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A Novel Deep Multi-Instance Convolutional Neural
Network for Disaster Classification From
High-Resolution Remote Sensing Images

Chengfan Li"¥, Zixuan Zhang", Lan Liu

Abstract—The fully supervised deep convolutional neural net-
work (CNN) cannot detect the discriminant local information that
is responsible for spatial transformations in high-resolution re-
mote sensing images. To address the various types and missing
labels of natural disasters, a new deep multi-instance convolu-
tional neural network (DMCNN) model for disaster classification
in high-resolution remote sensing image is presented in this arti-
cle. Specifically, based on sample enhancement and atrous spatial
pyramid pooling, we first extract and integrate the features via the
CNN structure to obtain the instance feature of bags in the im-
age. Besides, introducing a prototype learning layer with distance
measure, the instance features extracted from pretrained CNN are
mapped into a series of prototype instance features with bag-level.
Subsequently, all instance features from prototype and bag take
part in disaster detection and image classification. Finally, we con-
duct extensive experiments on xBD dataset and discussions from
qualitative and quantitative aspects. Experimental results show
that the proposed DMCNN model achieves better classification
accuracy of natural disaster from high-resolution remote sensing
images compared to traditional CNNs, and effectively improves the
disaster classification performance with weakly supervised from
high-resolution remote sensing images.
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I. INTRODUCTION

ISASTERS, including natural disasters and man-made

disasters, can cause harm and huge losses to human life
and property safety [1], [2]. In general, natural disasters often
cause more damage than man-made disasters because of the
limited human disturbance [3], [4]. In terms of the differences of
natural disasters, the type of natural disaster can be divided into
geological-geomorphic disaster (e.g., earthquakes, volcanoes,
debris flows), meteorological-hydrological disaster (e.g., floods,
droughts, sandstorms, tsunamis), environmental pollution dis-
aster (e.g., forest-steppe fires, garbage pollution), ecological
disaster (e.g., biological disasters), etc.

As the performance improvement of satellite sensor, its ad-
vantages on wide coverage, low revisit period, and high spatial
resolution are prominent, so it can acquire quickly and accu-
rately detailed features of ground objects and be widely used in
disaster monitoring. However, compared with traditional natural
images, the complex types, uneven distribution, and multiscales
of ground objects in high-resolution remote sensing images are
very significant. To some extent, it increases the difficulty to
extract feature of ground object from high-resolution remote
sensing [5], [6]. Traditional classification method of remote
sensing images is mainly implemented by using visual-based
and pixel interpretation, which are usually used as an effec-
tive auxiliary means for remote sensing image processing and
analysis at present [7]. The subsequent object-oriented method
can make full use of ground object information (i.e., spectrum
features, space, shape, and texture), and has a good classifica-
tion effect [8]. However, the reasonable segmentation windows
and extracted features are not easily acquired and restrict the
accuracy of object-oriented method.

By simulating the working mechanism of human brain neu-
rons, deep learning can learn and make decisions from the com-
plex data. As one of the representative deep learning methods,
convolutional neural networks (CNNs) can automatically learn
and extract in-depth image features from large-scale data by
convolution layer, and overcome the ambiguity and uncertainty
of remote sensing classification [9], [10]. At present, deep
learning has been widely used in the field of disaster monitoring
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based on high-resolution remote sensing images, such as vol-
canic ash detection with moderate-resolution imaging spectro-
radiometer, surface deformation with synthetic aperture radar,
and earthquake-damaged buildings with UAV images [11], [12],
[13], However, on the one hand, the depth of these network
models and structure types are numerous and different in the field
of disaster monitoring, it affects the overall performance of deep
learning models and detection accuracy of ground object from
high-resolution remote sensing image [14], [15]. On the other
hand, the ground object shows clearly small target characteristics
with multiscale in the high-resolution remote sensing image, to
some extent, the atrous spatial pyramid pooling (ASPP) is able
to enlarge the receptive field of network and has good detection
effect for the multiscale targets. In addition, the lack of sufficient
sample data often results in poor generalization and overfitting
problems in disaster classification from high-resolution remote
sensing images [16].

Multi-instance learning (MIL) is first to infer and predict
whether unknown molecules are suitable for pharmaceuticals
via learning the characteristics of known molecules [17]. Dif-
ferent from the one-to-one relationship between samples and
features in traditional supervised learning, the training objects
in MIL are divided into bags and instances, as well as the bag
feature is composed of instance features and shows one-to-many
relationship between samples and features. In theory, the depth
features, obtained from the MIL framework, can be used in
weakly supervised disaster classification from high-resolution
remote sensing images because of more focus on the image (bag)
and image subblock (instance) features.

By combining the deep learning model with the specific
disaster classification of high-resolution remote sensing images,
areasonable deep learning network structure can be constructed
and then appropriate sample datasets are learned and trained,
which can not only obtain higher disaster classification accuracy
from high-resolution remote sensing image but also improve the
generalization and robustness of the proposed network model
[18], [19]. To this end, we design and propose a new deep multi-
instance convolutional neural network (DMCNN) by combining
the feature extraction with prototype learning to implement
the disaster classification from high-resolution remote sensing
image. In the DMCNN model, the input image is first trans-
formed by ASPP to enlarge the receptive field of the convolution
layer based on sample enhancement. Subsequently, we extract
and integrate the features via the CNN structure to obtain the
instance feature of bags in the image, and then the instance
features extracted by pretrained CNN network are mapped into
a series of prototype instance features with bag-level. Finally,
all instance features of disasters from prototype and bag are
integrated together to detect and classify from high-resolution
remote sensing images.

Overall, the contribution of this article can be summarized as
follows.

1) The prototype learning layer is introduced into deep MIL
structure to realize the learning of the relationship between
instance features and image features from the perspective
of bag-level.

2) Through incorporating multi-instance classifiers into an
integrated deep learning network, a new DMCNN disaster
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classification model for high-resolution remote sensing
image is proposed in this article and further validated
on publicly xBD dataset. Experiments show that it can
improve disaster classification accuracy and computation
performance of high-resolution remote sensing images
under weak supervision.

The rest of this article is organized as follows. Section II
reviews related work based on MIL, CNN, and disaster mon-
itoring with remote sensing images. Section III describes the
intuition behind the DMCNN model as well as its structure in
detail. Section IV presents the detailed experiments containing
datasets and environments. Section V shows the experimental
results and analysis from qualitative and quantitative aspects.
Section VI devotes the discussions for the experimental results.
Finally, Section VII concludes the article.

II. RELATED WORK
A. Multi-Instance Learning

To improve the accuracy of image classification, the MIL
framework focused on image block and subblock information
via extracting and representing multilevel semantic features,
is introduced into image processing [20], [21]. However, the
small target feature is easy to be interfered by the surrounding
noises, and this method is difficult to accurately obtain the
subtle features of local image details. To address this problem,
a new bag-level image classification method based on spatial
multi-instance sparse representation has gradually emerged [22].
In this method, sparse coding features of training samples can
be obtained by clustering algorithm and further used for clas-
sification by suitable classifier, and it can significantly enhance
key local features in the high-resolution remote sensing image.

The axial-parallel rectangle algorithm is originally used
specifically to solve the multi-instance problem. Since then, the
MIL gradually forms a series of classical algorithms [23], for
example, multi-instance algorithms with support vector machine
(SVM) and CNN, multi-instance multilabel, multi-instance ac-
tive learning, multi-instance clustering, etc. In line with the
different levels of measurement objects, the MIL can be divided
into two types, bag-based measurement and instance-based mea-
surement [24]. The former identifies different label information
by means of the feature discrimination algorithm with bag-level,
whereas the latter identifies the label in virtue of inference for
each instance based on the assumption that there is an equal
contribution to the label on instance and bag. In summary, the
latter has more computing power and speed than that of the for-
mer. However, in these traditional classical methods, features are
often acquired through manual design rather than deep learning,
and its real computational efficiency, accuracy, and robustness
are limited when dealing with large amounts of data [19].

B. Deep CNN

At first, the CNN can be traced back to the back propaga-
tion network in 1986 [25]; subsequently, a number of classical
models have been appeared, for example, AlexNet, VGGNet,
GoogleNet, fully convolutional networks, ParseNet, etc. [26],
[271, [28], [29], [30]. In general, the more layers the network
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has, the more complex features can be learned, and the more
precise the detection effect will be. However, with the increase
of the number of network layers, it leads to the decline of classifi-
cation accuracy because of gradient disappearing. To overcome
the problem, a type of network introduction of residual learning
unit structure and residual network variants were proposed one
after another, such as ResNet, ResNeSt, Res2Net, DenseNet,
and capsule network (CapsNet) [31], [32], [33], [34]. These new
emerged models have the advantages of less training parameters
and training difficulty and higher classification accuracy.

Deep learning is fully supervised and often used to learn depth
feature representations from sample datasets. In line with the dif-
ferent emphasis, it can be summarized into the generative depth
Boltzmann machine model for learning data structure and the
discriminant CNN model for learning two-dimensional spatial
information in images. At present, a new network structure com-
bining MIL framework and feature extraction of deep learning
appears and has attracted wide attention [35], [36], such as CNN
extraction depth feature and multi-instance classifier. However,
in these methods, CNN training structure and multi-instance
classifier are either two independent parts as well as carried out
separately or a complete multi-instance deep network structure
that focus on first class labels and then class label integration
with bag-level. It cannot learn and obtain the relationship among
samples. In addition, for disaster classification with weakly su-
pervised and small samples from high-resolution remote sensing
image, it is difficult to provide accurate class label information
for each sample [19].

C. Disaster Monitoring Based on Deep Learning for
High-Resolution Remote Sensing Images

Using high-resolution remote sensing images for accurate
disaster monitoring, the key constraints include high-quality
remote sensing datasets and diverse types of natural disasters.

As is known to all, a large enough dataset is the data basis
to ensure the accuracy of disaster classification from high-
resolution remote sensing image. Based on the analysis of
traditional target detection, semantic and instance segmenta-
tion algorithms, it is very important to explore precise disaster
classification combined with the multiscale characteristics of
ground objects in high-resolution remote sensing images with
the specific type of disaster. So far, a series of remote sensing
datasets has been initially formed for natural disasters in terms
of geographical locations and data acquisition ways by sensors,
for example, xBD [37] and AIDER [38]. Under the perfect con-
ditions, it can detect and classify the multiple types of disaster
information from different sources of remote sensing images to
ensure the robustness and universality of the model. Even so,
there is still a large number of exploratory work from different
specific disaster scenes, such as the convolutional neural-deep
belief network model [39], deep CNN model with manual mark
samples [40], EmergencyNet model [41], flood disaster emer-
gency information model [42], and postdisaster management
model [43]. These works also confirm the effectiveness and
feasibility of deep neural networks in disaster monitoring from
high-resolution remote sensing image.
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Fig. 1.  Correspondence between MIL principle and disaster classification with
high-resolution remote sensing image.

III. METHODOLOGY
A. Problem Formulation

A high-resolution remote sensing image can be regarded as a
combination by a series of image subblocks with certain regular
distribution. From the perspective of MIL, the high-resolution
remote sensing image can be regarded as bag (image) and
instance (image subblock) [44]. In the MIL framework, the pos-
itive instance is the image subblock marked as positive correla-
tion with the disaster information in high-resolution remote sens-
ing image, whereas the negative instance is the image subblock
as negative correlation with the disaster information. However,
the actual situation is that there is often a lot of noise information
(nondisaster information) in the bag and instance. As shown in
Fig. 1, there are many differences among the morphology, spatial
distribution, color, and texture in the negative instances, which
greatly decrease the accuracy and computational efficiency of
the disaster classification model from high-resolution remote
sensing image.

The proposed DMCNN model in this article is used for dis-
aster classification from high-resolution remote sensing image
based on the MIL framework. Given a training set 7, each
image X € 7T is converted to a set of instances; each instance is
represented by a local descriptor x;, which is mapped to a class
label y; = h(x;) by a classifier 4. In standard hypothesis, the
pooling function of MIL framework can be expressed as

1, if3y; =1
f(yh ) yn) - {0, otherwise (1)
where ¢ = 1,2, ..., n. It means that a negative image subblock

includes only one negative instance, whereas the positive image
subblock includes more than one positive instance. Since the
class label is unknown in the training process, that is, class
label y; is potential variable, then the corresponding bag label is
formed via formula (1).

In addition, in the training and testing phase, all instance
features in the classified bag are first extracted by a deep CNN,
and further took part in the construction of feature representation
in the prototype learning layer. And then all the instance features
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Fig. 2. Proposed DMCNN model framework.

in the prototype vector set obtained earlier are converted to
bag-level features through a multi-instance aggregate function.
Finally, on the basis of preprocessing and sample enhance-
ment, we perform and achieve the instance feature extraction
and disaster classification from the perspective of bag-level in
high-resolution remote sensing image.

B. Network Overview and Structure

The proposed DMCNN model in this article can be re-
garded as a classification framework of high-resolution remote
sensing image. As demonstrated in Fig. 2, there are three layers
in the DMCNN network framework. The first layer is the fea-
ture extraction layer, based on sample enhancement and image
preprocessing; we carry out the feature extraction and integra-
tion through CNN structure and ASPP to obtain the enhanced
instance features in the image. The second layer is the prototype
learning layer, which outputs the features of a series of prototype
instances through the instance features extracted by a pretrained
CNN network. The third layer is the image classification layer.
All the instance features and prototype instance features in the
image are input into the multi-instance aggregate function to
obtain the instance probability distribution of different bags and
then are classified by the softmax regression.

1) ASPP Definition: Compared with the standard convolu-
tion, ASPP enlarges the receptive field of the convolution kernel
by increasing the expansion rate. Therefore, ASPP can be con-
sidered as a standard convolution kernel with a larger size, to
some extent, and its definition of receptive field can be expressed
as

F=k+(k—1)(r—1) )

where F' is the receptive field of ASPP, k is the size of the
convolution kernel, and r is the expansion rate.

As shown in Fig. 3, by deleting the expanded convolution
with r = 24, it can overcome the limitation that ASPP can-
not extract the effective features from complex high-resolution
remote sensing image because of the excessive expansion
rate. Besides, image features are parallel extracted on a fixed
feature map from the four atrous convolution with multiscale
expansion rates in the process of downsampling [45]. Therefore,
the advantage of ASPP for the disaster detection and classifica-
tion from high-resolution remote sensing image is very obvious.
It can not only keep the number of trainable parameters in each
layer of network unchanged, greatly reducing the amount of data
computation, but also retain the resolution of feature map, and
extract more and more detailed information, especially in small
local information.

The model of ASPP can be formulated as

ylil = ) _ali+r - Kwlk] 3)
k=1

where y[i] is the output signal of the ith output feature map, x
is the input signal, w is the convolution filter, r is the expansion
rate of filter, and r = 1, 6, 12, and 18, respectively.

2) Feature Extraction: Feature extraction is very impor-
tant for instance learning and feature selection in disaster
classification from high-resolution remote sensing image. The
model structure of feature extraction network is shown in
Fig. 4.

1) The input image includes high-resolution remote sensing

image (bag) and image subblock (instance).

2) To better extract disaster feature from high-resolution re-
mote sensing image, the image preprocessing and sample
enhancement are first used to increase the recognizability
of disaster ground object. Specific enhancement meth-
ods include random up-down (left-right) flip and image
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brightness adjustment by random factor, and the image
preprocessing methods include image fusion, mosaic, cut-
ting, etc. It significant increases the uniform distribution
of samples in the entire image and decreases the image
blur.

Multiscale feature maps are obtained by pooling operation
with multiscale expansion rates, and then channel atten-
tion mechanism (CAM) in deep neural network is used to
reduce the number of channels. Specifically, the feature
map is obtained from ResNet through pretraining of the
ImageNet dataset.

Adaptive pooling is first carried out in the ASPP module,
and feature maps of corresponding sizes are obtained by
four different pooling sizes. Meanwhile, we apply a 1 x 1
convolution operation on the feature map to reduce the
number of channels. Then, we implement the upsample
operation by using bilinear interpolation method to obtain

the same size feature map. Finally, all generated maps are
spliced on different channels, respectively.

5) The prediction results of disaster instance feature in high-
resolution remote sensing image are obtained by suitable
convolutions.

3) Prototype Learning: In the prototype learning layer of
disaster classification from high-resolution remote sensing im-
ages, each prototype vector can be regarded as the distribution
center of a certain category. The specific instances belonging
to the same prototype vector have the minimum distance from
the prototype vector, whereas the other categories’ instance
has a relatively large distance from the prototype vector. In
other words, there are both high intracluster similarity and low
intercluster similarity among different types of ground objects.
Consequently, different bags eventually exhibit their own unique
characteristics from different dimensions. In essence, we con-
struct the feature descriptor with the distance measurement to
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obtain the representation relation between the instance and the
corresponding prototype vector.

To get prototype vectors from the dataset, let us suppose the
following assumptions.

1) H=[hy,ha,...h,] € R is the characteristic matrix
corresponding to all instance features extracted by CNN
network, d;, is the dimension of the instance feature out-
putted from CNN network, n and p are the number of
instances and prototype vectors, respectively.

2) Prototype vectors represent the center points of spatial
distribution of different types of ground objects, which
can describe the relationship among all instances in the
whole space.

3) The dataset contains k categories of ground objects, and
theoretically, there are k central points that can be found
in the space. For the distance among clusters to be as large
as possible and the distance within clusters is as small as
possible, we select the p/k samples closest to each center
as prototype vectors.

4) Regression Classification: The CNN used in this article
is a pretrained network on the ImageNet dataset; in specific, all
convolution layers are activated by random weights and ReLU
functions. First, the prototype instances are selected from the
all instances obtained by transfer learning, and the minimum
distance between the instances in the bag and the prototype
instances is considered as the bag’s characteristics. Then, a bag-
level classifier is constructed and the characteristics of the bag
are directly classified. Second, the CAM in the multi-instance
aggregation function is used to fuse the instance information
between the feature instances and prototype instances. Mean-
while, the attention is centralized at the key part of the disaster
classification in terms of the weight of the instance features.
Finally, the probability distribution of different types of disaster
information in the CAM network can be defined as

Zi,j Wi,jYi,j,c
Ye = 7N~
i Wi
where w; ; is the attention weight value of the instance, which

changes with the importance of instance features in the disaster
classification from high-resolution remote sensing image.

“

C. Loss Function and Optimization

Given a multi-instance dataset = [21, xa, ..., Z,], the ith
bagis x; = [z1, Ti2, . . ., Tim|, ; ; is the jth instance in the bag
x4, ¥; and y; ; are the bag label and hidden label of x;, respec-
tively. To better train the classifier network, we first normalize
the parameters in the feature map by softmax function. Then,
we convert the score of each category in the bag into conditional
probabilities p(c|0)

eYe

>k €V

where .. is the output value of the cth parameter in the feature
map obtained after upsampling, k is the number of the output
parameters (i.e., the number of classified categories), and 6 is the
parameter of network, which can be obtained by the maximum-
likelihood estimation.

p(clf) = 5)
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The cross entropy loss function between the bag’s category
probability and its true label can be defined as

L(0) = =) yelog(p(cl0)) (6)

where y. € {0, 1} is the true label of the bag’s category. In the
training process, we input the feature vectors of the training
instances into the network in the unit of bags to obtain the
probability that each instance belongs to {0,1}, where the
maximum positive category probability is that the bag belongs
to the positive category, and the loss is minimized by stochastic
gradient descent method.

In view of the uneven distribution of positive and negative
categories commonly existing in disaster classification from
high-resolution remote sensing image, in this experiment, we
adjust the distribution of positive and negative category bags by
setting weights to find out the sensitivity of positive and negative
category bags to classifiers. Let us assume that n; is the number
of negative samples, p; is the number of positive samples, and
w 1is the weight value. Then, the weight of positive and negative
category bags can be defined as

pi -
w_{”i’ y_ ) 7

Finally, we use the Adam optimizer to process the proposed
novel DMCNN model in this article. Specifically, the learning
rate is 0.0001, and the model training is updated iteratively until
convergence is achieved.

IV. EXPERIMENTS
A. Datasets

The xBD dataset is an annotated public high-resolution re-
mote sensing dataset and focuses on building damage assess-
ment. It contains a total of 22 068 images with a spatial resolution
of 1024 x 1024 and 19 types of natural disasters (earthquake,
flood, wildfire, volcanic eruption, etc.). Specifically, the high-
resolution remote sensing images in the dataset are collected
from the WorldView-3 satellite with a 0.3 m resolution and cover
a total of 45 361.79 km? [46].

The xBD dataset contains a train training set, test set, holdout
set, and Tier3, respectively. Owing to the differences in satellite
sensor imaging angles, lighting conditions, and disaster types,
there are random irregular distribution of shape features of
ground objects, large spatial complexity, and intraclass differ-
ences in the dataset. As mentioned above, the xBD dataset is
very suitable for deep neural network learning and training for
disaster scene with large scale.

By summarizing common natural disaster phenomena, we ul-
timately selected the six most common types of natural disasters
from the xBD dataset, such as earthquake (building collapse),
flood (flood and hydrological monitoring), volcanic eruption
(debris flow), forest farm fire (forest and grassland wildfires),
hurricane, and pinery-bush fire. The partial scheme of common
hazard types in xBD dataset is shown in Fig. 5.
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Fig. 5. Partial scheme of common hazard types in xBD dataset.

To efficiently allocate resources and coordinate various forces
for rapid assistance, it is necessary to acquire the precise disas-
ter location and loss assessment in postdisaster reconstruction.
At present, the disaster relief efforts are still mainly done by
hand, and the fully automatic detection and rescue for disaster
scene is only a supplementary means. Correspondingly, xBD
dataset contains a large number of images, labels, and anno-
tation information including annotation polygons, annotation
proportion, etc. Theoretically, the xBD dataset can be used to
quickly acquire the geographic location of the disaster body
and assess its damage, and provide important experimental data
support and method verification for realistic postdisaster relief
and reconstruction work.

B. Sample Enhancement and Preprocessing

In the actual disaster classification from high-resolution re-
mote sensing image, as a special case that one certain type of
data in the sample is far more than other types of data, it results in
inaccurate discrimination for a few categories of ground objects.
To some extent, some small samples in high-resolution remote
sensing images often contain critical information for the disaster
detection (i.e., disaster body and surrounding background), so
it is necessary to first implement the sample enhancement and
preprocess to overcome the sample imbalance in the disaster
classification from high-resolution remote sensing image.

In the experiment, the detailed combination strategies include
the following few aspects.

1) Flipping random with up-down and left-right.

2) Generating some subimages with a certain size by cutting

random from original image.

3) Generating images in random sequence.

4) Adjusting the image brightness by random factors.

Through the above combination ways of sample enhancement
and preprocessing, it can effectively enhance the quantity and
diversity of sample data and generalization of the constructed
DMCNN model, and further avoid the overfitting problems.
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For the disaster classification from xBD dataset, we take the
whole image as a bag and an image subblock as an instance. In
specific, BING algorithm [47] is first used to generate a series
of target boxes on the image, and then a certain number of
target boxes are filtered and reserved on each image. Finally,
the subimage in the reserved target box is zoomed and used as
an instance of the disaster image.

C. Experimental Settings

In the experiment, the xBD dataset is used to verify the
performance of the proposed DMCNN model, the training ratios
are set to 80% and 20%, and the left for testing. To increase the
stability of the proposed DMCNN model and obtain reliable
results, we select 10 image instances in bag, then repeat each
experiment 10 times, and then calculate the average and standard
deviations as the measurement data. Since there are many types
of ground objects and complex distribution in xBD dataset, we
pretrain the ResNet50 network with ImageNet dataset to test the
DMCNN model performance. Then, we use Adam optimizer
with a batch size of 16 to adjust and optimize the network model.
For ResNet50 models, the initial learning rate is set to 0.0001,
and each model was trained for 20 rounds.

In addition to the dataset and network model, the specific ex-
perimental environment is as follows: compilation environment
is Python 3.7, deep learning framework is Tensorflow2.0, oper-
ating system is Linux Ubuntu 20.01.4 LTS and Cuda-toolkit 8.0,
hardware platform is Intel Xeon E5-2620 v4 CPU @ 3.80 GHz,
Nvidia Quadro M4000 GPU graphics card (8§ GB memory).

D. Evaluation Index

In actual, each evaluation index has its own concerns; the
synthesis application of multiple indexes to evaluate can re-
flect the comprehensive performance. To evaluate the proposed
DMCNN model from the aspect of computing performance and
classification accuracy, in this experiment, we finally ascertain
and select the following indexes including precision (P), Recall
(R), F1 Score (F1), overall accuracy (OA), Kappa coefficient,
and standard deviation.

P and R can be defined as
TP
P= TP+ FP ®)
TP
R= TP+ FN ©)

where TP is the number of true positive, FN is the number of
false negative, and FP is the number of false positive that true
category misjudged to other categories.

However, there is a contradiction between R and P. To obtain
a higher P, it is necessary to reduce the threshold of the network
model, which will miss some positive information and lead to the
decline of R, and vice versa. F'1 is used to balance the relationship
between P and R, and it can be expressed as

_2><P><R

Fl= 10
P+ R (10
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TABLE I
CORRESPONDING RELATIONSHIP BETWEEN THE KAPPA COEFFICIENT AND CONSISTENCY

Grade 1 2 3 4 5
Kappa coefficient 0.0-0.20 0.21-0.40 0.41-0.60 0.61-0.80 0.81-1
Consistency slight fair moderate substantial almost perfect
For the given multi-instance sample © = [z, xa, . . ., x,], OA
B EEEEE
0 E_ TR ESE
i O EESEEN

where N is the total number of pixels of all true references, x; ;
is the diagonal of the confusion matrix, and g is different types
of ground objects.

Kappa coefficient can be defined as

N T @i — 20 (g X 244)
N2 =L (riy X 247)
where i+ is matrix row element and +¢ is matrix column

element.

In general, the value range of the Kappa coefficient for the
DMCNN model is from —1 to 1. To obtain the measuring
accuracy of image classification, we compute the Kappa co-
efficient and consistency, respectively. Then, we can classify
the corresponding relationship between the Kappa coefficient
distribution and consistency into five grades including slight,
fair, moderate, substantial, and almost perfect. Table I reports
the corresponding relationship between the Kappa coefficient
distribution and consistency.

Standard deviation, also known as quadratic mean deviation,
can be defined as

Kappa =

(12)

> (e —7)°

S, = .
n—1

13)

Standard deviation can accurately represent the discrete de-
gree of a dataset and is often used to evaluate the model stability
in the specific application.

V. RESULTS AND ANALYSIS

A. Qualitative Evaluation and Analysis

1) Feature Map Visualization: For a given input image, fea-
ture map visualization refers to the feature map output by each
intermediate layer in the deep network model, that is, the output
result of activation function. Correspondingly, for the heat map
in the feature map visualization, the darker the color, the greater
the contribution of the area’s features to the image classifica-
tion. In general, the feature map visualization consists of three
parts: width, height, and depth (channel), and each channel
corresponds to relatively independent features (two-dimensional
image).

Feature map visualization can clearly show the decomposition
process of the input image in the deep learning network model.
It focuses more on the specific geographic location of the input
image and highlights the importance of some key information
for image classification. Fig. 6 illustrates the partial scheme of

Fig. 6.
model.

Partial scheme of feature map visualization by the proposed DMCNN

feature map visualization by the proposed DMCNN model in
this article.

As shown in Fig. 6, the heat map represents the different
areas in brightness; the brighter the hue, the higher the activity
and visualization. In the feature map, the obtained boundary of
the ground object is relatively clear, whereas the distribution
location and contour of the ground object are bright colors and
its contrast with the surrounding object is obvious. It enlarges
the discriminability between disaster area and noise background
in the high-resolution remote sensing image and improves the
classification accuracy of natural disaster.

In view of the consistency of classification results in the
heat map with the distribution of real ground objects, in the
experiment, taking the fire disaster as an example, we implement
the test for the proposed DMCNN model from the following
three indexes: TP, FN, and FP. Fig. 7 demonstrates the partial
scheme of fire disaster samples in heat map obtained by the
proposed DMCNN model.

1) Asshown in Fig. 7(a) and (b), in the original input images,
the box area with black line is the real fire disaster area,
and the color and texture are more consistent with the
surrounding ground objects. There are fewer interference
factors and the real disaster area is identified accurately
by the proposed DMCNN model in this article, and shows
the red distribution area of TP fire disaster samples in the
heat map.

2) Asshownin Fig. 7(c) and (d), in the original input images,
the box area with black line is buildings and some bare
soil, which represents the FP samples in fire disaster clas-
sification. The buildings have regular shape and texture
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(e)

Fig. 7. Partial scheme of fire disaster samples in heat map obtained by the
proposed DMCNN model. (a), (c), and (e) Input original images. (b), (d), and
(f) Visualization maps of the corresponding input images. (a), (b) TP samples,
some true fire objects are recognized as the fire disaster area by the DMCNN
model. (c), (d) FP samples, the building objects are not the fire disaster, but the
DMCNN model still recognized it as the fire disaster area. (e), (f) FN samples,
some objects are the fire disaster, but the DMCNN model does not recognize it
as the fire disaster area.

features, and the bare soil is similar to the true fire disaster
in the color and texture features. However, the buildings
and bare soil are not identified by the proposed DMCNN
model, and these samples are wrongly classified as fire
disaster area and show the red distribution area of TP fire
disaster samples in the heat map.

3) Asshown in Fig. 7(e) and (f), in the original input images,
the box area with black line is true fire disaster area, which
represents the FN samples in fire disaster classification.
However, the proposed DMCNN model in this article
cannot classify the distribution area of fire disaster, and
shows the blue distribution area of FN fire disaster samples
in the heat map.

As can be seen in Fig. 7, although the proposed DMCNN
model achieves good fire classification effect, especially when
the spatial geometry structure and color of surrounding ground
objects are more uniform, the classification effect is not ideal
for some objects with regular spatial geometry shape. Moreover,
there are false positive samples and false negative and other mis-
judgments because of the complex geographical background.

2) Classification Visual Effect: At present, the disaster clas-
sification from high-resolution remote sensing image is mainly
completed through human-computer interaction. In the actual
operation, these traditional methods demand user to have some
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programming ability and previous experience, and the inter-
action form is relatively complex. Since color difference and
distribution of surrounding ground objects in high-resolution
remote sensing image are crucial to disaster classification, to
ensure the classification accuracy and model generalization,
in the experiment, we take earthquake disaster as an example
to carry out qualitative evaluation from the aspects of color,
surrounding background, geometry shape of ground objects.

Fig. 8 illustrates the classification results of the single type
of earthquake disaster in high-resolution remote sensing im-
age. The red line frame is the hand-drawn result by visual
interpretation, and the purple and yellow areas are the classifi-
cation results of earthquake disasters with different disaster de-
grees obtained by the proposed DMCNN model in this article. In
the first column, the color distribution of earthquake disaster ar-
eas and surrounding ground objects is uniform, and the contours
of the hand-drawn disaster area are basically consistent with
those of the true earthquake disaster, as shown in Fig. 8(a). In
the second and third columns, it clearly shows the classification
results of earthquake disaster with complex color distribution
and large contrast area, and complex distribution of surrounding
ground objects, as shown in Fig. 8(b) and (c). In summary,
there are complex surrounding backgrounds distributed around
the earthquake disaster area, for example, buildings, shadows,
vegetation, bare soil, etc. On the one hand, the changes of
color and texture in complex surrounding environment increase
the difficulty to accurately classify earthquake disaster from
high-resolution remote sensing image. On the other hand, the
difference of damage degree for buildings and other physical
facilities caused by earthquake disaster contains the following:
complete damage, severe damage, and minor damage. It raises
the difficulty of detection and classification of earthquake dis-
aster from high-resolution remote sensing image, and will be
discussed in detail later.

In addition to the single earthquake disaster, we use the
proposed DMCNN model to classify the multidisasters (e.g.,
flood, pinery-bushfire, volcano eruption, fire, and hurricane) in
terms of actual distribution of different types of disasters. The
classification results of different types of disasters are shown in
Fig. 9.

As demonstrated in Fig. 9, for different types of disaster
areas with various shape distributions, although the disaster
area boundaries drawn by visual interpretation are hand-drawn
and have diverse irregular shapes, the hand-drawn boundaries
are basically consistent with the classification results of the
proposed DMCNN model. To some extent, this also once again
verifies the accuracy and effectiveness of the DMCNN model in
this article.

B. Quantitative Evaluation and Analysis

1) Comparison of the Prototype Number: To obtain the ap-
propriate number of prototypes in the DMCNN model, we first
use the verification method in the literature [19] and select
several representative prototype numbers to test the relationship
between the prototype numbers and classification performance
on the xBD dataset, as shown in Table II and Fig. 10.
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Fig. 8. Classification results of the earthquake disaster with different surrounding background of ground objects. (a) Uniform color area. (b) Complex color
distribution and large contrast area. (c) Complex distribution of surrounding ground objects. The red line frame is the hand-drawn result by visual interpretation,

and the purple and yellow areas are the classification results of earthquake disasters obtained by the proposed DMCNN model.
(a) (b) (©) O

Fig.9. Classification results of different types of disasters. (a) Flood. (b) Pinery-bushfire. (c) Fire. (d) Volcano. (e) Hurricane. The red line frame is the hand-drawn
result by visual interpretation, and the purple and yellow areas are the classification results of different types of disasters obtained by the proposed DMCNN model.

(d)

TABLEII Table Il reports the results of the relationship between the pro-
RELATIONSHIP BETWEEN THE PROTOTYPE NUMBERS AND CLASSIFICATION totype nu mbers and classification p erformance. We also deduce

PERFORMANCE
that the variation of the number of prototypes has an obvious
Number OA P R Fl influence on the disaster classification from xBD dataset. With
40 0.9800 0.9800 0.9800 0.9800 the increase of the number of prototypes, the performance of
80 0.9900 0.9910 0.9900 0.9900 disaster classification gradually increased. When the number of
120 0.9850 0.9850 0.9850 0.9900 prototypes reached 80, the performance of image classification
160 0.9800 0.9800 0.9800 0.9800 achieves the highest at OA = 0.9900 and P = 0.9910 as well
200 0.9750 0.9760 0.9750 0.9750 as at R = 0.9900 and F1 = 0.9900, respectively. This means
that the proposed DMCNN model achieves the optimal disaster
. classification effect from high-resolution remote sensing image
vy at this point of prototype numbers. Subsequently, with the con-
"‘J - tinuous increase of the number of prototypes, the performance

of disaster image classification begins to gradually and rapidly

decline. Therefore, we select the number of prototypes to be

\ 80 to implement the subsequent DMCNN model testing and

verification to ensure the optimal performance of the network.

This also proves the necessity and rationality of introducing

a prototype learning layer into the proposed MDCNN model
structure from another point of view.

a0 80 120 160 200 2) Comparison of Disaster Classification With Single

e Method: To evaluate the performance of the single DMCNN

Fig. 10. Relationship between the prototype numbers and classification  model on the disaster classification from xBD dataset, in the

performance. experiment, we use the multi-index (e.g., confusion matrix, P, R,
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Fig. 11.  Confusion matrix of DMCNN model on xBD dataset.

and F'1) to compare and analyze the classification results on xBD
dataset. For a better comparison, Figs. 11 and 12 clearly show the
confusion matrix and comparison of classification performance
of the proposed DMCNN model on xBD dataset, respectively.

As shown in Fig. 11, despite the appearance of the misclassi-
fication of disaster area in flood, volcano, and fire disaster due to
the complex surrounding environment, the proposed DMCNN
model can well recognize and classify the above six disaster
types from xBD dataset. In terms of the results of the above
analysis, in specific, the color and texture of different disaster
areas in some images are similar and indistinguishable. And
what is more, there are numerous types of ground objects around
the disaster areas and complex distribution in practice. All
these factors increase the difficulty and complexity of disaster
classification from xBD dataset.

Fig. 12 illustrates the detailed classification performance com-
parison of a single DMCNN model on the xBD dataset. For
index P, the classification effect of earthquake and hurricane
obtained by the proposed DMCNN model reaches 0.97 and 0.96,
respectively, followed by pinery-bushfire and volcano with 0.95
and 0.94, respectively, and the flood and fire disasters only reach
0.92 and 0.91. This is also consistent with the changing trend of
index F1. As given in index P, the index R of earthquake and
pinery-bushfire reaches 0.97 and 0.96, respectively, followed by
volcano and hurricane with both 0.95, and the flood and fire
disasters are both 0.92. From the above analysis of the P, R, and
F1 indexes, the best disaster classification effect is achieved for
earthquakes, hurricanes, and pinery-bushfire, whereas the effect
for volcanoes, floods, and fire is poor. It is also consistent with
the confusion matrix in Fig. 11.

3) Comparison of Disaster Classification With Multiple
Methods: To compare the disaster classification effect of multi-
ple methods from xBD dataset, in this experiment, we use five
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deep learning methods: SVM, CNN, MIL, MI-CNN, and CNN-
SVM, to test and evaluate the model performance. Table III
reports the comparison results of disaster classification by the
multiple methods on xBD dataset.

In terms of the results of classification comparison in Table III,
the OA and P of the traditional SVM method based on manual
feature extraction reach 0.8896 and 0.8889, respectively, and the
classification effect on high-resolution remote sensing image
is significantly lower than that of the other five deep learning
methods. Meanwhile, on the whole, the classification effect
of the above deep learning methods all reach more than 0.9,
which shows that the deep learning method with depth feature
extraction has great advantages for disaster detection and clas-
sification from complex high-resolution remote sensing images.
However, there are some differences on xBD dataset shown in
the following.

1) Inthe above five types of deep learning methods, the multi-

instance deep learning methods (e.g., MIL, MI-CNN, and
the proposed DMCNN) have higher indexes OA and P
on xBD dataset. Correspondingly, the indexes R and F'1
of the multi-instance methods reach 0.9536 and 0.9516,
0.9459 and 0.9534, 0.9521 and 0.9543, respectively. In
summary, compared to the SVM method and other deep
learning methods, the proposed DMCNN model in this
article has the best classification performance and achieves
the optimal effect in the four evaluation indexes.

2) Although the proposed DMCNN model has a better clas-
sification effect compared with the traditional CNN +
classification method, it has no significant advantage in
the performance of disaster classification. According to
the analysis, the possible reasons caused by are as follows:
the classification effect of deep learning method on a
single dataset tends to be saturated, some commonalities
at the bottom features between natural images and high-
resolution remote sensing images. This also verifies that
the method of sharing natural image datasets by training
CNN model is still effective and feasible.

Table IV reports the F1 comparison results of different meth-

ods on xBD dataset.

As demonstrated in Table IV, in summary, the proposed
method in this article achieves better results than the first two
methods in Table IV, and achieves the same effect compared
to the third method. The first two methods in Table IV are
implemented combining specific detection with recognition, and
the processing method is more flexible and faster. The third
method and our proposed method both adopted BING algorithm
for ground object detection. There was a large amount of noise
on the retained image blocks, and the test is implemented in a
weakly supervised environment. In summary, this verifies the ef-
fectiveness of our proposed method in resisting the interference
of instance noise.

In addition to the comparison with indexes OA, P, R, and F1,
we apply six indexes: number of layers, OA, Kappa coefficient,
standard deviation, parameter size, and training time, to test and
evaluate the overall performances for the multiple deep learning
frameworks. We take the volcano disaster scene in xBD dataset
as example, the classification results by multiple learning models
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Fig. 12. Classification performance comparison of DMCNN model on xBD dataset.
TABLE III
COMPARISON OF DISASTER CLASSIFICATION BY THE MULTIPLE METHODS ON XBD DATASET
OA P R F1
SVM 0.8889 0.8896 0.8889 0.8888
CNN 0.9156 0.9171 0.9156 0.9154
MIL 0.9536 0.9537 0.9536 0.9516
MI-CNN 0.9553 0.9556 0.9459 0.9534
CNN-SVM 0.9200 0.9204 0.9200 0.9198
The proposed method 0.9561 0.9561 0.9521 0.9543
TABLE IV
COMPARISON RESULT OF F1 WITH DIFFERENT METHODS ON XBD DATASET
Earthquake Flood Volcano  Fire  Hurricane  Pinery-bushfire
Wang and Hu [9] 0.9481 0.8976 0.9186 09165  0.8993 0.9165
Li et al.[44] 0.9475 0.9234 0.9206 0.9415 0.9073 0.9427
He et al. [19] 0.9562 0.9124 0.9422 09588  0.9362 0.9582
The proposed method 0.9342 0.9227 0.9625 0.9630 0.8894 0.9487
TABLE V
COMPARISON OF CLASSIFICATION PERFORMANCE BY MULTIPLE DEEP LEARNING MODELS
Number of OA Kappa Standard Parameter size ~ Training time
layers coefficient deviation (M) (s)
CNN 8 0.9071 0.8968 0.2903 11.17 13.87
MIL 18 0.9156 0.9062 0.2780 11.17 16.15
MI-CNN 18 0.9200 09111 0.2713 11.25 20.74
CNN-SVM 18 0.9536 0.9484 0.2103 11.68 34.55
The proposed method 50 0.9561 0.9512 0.2049 11.69 46.23

are shown in Fig. 13, and some details of the comparison of
classification performance by multiple deep learning models
have been summarized in Table V.

As shown in Fig. 13, the above five deep learning methods
mentioned in Table V almost can accurately classify disasters
from high-resolution remote sensing images, and the overall
visual effect of the classified images is good. In these deep-
learning-based methods, the CNN and MIL are considered as

a benchmark [see Fig. 13(a) and (b)]. Compared to the former
two methods, the classification performance of MI-CNN and
CNN-SVM methods has been improved, and the visual effect
of corresponding classified images is well [see Fig. 13(c) and
(d)]. Meanwhile, the proposed DMCNN model in this article
has the best classified image quality [see Fig. 13(e)]. However,
there are many fragmented patches in the above-classified im-
ages. According to analysis, the Worldview image with 0.3 m
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Classification results of volcano disaster with multiple deep learning models. (a) CNN. (b) MIL. (c) MI-CNN. (d) CNN-SVM. (e) Proposed method.

Fig. 13.

spatial resolution in the xBD dataset is a very high-resolution
remote sensing image; the size, shape, and distribution of ground
objects are smaller and complicated compared to traditional
remote sensing images. It remarkably increases the difficulty
at a geometric rate to accurately detect and classify the disaster
ground object from high-resolution remote sensing image.

As demonstrated in Table V, we observe that the following

holds.

1) From the vertical, the classification accuracy of several
deep learning models increases successively, whereas the
corresponding number of network layers deepens from 8
layers to 18 layers and then to 50 layers. Theoretically,
deeper network layers can extract more complex and
abstract features and has a better classification effect from
remote sensing images.

2) For the index OA, the performance of MIL, MI-CNN,
and DMCNN models is better than the benchmark CNN
and MIL methods. In these three combined deep network
models, the index OA of the proposed DMCNN model
in this article reaches 0.9561, which achieves 3.61% and
0.25% improvements over the MI-CNN and CNN-SVM,
respectively. For the index Kappa coefficient, the overall
trends are similar to those on the index OA. The proposed
DMCNN model achieves the optimal effect, and its Kappa
coefficient reaches 0.9512.

3) For the index standard deviation, the smallest standard
deviation is observed on our DMCNN model with 0.2049.
That is, the DMCNN model can obtain more stable pre-
cision and accuracy of disaster classification from high-
resolution remote sensing images.

Original image (a)

(b)

(e)

4) In terms of the parameter size and training time, the pa-
rameter size and the corresponding training time will obvi-
ously increase along with the network deepens. Compared
with the benchmark CNN, MIL, and other combination
models, our proposed DMCNN model takes more time to
train when the parameter size is not increased significantly.

Through the previous experiments, although the proposed
DMCNN model in this article has a large parameter size and
a long training time, it can obtain higher precision and accuracy
of disaster classification from high-resolution remote sensing
image, and has better stability and generalization ability of
classification results.

4) Comparison of Disaster Classification With Different
Damage Degrees: In this article, the proposed DMCNN model
can classify high-resolution remote sensing image accurately
and achieves good effect of disaster classification and calcula-
tion performance from xBD dataset. To test and evaluate the
classification effect of the proposed DMCNN model on a single
type of natural disaster, we take the collapsed buildings caused
by earthquake disasters as an example and divide collapsed
buildings into four damage degrees: undamaged, moderately
damaged, severely damaged, and completely damaged. Fig. 14
demonstrates the collapsed buildings and the corresponding
classification results caused by earthquake disaster with different
damage degree, respectively. Table VI reports the details of
the classification accuracy of collapsed buildings caused by
earthquake disaster with different damage degrees.

Table VI illustrates the details of the classification perfor-
mance of collapsed buildings by proposed DMCNN for the dif-
ferent damage degrees. The classification effect of the proposed
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Partial collapsed buildings (upper row) and classification results (lower row) caused by earthquake disaster with different damage degrees. (a) Undamaged.

(b) Moderately damaged. (c) Severely damaged. (d) Completely damaged. The red line frame is the hand-drawn result by visual interpretation.

TABLE VI
CLASSIFICATION ACCURACY OF COLLAPSED BUILDINGS WITH DIFFERENT DAMAGE DEGREES

Undamaged Moderately damaged  Severely damaged Completely damaged
P 0.9630 0.8990 0.9180 0.9710
R 0.9558 0.9026 0.9245 0.9691
Fl1 0.9488 0.9062 0.9310 0.9671
OA 0.9553
Kappa coefficient 0.9503

DMCNN in this article varies with the different damage degrees
of collapsed buildings caused by earthquake disaster. In general,
the proposed DMCNN can accurately classify undamaged build-
ings [Fig. 14(a)] and completely damaged buildings [Fig. 14(d)]
in earthquake disasters, and the classification precision reaches
0.9630 and 0.9710, respectively. On the contrary, moderately
damaged buildings [Fig. 14(b)] and severely damaged buildings
[Fig. 14(c)] tend to have lower precision with only 0.8990 and
0.9180, respectively. This is also consistent with the hand-drawn
result by visual interpretation for collapsed buildings in earth-
quake disasters. As shown in Fig. 14, the disaster area boundaries
drawn by hand-drawn undamaged area and completely damaged
area are more consistent with the classification results, whereas
the boundaries drawn by hand-drawn in moderately damaged
area and severely damaged areas have significant errors with the
classification results. According to the analysis, there are some
reasons shown in the following.

1) The spatial distribution structure of undamaged and com-
pletely damaged buildings varies greatly in the high-
resolution remote sensing image. Meanwhile, the spatial
distribution structure of moderately damaged and severely
damaged buildings tends to be the same, and the texture
is more uniform. For a better understanding and repre-
sentation of the disaster feature in high-resolution remote
sensing image, our proposed DMCNN model in this article

focuses on instance features of collapsed buildings caused
by earthquake and pays little attention to the overall struc-
ture of the whole image.

2) In practice, the extraction feature information of build-
ings is limited due to their geometric shape, small size,
and spatial distribution in high-resolution remote sens-
ing image. Correspondingly, via introducing the ARPP
and prototype learning layer into our proposed DMCNN
model in this article, we just solve the problem of weak
feature extraction in small samples and further improve
the classification performance of collapsed buildings in
earthquake disasters. The OA and Kappa coefficient of
the proposed DMCNN model reach 0.9553 and 0.9503,
respectively, which indicates that the proposed DMCNN
still achieves a good classification effect of collapsed
buildings in earthquake disasters.

VI. DISCUSSIONS

In this article, we analyzed and discussed the experimental
results from the following two aspects: qualitative evaluation
and quantitative evaluation.

1) For qualitative evaluation and analysis, the feature map

visualization and classification visual effect are selected
for interpreting the classification effect of the proposed
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DMCNN model. When the spatial geometry structure and
color of surrounding ground objects are more uniform,
the classification effect is not ideal for some objects with
regular spatial geometry shape. In addition to the spatial
distribution and ground object’s own structure, there are
some false positive samples and false negative and other
misjudgments in the classified image.

2) For quantitative evaluation and analysis, the prototype
number, single method, multiple methods, and different
damage degrees are also selected for testing and evaluating
the proposed DMCNN model from high-resolution remote
sensing image. The number of prototypes is crucial to
the classification effect of the whole DMCNN model.
In the real application scene, how to set a reasonable
number of prototypes that match the application scene is
still a difficult problem. Compared with the traditional
methods based on manual design, although the feature
extraction method based on deep learning can largely
improve the efficiency of feature extraction and the extents
of its application, the model complexity, training difficulty,
and calculation amount will be greatly increased. How to
achieve the optimal balance between the two needs to be
further discussed.

3) For a single type of natural disaster, owing to its varying
degrees of damage and multiple influencing factors such
as surrounding environment and geological conditions,
the proposed DMCNN model in this article only per-
forms better in classifying the two extreme cases with
undamaged or completely damaged, whereas it is less
effective in moderately damaged and severely damaged
cases. However, these cases exactly are the focus that
needs to be paid attention to in disaster loss assessment.

4) In our proposed DMCNN model, based on the enlarge-
ment of the network receptive field by ASPP module,
the features are first extracted and integrated by CNN
structure to obtain instance features of bags in image. And
then instance features extracted by pretrained CNN are
mapped to a series of prototype instance features. Finally,
all mapped instance features from bags and prototype in-
stance features are detected and classified in the classifier.
Although the proposed model has reached good effects,
it is just a preliminary experimental framework and there
are still many details that need to be accurately explored
in the future.

VII. CONCLUSION

In this article, to address the deficiencies (e.g., various scenes,
complex distribution features, and missing sample class label)
of traditional disaster classification from high-resolution remote
sensing image, we proposed a novel DMCNN network model for
disaster classification on xBD dataset. The key of DMCNN is to
construct the prototype representation and receptive field of the
convolution kernel through the prototype learning and ARPP and
enhance the disaster classification effect via using discriminative
instance features with bag-level. Experimental results show that
the DMCNN model achieves better disaster classification effect
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from high-resolution remote sensing image. Compared with
traditional CNNs, our DMCNN improves the computational
performance of weakly supervised disaster classification from
high-resolution remote sensing image.

Although the DMCNN model can promote the accuracy and
performance of the disaster classification from high-resolution
remote sensing image, there is still some misclassification in
the classified image. In the future, on the one hand, in view
of the actual situation (e.g., random distribution and small tar-
get) of disaster area in high-resolution remote sensing image,
we consider designing a more powerful network model with
stronger detection and classification capability to overcome
these problems. On the other hand, as the important factors in
our DMCNN network, the appropriate number of prototypes and
prototype vector representation with various measures are cru-
cial to the accuracy and performance of the classification model,
we consider refining and verifying the mechanism of reasonable
parameter numbers and prototype representation so as to further
optimize and improve the DMCNN performance. Furthermore,
experiments on other high-resolution remote sensing images and
multiple disaster scene classifications are also planned to explore
and test the applicability and feasibility of the DMCNN model.
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