:=
∑
i,j,k

(w1| �h X (i, j, k)|1/2

+ w2| �v X (i, j, k)|1/2

+ w3| �s X (i, j, k)|1/2)1/2

which is also called as L1/2-norm based SSTV.
Subsequently, Zeng et al. developed a 3-D L1−2 SSTV [24]

to globally represent the smoothness prior of HSIs

‖ �X ‖L1−2SSTV:=‖ �X ‖ani
SSTV −α ‖ �X ‖iso

SSTV

whereα ∈ [0, 1] is a regularization parameter. To further explore
the shared sparse pattern of a difference image, Chen et al. [15]
introduced a weighted L2,1-norm based group sparsity TV

‖ �X ‖GroupTV:=
∑
i,j

w1 ‖ �hX (i, j, :) ‖2

+ w2 ‖ �vX (i, j, :) ‖2 .

Actually, the design of ‖ �X ‖p,1 can be interpreted as how to
characterize the sparsity of the gradient image domain. Although
the above L1/2-norm, L1−2-norm, and L2,1-norm based SSTV
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Fig. 3. Histogram of gradient values along each direction. (a) Horizontal. (b) Vertical. (c) Spectral.

regularizers can overcome the shortcoming of the anisotropic
(isotropic) SSTV to some extent, they can not suppress arti-
facts effectively when dealing with the images with complexity
structure. Considering the superiority of L0-norm in promoting
the piecewise smoothness [23], [29], [35], [36], we employ the
following weighted spectral—spatial L0 gradient regularization
to describe the local smoothness of HSIs

‖ � X‖0 :=
∑
i,j,k

w1| �h X (i, j, k)|0 + w2| �v X (i, j, k)|0

+ w3| �s X (i, j, k)|0.

The superiority of the weighted spectral—spatial L0 gradi-
ent regularization will be shown via extensive experiments in
Section IV.

B. Proposed Model

In our work, we aim to exploit the intrinsic sparsity of cor-
ruption and gradient image domains simultaneously. Based on
the above discussion, we propose a denoising model via L0

regularized low-rank Tucker decomposition (L0RLRTD) for
HSI mainly with Gaussian noise and sparse noise

argmin
X ,S,N

τ ‖ �X ‖0 +λ‖S‖0 + μ ‖ N ‖2F

s.t. Y = X + S +N
X = C ×1 U1 ×2 U2 ×3 U3

Ui ∈ St(Ii, ri), i = 1, 2, 3. (6)

where τ , λ, and μ are the regularization parameters to control
the tradeoff between the sparsity and smoothness, N represents
the Gaussian noise. It is obvious that model (6) is nonsmooth
and nonconvex because of the TKD and two L0-norm-based
regularizers. Compared to the methods using L1-norm-based
regularizers, the proposed L0RLRTD has the following distinc-
tive advantages:

1) In the corruption domain, the L0-norm regularizer ‖S‖0
could characterize the intrinsic quality of the sparse noise
S such as impulse noise, stripes, and deadlines, thus it
can facilitate exact recovery of sparse signal with higher
probability.

2) In the gradient image domain, minimizing the L0-norm-
based gradient operator ‖ �X ‖0 not only protects the
piecewise smoothness, but also maintains sharp edges,
thus more useful edge information can be better preserved.

Next, we will introduce the solving process of the proposed
L0RLRTD (6) in detail.

C. Optimization Procedure

In this section, we introduce how to solve the proposed
L0RLRTD model (6) by the ADMM [37] algorithm with a
hard-thresholding operator (short for ADMM-HT).

1) Hard-Thresholding Operator: Before solving the prob-
lem (6), we introduce the hard-thresholding operator to tackle
the following nonsmooth nonconvex problem

min
x∈Rn

f(x) = η ‖ x ‖0 +
1

2
‖ x− u ‖2F (7)

where η > 0 represents a regularization parameter, x =
[x1, x2, . . ., xn] is a variable, u = [u1, u2, . . ., un] is a given
vector, and f(x) denotes the objective function. Next, we show
that the solution of (7) can be given by a simple explicit formula.

It is important to note that the minimization functional is
separable and, therefore, we can minimize with respect to xi

separately. There are two possible cases for each xi.
Case 1: xi �= 0. The objective functional value of (7) related

to the xi is f(xi) = η + 1
2 (xi − ui)

2, and the minimum value
is η at xi = ui.

Case 2: xi = 0. The objective functional f(xi) =
1
2u

2
i .

Then, we can easily derive the solution of problem (7), and
denoted as Hard-Thresholding operator [29], [38], [39]

proxη‖·‖0(u) =

{
x ∈ Rn|xi =

⎧⎨
⎩

ui if |ui| >
√
2η,

{0, ui} if |ui| =
√
2η,

0 otherwise,

}
.

2) Optimization Procedure: First, we introduce several aux-
iliary tensors and derive the subsequent equivalent formulation

argmin
C,Ui,X ,F,Z,S,N

τ ‖ F ‖0 + λ‖S‖0 + μ ‖ N ‖2F

s.t. Y = X + S +N
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X = Z,�Z = F
X = C ×1 U1 ×2 U2 ×3 U3

Ui ∈ St(Ii, ri), i = 1, 2, 3. (8)

The augmented Lagrangian function related to (8) is

Lβ(X ,F ,Z,S,N ,Γ1,Γ2,Γ3) = τ ‖ F ‖0 + λ‖S‖0
+ μ ‖ N ‖2F +〈Γ1,Y − X − S −N〉+ 〈Γ2,X − Z〉

+ 〈Γ3,�Z −F〉+ β

2
(‖ Y − X − S −N ‖2F

+ ‖ X − Z ‖2F + ‖ �Z − F ‖2F ). (9)

under the constraints X = C ×1 U1 ×2 U2 ×3 U3, Ui ∈
St(Ii, ri). Γi ∈ RI1×I2×I3 are the Lagrange multipliers, β > 0
is the penalty parameter. By applying the ADMM, all subprob-
lems of the proposed algorithm can be very efficiently solved.

Given Z0,S0,N 0, and (Γ0
1,Γ

0
2,Γ

0
3), the ADMM-HT iterates

as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(X k+1,Fk+1)

= argmin
X ,F

{Lβ(X ,F ,Zk,Sk,N k,Γk
1 ,Γ

k
2 ,Γ

k
3)|X ∈ T }

(Zk+1,Sk+1)

= argmin
Z,S

{Lβ(X k+1,Fk+1,Z,S,N k,Γk
1 ,Γ

k
2 ,Γ

k
3)}

N k+1

= argmin
N

{Lβ(X k+1,Fk+1,Zk+1,Sk+1,N ,Γk
1 ,Γ

k
2 ,Γ

k
3)}⎛

⎜⎝
Γk+1
1

Γk+1
2

Γk+1
3

⎞
⎟⎠=

⎛
⎝Γk

1+β(Y − X k+1−Sk+1−N k+1)
Γk
2+β(X k+1−Zk+1)
Γk
3+β(�Zk+1Fk+1)

⎞
⎠

(10)

(11)

(12)

(13)

where T = {X |X = C ×1 U1 ×2 U2 ×3 U3,Ui ∈ St(Ii, ri),
i = 1, 2, 3}. Before ending this section, we further discuss the
specific solution of the subproblems in (10)–(12) as follows.

1) Update (C,Ui,X ,F): Extracting all terms containing X
from the augmented Lagrangian function (9), we can
obtain

argmin
X ,C,Ui

〈Γ1
k,Y − X − Sk −N k〉+ 〈Γ2

k,X − Zk〉

+
β

2
(‖ Y − X − Sk −N k ‖2F + ‖ X − Zk ‖2F )

s.t. X = C ×1 U1 ×2 U2 ×3 U3,Ui ∈ St(Ii, ri).

Then ignoring the constant term, we need to solve the following
equivalent problem:

argmin
C,Ui,Ui∈St(Ii,ri)

β

∥∥∥∥C ×1 U1 ×2 U2 ×3 U3

− 1

2

(
Y − Sk −N k + Zk +

Γk
1

β
− Γk

2

β

)∥∥∥∥
2

F

.

We can obtain Ck+1 and Uk+1
i by the high-order orthogonal

iteration (HOOI) algorithm, then update X as follows:

X k+1 = Ck+1 ×1 U
k+1
1 ×2 U

k+1
2 ×3 U

k+1
3 . (14)

The augmented Lagrangian functions w.r.t. F is given by

argmin
F

τ‖F‖0 +
β

2

∥∥∥∥�Zk −F +
Γk
3

β

∥∥∥∥
2

F

we can update F as

Fk+1 = prox τ
β ‖·‖0

(
�Zk +

Γk
3

β

)
. (15)

2) Update (Z,S): Extracting all terms containing Z from
(9), we can obtain the subproblem w.r.t. Z

argmin
Z

〈Γ2
k,X k+1 −Z〉+ 〈Γ3

k,�Z −Fk+1〉

+
β

2
(‖ X k+1 −Z ‖2F + ‖ �Z − Fk+1 ‖2F ).

Via the optimality condition, Z can be obtained by solving the
following linear system:

(βI + β �∗ �)Z = βX k+1 + β �∗ (Fk+1) + Γ2
k −�∗Γ3

k.
(16)

To improve the computational efficiency, we utilize conjugate
gradient (CG) method to solve the large-scale problem (16).

Similarly, the S-update is given by

argmin
S

λ‖S‖0 +
β

2

∥∥∥∥Y − S − X k+1 −N k +
Γk
1

β

∥∥∥∥
2

F

. (17)

Using the hard-thresholding operator, the problem (17) can be
tackled by

Sk+1 = prox λ
β ‖·‖0

(
Y − X k+1 −N k +

Γk
1

β

)
(18)

3) UpdateN : By keeping the other variables fixed,N -update
can be formulated as follows:

argmin
N

μ ‖ N ‖2F +
β

2

∥∥∥∥Y − X k+1 − Sk+1 −N +
Γk
1

β

∥∥∥∥
2

F

.

Setting the derivative of the above formula with respect to vari-
ation N and making it equal to zero, we obtain the closed-form
solution as

N k+1 =
1

2μ+ β
(Γk

1 + βY − βX k+1 − βSk+1). (19)

D. Rank-Increasing Scheme

Notably, the HOOI algorithm used to solve (14) needs to
know the rank, which is often unknown for an incomplete tensor.
Usually, we manually tune the tensor rank as a hyper-parameter,
but this tactic is not appropriate for the TKD-based approaches,
because: 1) the Tucker rank of an N th-order tensor is a vector
withN components, and each component may differ. As the ten-
sor dimension order increases, there are numerous possibilities
for the combination of rank components, making it infeasible
to determine the proper rank manually, thus cannot guarantee
the recovery accuracy; 2) the computational complexity of the
HOOI algorithm is exponentially related to the size of the
tensor rank [40], which means that the denoising algorithm is
time-consuming to deal with the tensor with a higher rank.
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To overcome these challenges, we adopt a rank-increasing
scheme to dynamically refine the tensor rank r = (r1, r2, r3) at
each iteration step. This scheme starts with an underestimated
rank r0 = (r01, r

0
2, r

0
3), then the corresponding rank ri increases

to min{ri +
r, rmax
i } at each iteration if∣∣∣∣1− ‖X k+1‖F

‖X k‖F

∣∣∣∣ � 1e− 5 (20)

where rmax = (rmax
1 , rmax

2 , rmax
3 ) is a given upper bound of the

Tucker rank, 
r represents the step size, which is a positive
integer. The criterion (20) ensures that when the recovery results
of two successive steps change relatively small, i.e., the algo-
rithm reaches a local or global optimum, then the rank remains
unchanged at the current iteration.

In the subsequent numerical experiments, we set r0i = round
(20%Ii), and rmax

i = round(90%Ii) for i = 1, 2, where round
(a) means to select the nearest integer of a. Since the rank
along spectral dimension of an HSI is much smaller than its
dimension [7], we use the HSI subspace estimation method (e.g.,
HySime [41]) to estimate the rank for spectral mode.

Compared with the rank-fixed scheme, the advantages of
the rank-increasing scheme are twofold: 1) it avoids the rank
selection burden, that is, we need not to tune the rank as a
parameter by running the denoising algorithm several times,
which greatly reduces the workload; 2) even though we can
find the proper rank in advance, the computational efficiency
of the denoising algorithm with a fixed rank is lower than the
rank-increasing scheme. Because the rank-increasing scheme
starts from a relatively smaller rank, thus reduces the computa-
tion time for the corresponding tensor decomposition. We will
validate these advantages in Section IV-D.

E. Algorithm and Computational Complexity Analysis

Summarizing the aforementioned discussion, we display the
specific algorithm in Algorithm 1.

Except for X and Z solvers need via iterative algorithms,
the other subproblems in Algorithm 1 can be solved through
simple algebraic operations of addition and subtraction, which
makes the process relatively fast. To simplify the analysis, we
let r̂ = r1 = r2 = r3, the specific analysis is as follows:

1) As for X , C,Ui, the total computational complexity
of HOOI is O((I1I2I3r̂ + (I1 + I2 + I3)r̂

4 + r̂6)t)[40],
where t is the number of iterations in HOOI.

2) As for Z , the cost is O(I1I2I3h) [29], where h is the
number of iterations in CG.

Thus, the overall computational complexity of each iteration
in the proposed Algorithm 1 is bounded by O((I1I2I3r̂ + (I1 +
I2 + I3)r̂

4 + r̂6)t+ I1I2I3h).

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
L0RLRTD model on both synthetic and real datasets. Specifi-
cally, the original synthetic HSI data can be viewed as clean data,
and we manually add different types of noise to simulate real
noise. Unlike the synthetic datasets, the noise type and intensity
of the real HSIs are unknown, as a result, recovering clean HSIs

Algorithm 1: ADMM-HT With the Rank-Increasing
Scheme.

Input: The observed noisy image Y , the regularized
parameters τ , λ, μ, the weight wi, the initial rank
r0 = (r01, r

0
2, r

0
3), the maximum rank

rmax = (rmax
1 , rmax

2 , rmax
3 ), the step size 
r, and the

penalty parameter β
Output: The restored image X
1: Initialization: X 0 = F0 = Z0 = S0 = N 0 =

zeros(size(Y)), Γ0
1 = Γ0

2 = Γ0
3 =

zeros(size(Y)), k = 0
2: Repeat
3: • Update X k+1,Fk+1,Zk+1,Sk+1,N k+1 via

(14)–(19)
4: • Update the multipliers Γk+1

1 , Γk+1
2 , Γk+1

3 via (13)
5: • Update the rank rk+1=(rk+1

1 , rk+1
2 , rk+1

3 ) via
the rank-increasing scheme in Section III-D

6: • k := k + 1
7: Until ‖Xk+1−Xk‖F

‖Xk‖F < 1e− 5 or k > 200

from such data is an extremely challenging task since there is
no ground truth data as a reference.

A. Experiment Setup

1) Comparison Methods: As a comparison, we select nine
representative denoising methods in the experiments, includ-
ing a fast and flexible denoising convolutional neural network
(FFDNet) [1], a bandwise asymmetric Laplacian noise-based
matrix factorization (BALMF) model [42], a three-directional
log-based tensor nuclear norm (3DLogTNN) method [30], an
improving sparse noise removal via L0-Norm optimization (L0-
PLRTV) [22], a TV regularized low-rank tensor decomposition
(LRTDTV) method [8], an extended model of LRTDTV with a
weighted group sparsity regularizer (LRTDGS) [15], a low-rank
tensor factorization with hyper-Laplacian total variation prior
(LTHTV) [31], a L1−2SSTV regularized local low-rank tensor
recovery model (TLR-L1−2SSTV) [24], and a L0 gradient reg-
ularized low-rank tensor factorization (LRTFL0) method [29].
We choose the best parameters for each algorithm based on
the tuning suggestions given in each paper to achieve optimal
performance.

2) Parameter Setting: In Algorithm 1, some parameters in-
cluding τ, λ, μ, wi, and 
r need to be carefully identified.
Typically, we tune one of parameters at a time while the other
parameters are fixed, and repeat this process until finding a
set of desirable parameters. To assess the impact of these pa-
rameters under different noise cases, we choose the synthetic
Washington DC (WDC) Mall dataset as our experimental object
and mean peak signal-to-noise ratio (MPSNR) as the evaluation
metric (note that the noise details of four cases can be found in
Section IV-B.).

1) The regularization parameters τ , λ, andμ: In Fig. 4(a)–(c),
we show the MPSNR curves of four cases with respect to
the τ , λ, and μ selected different values. The trends of
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Fig. 4. Sensitivity of parameters: (a) τ , (b) λ, (c) μ, (d) w3, (e) 
r.

these curves generally exhibit a monotonically increasing
pattern initially, reaching a peak, and then either declining
or stabilizing. To balance the performance and robustness,
we set τ = 0.05, λ ∈ {8, 30}, and μ = 300 in the subse-
quent experiments.

2) The weight of spectral dimensional w3: The relationship
of MPSNR with w3 is shown in Fig. 4(d). We can see
that the best results are achieved with w3 = 0.05 in all the
experiments. Based on these results, we set w3 = 0.05 in
all experiments.

3) The step size 
r: The change curves of MPSNR value
with different step sizes 
r are shown in Fig. 4(e). As
we can see, the peak values of all experiments are taken
at 
r = 6, and then the MPSNR curves tend to stabilize
when 
r > 6. Thus, we set 
r = 6 in all experiments.

Moreover, the selection of r0 and rmax have been suggested in
the Section III-D; the penalty parameterβ is initialized to a small
value 0.01, then increase it by a constant ratio ρ ∈ [1.1, 1.5]. It
is worth noting that the optimal parameters for each dataset may
be different, we try best to fix them as possible.

B. Experiments on Synthetic Data

To simulate noise HSI data, we introduce four types of noise
to the original synthetic HSI data. In this section, we show the
good performance of the proposedL0RLRTD model on the three
synthetic HSI datasets. These datasets include

1) Indian Pines (IndianP): The synthetic data was generated
using the ground truth of the Indian Pines dataset1, and the
spectral signatures were extracted from the USGS digital
spectral library.2 This synthetic HSI data can be consid-
ered as clean data, which is the size of 145 × 145 × 224.
Some parameters for IndianP dataset are suggested as:
r0 = (30, 30, 10), rmax = (130, 130, 10).

2) WDC Mall: This dataset originally comprises 1208 ×
307 pixels and includes 191 spectral bands, which was
acquired through the hyperspectral digital imagery col-
lection experiment (HYDICE) sensor. To reduce the com-
putational load, we only extract parts that contain the most
details, the final dimension is 256 × 256 × 191. Some
parameters for WDC are suggested as: r0 = (51, 51, 5),
rmax = (230, 230, 5).

3) NC16: This dataset3 was collected in the Yellow River
Delta National Nature Reserve in Shandong Province,
China, which contains 1060 × 976 pixels and 270 spectral
bands. To reduce the computational load, a subimage with
size 300 × 180 × 270 is used in our experiments. Some
parameters are suggested as: r0 = (60, 36, 3), rmax =
(270, 162, 3).

1[Online]. Available: https://engineering.purdue.edu/biehl/MultiSpec/hyper
spectral.html

2[Online]. Available: http://speclab.cr.usgs.gov/spectral.lib06
3[Online]. Available: https://drive.google.com/drive/folders/1HMTIod

CUcXgMIaijOco_wC8uK

https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
http://speclab.cr.usgs.gov/spectral.lib06
https://drive.google.com/drive/folders/1HMTIodCUcXgMIaijOco_wC8uK
https://drive.google.com/drive/folders/1HMTIodCUcXgMIaijOco_wC8uK
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Fig. 5. Denoised results by all the compared methods: (a) Original image, (b) the simulated noise image of Case 4, (c) FFDNet, (d) BALMF, (e) 3DlogTNN,
(f) L0-PLRTV, (g) LRTDTV, (h) LRTDGS, (i) LTHTV, (j) TLR-L1−2SSTV, (k) LRTFL0, (l) proposed.

Four types of noise are added to the synthetic datasets, specif-
ically as follows:

Case 1: We add zero-mean Gaussian noise with the same
distribution to each band, where the variance of the Gaussian
noise is 0.1.

Case 2: The Gaussian noise added to each band is same as
Case 1. Moreover, we introduce some stripes with the randomly
selected number ranging from 3 to 10 and widths ranging from
1 to 3 in bands 91 to 130.

Case 3: We add the same zero-mean Gaussian noise distribu-
tion and percentage of impulse noise to each band. Specifically,
the variance of the Gaussian noise is 0.075, and the percentage of
impulse noise is 0.15. Additionally, we introduce the deadlines
same as Case 2.

Case 4: Similar to Case 3, Gaussian noise, impulse noise,
and deadlines are added for each band. Moreover, we introduce
some stripes from band 161 to band 190, with the number of
stripes being randomly selected from 20 to 40.

Next, we evaluate the HSI restoration performances of all
comparison approaches from two perspectives, that is, visual
and quantitative comparisons.

1) Visual Quality Comparison: We select a representative
band of IndianP to compare the visual quality of the results

recovered by all methods. Fig. 5 displays the visual results of
band 100, which is corrupted by mixed noise in Case 4. To
facilitate visual comparison, a blue box is marked for the same
subregion in each subfigure, and the corresponding subregion is
further magnified within a red box.

From Fig. 5, it is easy to make several conclusions. First,
FFDNet and 3DlogTNN are poorly used to remove the noise
with obvious structure, such as deadlines. Second, BALMF,
L0-PLRTV, TLR-L1−2SSTV, and LRTFL0 can achieve supe-
rior performance for deadlines removal, but cannot completely
eliminate the other noise. Third, while LRTDTV, LRTDGS, and
LTHTV remove all kinds of noise better, they also result in the
loss of some details. From the enlarged box, we can observe
that the proposed method is capable of better removing the
Gaussian noise and sparse noise including impulse noise, stripes,
deadlines, while effectively preserving the essential details of the
underlying HSI. This manifests thatL0-norm is more effective in
exploring the sparsity of corruption and gradient image domains.

2) Quantitative Comparison: In simulated experiments, the
denoising results of HSIs can be objectively evaluated by the
MPSNR, mean structural similarity index (MSSIM), and Erreur
Relative Globale Adimensionnelle de synthèse (ERGAS). Their
definitions can be found in [8], where MPSNR and MSSIM
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TABLE II
QUANTITATIVE EVALUATION ON THE SYNTHETIC INDIAN PINES

TABLE III
QUANTITATIVE EVALUATION ON THE SYNTHETIC WDC

are the average values of PSNR and SSIM for all bands of an
HSI, respectively. Better HSI denoising results are indicated by
higher MPSNR, MSSIM, and lower ERGAS values.

Tables II–IV summarizes three quantitative assessments of
different denoising methods under Cases 1—4 for three HSIs,
respectively. The best results for each quality metric are high-
lighted in bold. Clearly, the proposed L0RLRTD demonstrates
an obvious advantage for the HSI denoising over other compared
approaches. Additionally, combining the visual comparison, we
observe that the DL-based FFDNet method could not success-
fully recover the HSIs contaminated by mixed noise in Case 3

and Case 4. The primary reason is that FFDnet is a single-band
deep denoiser, which ignores the correlation between different
bands of an HSI, consequently leading to a poor recovery effect.

To make a more comprehensive comparison of the perfor-
mance for all restoration methods, we present the PSNR value
of each band for IndianP in Fig. 6. A more visual representation
of the higher PSNR values achieved by the proposed L0RLRTD
method can be observed on almost all bands. Furthermore, we
present the spectral signatures before and after restoration. Fig. 7
shows the digital number (DN) values of IndianP at the (30,30)
pixel in Case 4. Combining with the ERGAS values in Table II,
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TABLE IV
QUANTITATIVE EVALUATION ON THE SYNTHETIC NC16

Fig. 6. PSNR values for each band: (a) Case 1, (b) case 2, (c) case 3, (d) case 4. Best viewed in ×2 sized color pdf file.
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Fig. 7. Curves of spectral signatures pixel (30,30) restored by all compared methods under IndianP of Case 4. (a) Original. (b) Noise. (c) FFDNet. (d) BALMF.
(e) 3DlogTNN. (f) L0-PLRTV. (g) LRTDTV. (h) LRTDGS. (i) LTHTV. (j) TLR-L1−2SSTV. (k) LRTFL0. (l) Proposed.

it is evident that the proposed L0RLRTD method yields the best
spectral signature.

C. Experiments on Real-World Data

To verify the effectiveness of the proposed method in handling
actual noisy HSIs, two typical real-world datasets are used to
conduct experiments including the Shanghai dataset with the
size of 300 × 300 × 155, which was captured by the GaoFen-5
satellite, and the Hyperspectral Digital Imagery Collection Ex-
periment (HYDICE) Urban4 with the size of 307 × 307 × 210.
Some parameters are suggested as follows: r0 = (60, 60, 5),
rmax = (270, 270, 5) for Shanghai, and r0 = (61, 61, 5), rmax =
(276, 276, 5) for HYDICE Urban. The remaining parameters
can refer to the parameter selection used in the simulation
experiment.

Visual results of band 152 in Shanghai and band 200 in
Urban are shown in Figs. 8 and 9, respectively. According to
the visual results, we draw the following conclusions: first,
in Figs. 8(b) and 9(b), the DL-based FFDNet method caused

4[Online]. Available: http://www.tec.army.mil/hypercube

artifacts, and some details are not well preserved, which demon-
strates that the trained network is not necessarily able to
deal with the complex noise in real scenes; second, the other
model-based test methods can suppress amount of the noise
to restore the sketch of the HSIs, however, some methods
including 3DlogTNN, L0-PLRTV, and LRTF L0 cannot com-
pletely remove the stripes noise in the red rectangle area of
the Urban dataset; third, BALMF, LRTDTV, LRTDGS, and
LTHTV could obtain better visual results for two real HSIs, but
they inevitably caused blurry, thus affecting the visual effect.
By comparison, the superiority of the proposed L0 RLRTD
method is evident in its ability to remove noise and preserve
details.

Moreover, we employ the Q-metric [43], a blind image content
measurement index, to assess the effectiveness of all compared
methods on real-world datasets. The Q-metric value is calculated
for each band, and the average is taken as the final evaluation
result. Table V presents the evaluation results, we can observe
that the proposed L0RLRTD yields the best evaluation perfor-
mance. Based on both the visual results and Q-metric values,
we can conclude that the proposed L0RLRTD method could
successfully maintain the structural information and suppress

http://www.tec.army.mil/hypercube
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Fig. 8. Denoised visual results of band 152 in real HSI Shanghai. (a) Noise. (b) FFDNet. (c) BALMF. (d) 3DlogTNN. (e) L0-PLRTV. (f) LRTDTV. (g) LRTDGS.
(h) LTHTV. (i) L1−2SSTV. (j) LRTFL0. (k) Proposed.

Fig. 9. Denoised visual results of band 200 in real HSI HYDICE Urban. (a) Noise. (b) FFDNet. (c) BALMF. (d) 3DlogTNN. (e) L0-PLRTV. (f) LRTDTV.
(g) LRTDGS. (h) LTHTV. (i) L1−2SSTV. (j) LRTFL0. (k) Proposed.

noise for HSIs, even when ground truth HSI is not available as
a reference.

D. Technique Validation of the L0RLRTD

1) Ablation Experiments: To validate the effectiveness of
twoL0-based regularizers, we compare the proposedL0RLRTD
model (6) with two models on the synthetic IndianP dataset,
including 1) Model 1: L0RLRTD model (6) without the TV
regularizer term ‖ �X ‖0, that is τ = 0; 2) Model 2:L0RLRTD
model (6) without the sparse regularizer term ‖S‖0, that is
λ = 0. The comparison results of three evaluation indexes are
presented via a histogram in Fig. 10(a)–(c). The superiority
of the proposed L0RLRTD is evident, which validates that

the L0-based regularizer constraints for sparse noise and gra-
dient image domains could promote the recovery results of
HSIs.

2) Effectiveness of the Rank-Increasing Scheme: Compared
to the commonly used rank-fixed strategy, the rank-increasing
strategy has two following advantages:

1) Using the rank-increasing strategy not only alleviates the
burden of selecting a proper rank, but also guarantees the
recovery accuracy.

2) The denoising algorithm with the rank-increasing strategy
iterates from a small rank, which reduces the time cost of
the corresponding tensor decomposition. Therefore, the
running time under the rank-increasing scheme is faster
than the rank-fixed strategy when executing the ADMM-
HT algorithm once.
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TABLE V
BLIND QUALITY ASSESSMENT USING THE Q-METRIC IN REAL DATA

EXPERIMENT

Fig. 10. Performance comparison of Model 1, Model 2 and the proposed
L0RLRTD: (a) MPSNR, (b) MSSIM, (c) ERGAS.

To validate these advantages, we select the synthetic IndianP
dataset as the objective and then show the relative square error
(RSE [44]) and the time cost using Algorithm 1 with two rank
selection schemes in Fig. 11. As suggested in [8], we set the
rank as [120,120,10] for the rank-fixed scheme. The lower RSE
values in Fig. 11(a) indicate that the ADMM-HT algorithm using
the rank-increasing scheme achieves higher accuracy than using
the rank-fixed scheme. From Fig. 11(b), we can see that the
ADMM-HT algorithm with the rank-increasing scheme takes
less time than the rank-fixed scheme. These results conclusively
demonstrate the superiority of the rank-increasing strategy.

3) Time Comparison: In Table VI, we record the running
time of the experiments on the synthetic WDC dataset in sec-
onds. For fairness, we do not compare the FFDnet method,
because it needs to run in a server with GPU, while other methods

TABLE VI
TIME COMPARISON OF NINE METHODS ON THE SYNTHETIC WDC MALL

are performed in MATLAB (2017a) on a desktop computer with
3.3 GHz CPU and 16 GB RAM.

We can clearly see that the low-rank matrix factorization-
based BALMF takes the shortest time, but it is hard to han-
dle the mixed noise removal. The time comparison among
LRTDTV, LTHTV, and our L0RLRTD confirms that using the
rank-increasing scheme partly reduces the computational com-
plexity. It also can be seen that the proposed L0RLRTD has an
obvious advantage compared to the 3DlogTNN, andL0-PLRTV.
Although our L0RLRTD is slightly slower than LRTDGS and
TLR-L1−2SSTV, it achieves the best performances in the HSI
restoration experiments.

4) Robustness of the Rank-Increasing Scheme: In our rank-
decreasing scheme, the initial rank r0 and the maximum rank
rmax should be given in advance, we shall demonstrate that our
algorithm is robust to the selection of r0 and rmax.

We use the synthetic IndianP dataset as our objective. For the
spectral mode, we directly adopt the HySime [41] to estimate
the rank. For two spatial modes, we take 5%, 10%, 15%, 20%,
25%, 30%, 35%, and 40% of dimension size Ii as r0i (i = 1, 2),
respectively. We compare the results when selecting different r0

via the histogram in Fig. 12(a). It is not difficult to observe that
the MPSNR value changes small in each case, which means that
the selection of r0 is robust to the performance of the algorithm.
Similarly, we set the rmax

i as 75%, 80%, 85%, 90%, and 95%
of dimension sizes Ii, respectively. The results of four cases are
shown in Fig. 12(b). The little difference between the maximum
and minimum MPSNR value indicates the robustness of the rmax

to our algorithm.
5) Convergence Discussion: It is worth emphasizing that

the L0RLRTD model proposed in this study is nonconvex, the
convergence to the theoretical guarantee for the global minimum
cannot be provided. Next, we demonstrate the convergence of
the proposed Algorithm 1 by numerical experiments. Taking
three simulated HSI datasets for example, the changes of the
MPSNR and RSE values for theL0RLRTD method under Case 1
are shown in Fig. 13 (the experiments under other noise cases
have similar results). With an increasing number of iterations,
the MPSNR and RSE curves of IndianP, WDC, and NC16
reach stable values, indicating the convergence of the proposed
Algorithm 1. At the same time, we can see that the curves do not
necessarily increase or decrease monotonically. This behavior
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Fig. 11. Performance comparison between two rank selection schemes on the synthetic INDIAN PINES: (a) RSE, (b) time.

Fig. 12. Robust of the rank selection: (a) r0, (b) rmax.

Fig. 13. Changes in MPSNR and RSE values with an increasing iteration number: (a) MPSNR, (b) RSE.

can be attributed to the nonconvexity of the proposed model and
the dynamic updates of the penalty parameter β in Algorithm 1.

V. CONCLUSION

In this study, we introduce a novel method for HSIs denoising
via L0 regularized low-rank tensor decomposition. Specifically,

our approach utilizes the low-rank TKD with the Stiefel man-
ifold to capture the spatial-spectral correlation of HSIs. For
the noise corruption domain, we use the Frobenius norm to
remove the Gaussian noise. Instead of the L1-norm, we employ
the L0-norm for the sparse noise removal, which can better
utilize the essence of sparse information. For the gradient image
domain, we introduce a weighted L0-norm on the gradient of
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each pixel to explore the local piecewise smoothness structure
of HSIs. Then, we design an algorithm named ADMM-HT to
deal with the L0-norm-based problem, meanwhile, we incor-
porate the rank-increasing scheme into ADMM-HT, so as to
avoid the rank selection burden and improve the computational
efficiency. Finally, through substantial experiments conducted
on both simulated and real datasets, we demonstrate the supe-
rior performance of the proposed L0RLRTD over other meth-
ods, as evidenced by both visual comparison and quantitative
evaluation.

Furthermore, we plan to integrate DL techniques [2], [3], [4],
[5], [6] with our model, leveraging the powerful learning and
representation abilities of neural network models to improve
recovery accuracy.
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