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Abstract—In the domain of hyperspectral image (HSI) classifi-
cation, the majority of deep learning methods have necessitated
a substantial number of manually annotated samples to achieve
outstanding results. However, the process of annotating HSI is
conducted at the pixel-level, rendering it not only time-consuming
but also financially burdensome. In light of this circumstance,
contrastive learning methods that harness unlabeled samples by
assigning pseudolabels through pretext tasks have garnered signif-
icant attention. Nevertheless, current contrastive learning methods
primarily concentrate on exploring spatial diversity among surface
samples in natural images, while neglecting the spectral diversity of
point targets in HSI, resulting in insufficiently comprehensive fea-
ture exploration. In addition, due to the distinct learning objectives
between upstream and downstream tasks, this leads to insufficient
generalization when transferring to downstream tasks. To tackle
these challenges, we propose a two-stream contrastive learning
network for few-shot HSI classification. During the pretraining
phase, one stream is deployed to probe spatial diversity among
samples, whereas the other stream delves into spectral diversity.
Subsequently, for transferring to downstream classification tasks,
a multilevel fusion network was introduced. It can integrate shal-
low network features with higher generalization capabilities and
deeper network features that are more task-specific. The fused
features exhibit an improved performance when employed for
classification tasks. Experimental results on four publicly available
datasets illustrate that our approach outperforms state-of-the-art
methodologies.

Index Terms—Contrastive learning, data augmentation,
hyperspectral image (HSI) classification, self-supervised learning.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are different from tra-
ditional color images composed of RGB channels. They

are composed of a broader range of spectral bands, typically
ranging from dozens to hundreds of bands, providing abundant
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spatial and spectral resolution, making it widely applicable in
various fields, such as geological research [1], disease diagnosis
and surgical guidance [2], astronomy and space surveillance [3],
and food safety inspection [4]. In these applications [5], HSI
classification is a common task that aims to provide a classifi-
cation label for each pixel in the HSIs.

In terms of HSI classification, traditional machine learning
approaches focus on extracting easily classifiable features [6]
or designing satisfactory classifiers [7] separately, feature ex-
traction methods mainly include extended morphological pro-
file [8], superpixel-based composite kernel method [9]. Simple
classifiers mainly involve random forest [10], extreme learning
machines [11], and multinomial logistic regression [12]. How-
ever, traditional machine learning feature extraction methods
typically rely on manual design by domain experts based on
relevant domain knowledge. Thus, the features extracted in this
way have limited relevance to the specific task, leading to lower
classification accuracy when applied to classification tasks.

In recent years, deep learning has rapidly developed, not only
does it integrate feature extraction and classifier design within
the same framework but it also reduces reliance on expert knowl-
edge. This approach, known as end-to-end learning, has become
the basis for advanced hyperspectral classification models [13],
[14], [15]. For example, Lee et al. [16] employed a 2-D fully
convolutional neural network, eliminating the need for addi-
tional preprocessing to extract depth features from HSI. Then,
considering the characteristics of the hyperspectral 3-D cubes,
Xu et al. [17] proposed a spatial–spectral multiscale 3-D CNN
structure to improve the model generalization performance.
Since convolution can only extract local information, ignoring
global information, Hong et al. [18] designed a transformer
structure suitable for HSIs to capture global spectral informa-
tion. Besides, Zhong et al. [19] proposed the spectral–spatial
transformer network. Zhu et al. [20] introduced a short-long
graph convolution to extract spatial–spectral features at different
scales. Moreover, there are other structures, such as the 3-D con-
volution network with three-dimensional discrete wavelet trans-
form preprocessing [21], hybrid networks combining 2-D CNN,
and recurrent neural networks [22] that achieve good results in
the HSI classification. All the mentioned models are based on
supervised learning for HSI classification, the model structure is
relatively complex, requiring a large number of labeled samples
to achieve an excellent classification performance. If the sample
size is insufficient, it will lead to model overfitting. However,
manual labeling for HSI is time-consuming, expensive, and
often contains labeling errors. Therefore, how to achieve good
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generalization of the model using a small number of manually
labeled samples has become a problem to be solved in HSI
classification.

To tackle the issue of scarcity of manually labeled data in HSI
classification, researchers have introduced semisupervised [23],
[24], meta-learning [25], [26], and transfer-learning [27], [28],
[29], [30] frameworks. Semisupervised learning involves train-
ing with a dataset composed of limited labeled samples and
a large number of unlabeled samples to improve the model
performance. Meta-learning enables the network to quickly
adapt to new tasks by leveraging experiences from training
on multiple different tasks. Transfer-learning allows knowledge
learned from a source task to be transferred to a target domain,
where the source and target tasks are usually different. All three
categories of methods aim to improve model performance in
scenarios with limited manually labeled data for the target task.

Semisupervised learning can be categorized into the following
approaches: generative models [31], self-training models [32],
cotraining models [33], graph-based learning models [34]. Gen-
erative models, such as those that utilize generative adversarial
networks (GANs), are used to explore the distribution of sam-
ples in the target dataset. He et al. [35] improved the original
semisupervised GAN by designing an additional classifier to
avoid the self-contradictory problem where the discriminator
simultaneously performs classification and discrimination; Self-
training models train classifiers with labeled samples and assign
labels to unlabeled samples. Then, they retrain the classifier
with reliable unlabeled samples using a confidence criterion.
This process is repeated until all the data have been assigned
labels. Pan et al. [36] proposed a 3-D Gabor-based self-training
semisupervised framework to mine spatial–spectral features;
Cotraining models involve training different classifiers with
labeled samples and assigning labels to unlabeled data. Similar
to self-training models, cotraining models repeat this process
until all the data have been assigned labels. Fang et al. [37] in-
troduced a semisupervised cotraining framework that combines
deep convolution with deep clustering; Graph-based learning
models seek relationships between labeled samples and unla-
beled data and assign labels to the unlabeled data. Yang et al. [38]
proposed a graph-based method using superpixel techniques to
capture pixel-level and region-level information in hyperspectral
data. However, the pseudolabels assigned by the classifier to
unlabeled samples may lead to inaccuracies; then, errors will be
amplified and accumulate after multiple iterations, resulting in
less reliable performance during training and prediction.

Meta-learning allows the model parameters and optimization
strategies learned from multiple tasks to be applied to the target
task. Li et al. [39] first introduced meta-learning into the hyper-
spectral domain using a deep residual convolutional network.
Subsequently, Pal et al. [40] used Monte Carlo averaging of
model parameters learned from different tasks and introduced
the prototype network (SPN) to the meta-learning framework
for the improved performance. In addition, AL-Alimi et al. [41]
combined the new data normalization method QPCA and a novel
network structure with mixed multiscale convolution kernels to
better process hyperspectral data. Furthermore, meta-learning
has been applied with stacked convolutional blocks [42], channel

attention [43], siamese networks [44], and other techniques to
improve performance in the hyperspectral domain. However,
due to the scarcity of training samples for each task, overfitting
often occurs during the model training process.

Transfer learning allows the learning of a general feature
extractor from a source domain dataset with abundant manual
annotated labels, which can then be applied to the target domain
dataset for classification tasks. To achieve class-level feature
representation, Wang et al. [45] introduced a class-wise attention
metric module in the cross-domain framework to enhance the
distinguishability of different class features. To address the
issue of varying spectral dimensions in different hyperspectral
datasets, Lee et al. [46] designed a universal large model that pro-
vides different entry points for different hyperspectral datasets.
Zhang et al. [47] introduced supervised contrastive learning loss
to help the model extract more generalizable features. Although
transfer learning requires only a small number of samples from
the target domain, the differences in sample space between the
source and target tasks result in significant feature representation
disparities. The features learned from the source task may not
perform well in the target domain, thereby affecting model
generalization performance when transferring it to the target
task. Moreover, transfer learning still requires a large amount of
manually labeled data from the source task dataset.

Self-supervised learning constructs supervisory information
based on the intrinsic features of data to design pretext tasks
and then utilizes this supervisory information to train models.
In comparison to the few shot methods mentioned earlier, self-
supervised learning offers several advantages, as follows.

1) Self-supervised learning’s supervisory information is de-
signed based on the intrinsic features of data, eliminating
the possibility of labeling errors.

2) Self-supervision can leverage a large number of unlabeled
samples to train models, preventing overfitting.

3) Self-supervised learning’s unlabeled samples are sampled
from downstream task datasets, avoiding the differences
in sample space between the upstream and downstream
tasks.

Self-supervised learning primarily consists of predictive and
contrastive approaches [48]. Predictive approaches mainly in-
volve predicting various aspects of the same image, such as
the relative positions of different cubes within the image [49],
the rotation angle of the image [50], the content of occluded
image blocks [51], and generating a color image from a grayscale
one [52], among others. However, the effectiveness of predictive
methods in feature extraction heavily depends on the design
of the pretext task, and the features are strongly tied to the
objectives of the pretext task, resulting in a poor performance
when transferred to downstream tasks. In addition, tasks like
predicting image block reconstruction often entail pixel-level
information, which includes excessive details leading to redun-
dancy in information. On the other hand, contrastive learning
methods generate pseudolabels by formulating pretext tasks,
such as data augmentation on the same sample [53], [54], [55].
Under this scheme, augmented views of the same sample are
assigned to the same class, or different perspectives of the
same sample as the same class are compared for contrastive
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learning [56], and so forth. Subsequently, contrastive learning,
which aims to pull closer between samples of the same class
while pushing samples of the different classes farther apart in
feature space, compels the model to learn crucial information
from the data and discriminative features, leading to better gen-
eralization performance. Compared with contrastive learning,
metric learning [57], [58], [59] shares the same object, the
difference is the latter typically employs the manually anno-
tated class label, but the corresponding labels to the former
are dependent on both the design of pretext tasks and down-
stream classification tasks. Contrastive learning has achieved
outstanding results in the field of hyperspectral classification.
Zhang et al. [60] employed residual 3-D convolutional networks
as feature extractors, Cao et al. [61] combined prototype con-
trastive learning with an autoencoder, extracting distinct features
using different encoders. However, these methods still adopt the
contrastive learning framework originally designed for surface
samples. To enhance the spatial diversity of samples, techniques,
such as flip, cropping, cutout, and other data augmentation
methods have been employed. In the context of HSI classi-
fication, which involves pixel-level point classification tasks,
there are notable differences from surface samples, including
distinct geometric shapes and regional characteristics. Conse-
quently, the exploration of spectral feature diversity becomes
even more crucial in this context. In addition to this, in con-
trastive learning, pixels that do not belong to the same class in
the pretext task may belong to the same class in the downstream
classification task. This discrepancy in task objectives between
the upstream pretext task and the downstream classification
task can result in suboptimal generalization performance of the
features learned during the pretext task when applied to the
downstream task.

To fully exploit the spectral–spatial features in hyperspectral
data, this article proposes a two-stream contrastive learning
framework. We consider spectral vectors and the 3-D cube of
HSI as the spectral and spatial modalities of the target pixels for
classification. During the pretraining phase, we first apply data
augmentation to both modalities, generating spectral-sample
pairs and spatial-sample pairs. Next, contrastive learning is
employed to train the two modalities using different feature
encoders. In the fine-tuning phase, a multilevel fusion network
is employed to combine features from different hierarchical
networks. This is done to address the issue of overlooking
valuable fundamental data features in the upstream pretext task,
ultimately benefiting the downstream classification task. The
contributions of this article are as follows.

1) We propose a data augmentation module specifically for
the spectral modality, which enriches spectral diversity
and improves the robustness of spectral features.

2) We apply a two-stream contrastive learning framework
that adequately captures both spatial and spectral infor-
mation in hyperspectral data.

3) We propose a multilevel fusion network to mitigate the
impact of disparities between upstream and downstream
tasks, thereby enhancing the applicability of fused features
for classification tasks.

The rest of this article is organized as follows. Section II
shows the details of our model. The experimental description
and the result analysis on four public datasets are provided in
Section III. Finally, Section IV concludes this article.

II. METHODOLOGY

The focus of this model lies in the utilization of a two-stream
network for extracting spatial–spectral features and a multilevel
feature fusion network for integrating beneficial basic data fea-
tures for the downstream task. The overall architecture of the
proposed model is illustrated in Fig. 1. The upper part comprises
a pretraining module, consisting of the spectral contrastive learn-
ing framework and the spatial contrastive learning framework.
The lower part is a fine-tuning module, which incorporates a
multilevel fusion network.

A. Data Augmentation for HSI

Training on a small and insufficiently diverse set of training
samples can lead to overfitting, resulting in poor model gen-
eralization and subpar performance when transferred to down-
stream classification tasks. Effective data augmentation involves
applying various transformations and augmentations to the data
to increase its diversity, thereby enhancing the model’s robust-
ness and generalization capabilities. Existing data augmentation
techniques primarily focus on enhancing the spatial diversity
of surface samples. However, HSI classification involves pixel-
level classification, with spectral features being the intrinsic
characteristics. Existing data augmentation methods are not
suitable for enhancing hyperspectral point samples. Therefore,
as depicted in Fig. 2, we propose four techniques to introduce
perturbations within specific spectral bands or randomly select
neighboring spectral vector as positive samples. These meth-
ods aim to enhance the spectral diversity of samples, thereby
attempting to simulate the spectral variations caused by factors
like illumination and air humidity in real-world scenarios. The
detailed procedural steps are outlined as follows.

Assume we have spectral data Xm ∈ R1×1×C , where C rep-
resents the number of spectral bands. Fig. 2(a) illustrates the flip
operation, where the flipped spectrum Xf can be obtained as
follows:

Xf = Xm[ : , : , C : 1]. (1)

Fig. 2(b) presents the random_select operation. In HSIs, adjacent
pixels often belong to the same class. In addition, HSIs exhibit
the characteristic of different spectral for the same material.
Therefore, we select a patch of size P × P centered around the
target pixel, denoted as Xp ∈ RP×P×C , and randomly choose
a spectrum (excluding the center spectrum) within this patch as
a positive sample for the center spectrum. The positive sample
Xs is defined as follows:

Xs = random_select(Xp). (2)

Fig. 2(c) demonstrates the addition of Gaussian noise. We gener-
ate a Gaussian kernel Gb ∈ R1×1×d with a mean μ and variance
θ, where d represents the length of the Gaussian kernel. The
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Fig. 1. Whole framework of the model for HSI classification.

Fig. 2. Four types of data augmentation methods for spectral modality. (a)
Flip. (b) Random_select. (c) Gaussian Blur. (d) Cutout.

resulting positive sample Xg is computed as follows:

Xg = Xm (3)

Xg = Xg[: , : , i : i+ d] +Gb. (4)

Here, i is randomly selected from the interval [0, C − d− 1].
Fig. 2(d) shows the data augmentation method of cutout,

which sets a band of the spectrum to zero to obtain a positive

sample Xc as follows:

Xc = Xm (5)

Xc[ : , : , i : i+ c] = 0. (6)

For the spatial features of the images, we employed techniques,
such as random cropping, random flipping, color distortion,
and grayscale conversion to augment the diversity of spatial
characteristics.

B. Two-Stream Pretraining Networks

Hyperspectral point samples can benefit from incorporating
information from neighboring pixels of the same class to reduce
the impact of variance on classification. However, it is essential
to acknowledge that pixels from different classes in the vicinity
can also interfere with classification. The spectral characteristics
inherent to point samples provide valuable insights into the
chemical composition and constituents of materials. By explor-
ing spectral diversity, we can enhance the accuracy of identifying
and classifying various substances or objects. Therefore, we
propose a two-stream contrastive learning network to compre-
hensively exploit the spatial–spectral information in HSI. The
detailed procedure is outlined as follows.

Assume there is an HSI denoted as Ximg ∈ RW×H×C , where
W and H represent the width and height of the image and C is
the number of spectral bands.

For spectral modality processing, a spectral data point Xi
m ∈

R1×1×C is selected from Ximg, where i ∈ {1, 2, . . .Nm}, Nm

is equal to W ×H . Data augmentation is applied twice to
Xi

m to obtain positive sample pairs (A_mi
1, A_mi

2). These
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TABLE I
PRETRAINING NETWORK PARAMETER SETTINGS

sample pairs are then fed into the feature extractor fm(·) with
shared weights. The detailed structure of fm(·) is presented in
Table I, which employs multiple one-dimensional convolutions
to model the input spectral sequence and extract local spectral
features. The positive sample pairs are processed by fm(·) to
obtain features (f_mi

1, f_mi
2). These features are subsequently

passed through a multilayer perceptron gm(·) to obtain represen-
tation vectors (Z_mi

1, Z_mi
2). The multilayer perceptron gm(·)

consists of two fully connected layers [48], where ReLU acti-
vation functions introduce nonlinear transformations between
the layers and batch normalization is applied to normalize the
inputs and improve gradient propagation. Through gm(·), the
features are projected into a latent space with the objective of
making the vectors Z_mi

1 and Z_mi
2 as close as possible while

maintaining a significant distance from other vectors Z_mj
1 and

Z_mj
2 (j �= i). To impose this constraint, a contrastive loss is

utilized

sim_all(Z_mi
1) = (

N∑

j=1

Ij �=i(exp(sim(Z_mi
1, Z_mj

1))

+ exp(sim(Z_mi
1, Z_mj

2)))

+ exp(sim(Z_mi
1, Z_mi

2)))/τ (7)

lZ_mi
1,Z_mi

2
= − log

exp(sim(Z_mi
1, Z_mi

2)/τ)

sim_all(Z_mi
1)

. (8)

In this equation, τ represents a temperature hyperparameter that
controls the smoothness of the logit distribution. N corresponds
to the mini-batch size, wherein N spectral data points undergo
data augmentation to generate 2N samples as inputs for the
encoder. Ij �=i denotes an indicator function that equals 1 when
the condition j �= i is satisfied, and 0 otherwise. The similarity
calculation in this article employs cosine similarity between
representative vectors, as shown in the equation

sim(Z_mi
1, Z_mi

2) =
Z_mi

1 × Z_mi
2

|Z_mi
1| × |Z_mi

2|
. (9)

Here, | · | denotes the vector normalization. The final loss is
computed as the sum of losses for all positive sample pairs within
a mini-batch, represented by the following equation:

L =
1

2N

N∑

i=1

[l(Z_mi
1,Z_mi

2)
+ l(Z_mi

2,Z_mi
1)
]. (10)

Regarding spectral modality processing, a similar approach is
applied to the spatial modality. We applied principal component
analysis (PCA) to reduce the dimensionality of Ximg to obtain
Ximg_p, assuming the channel dimension after dimensionality
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Fig. 3. Illustration of the multilevel fusion module.

reduction is p, Ximg_p ∈ RW×H×p. In this article, we set p to
be 3. Then, spatial data patch xk

a ∈ Rs×s×p with a patch size of
s× s are extracted from Ximg_p, where k ∈ {1, 2, . . .Na} and
Na is equal to W ×H . According to [53], we employed three
data augmentation methods: random cropping, random flipping,
and color distortion. In addition, we introduced an extra data
augmentation method called RandomGrayscale, which involves
taking a weighted average of the values in each channel of the
image to obtain a grayscale imagexk

gy , as shown in the following
equation:

xk
gy = α ∗ xk

a[:, :, 0] + β ∗ xk
a[:, :, 1] + γ ∗ xk

a[:, :, 2]. (11)

Then, we apply data augmentation twice for xk
a to obtain the

sample pair (A_ak1 , A_ak2). The spatial encoder fa(·) is built
based on ResNet18 to obtain (f_ai1, f_ai2). The features are
then fed into a multilayer perceptron ga(·) to project them into
the latent space. The loss function remains consistent with the
previous equation (10). Both the encoder fm(·) and fa(·) are
trained using spectral and spatial sample pairs for downstream
tasks, and their training parameters are saved for future transfer.

C. Multilevel Fusion Networks

Contrastive learning can extract semantic information benefi-
cial for classification. However, contrastive learning involves
learning feature representations of same-class and different-
class samples through a pretext task with pseudolabels, whereas
downstream tasks involve addressing specific classification tasks
based on true manual labels. These two approaches have distinct
objectives. According to [55], shallow-level features possess
higher generalization capacity, while mid-to-high-level network
features are more task-specific. By fusing features from various
levels, the consistency between upstream and downstream tasks
can be improved. To enhance the model’s generalization perfor-
mance in downstream tasks, we introduce a multilevel network
fusion module in Fig. 3. Drawing on the ideas of [62], we propose
a multilevel features fusion strategy for the spectral modality as

well. This module integrates features from different hierarchical
levels of networks by projecting them into the same dimension
through linear and pooling layers before fusion. The detailed
procedural steps are outlined as follows.

As illustrated in Fig. 2, model initialization parameters are
derived from the saved parameters of upstream contrastive
learning. The multilayer perceptron is directly replaced with a
classification linear layer. M spatial samples are selected from
Ximg, and the central spectrum of each spatial sample is used as
the spectral sample, forming the training set. Shallow features,
fs_m and fs_a, middle-level features fm_m and fm_a are ob-
tained. Finally, final features fm and fa are obtained from last
layer. Due to the one-dimensional of spectral modality and the
two-dimensional nature of spatial modality, the dimensions of
the two modalities of data do not match. Therefore, a max pool-
ing layer is utilized to compress the spatial modality features,
ensuring consistency with the spectral modality dimensions.
Fusion features are obtained by summing the respective features,
as shown in the following equation:

fS = fs_m +maxpooling(fs_a) (12)

fM = fm_m +maxpooling(fm_a) (13)

fL = fm + fa (14)

f = fS + fM + fL. (15)

The final fused features: f , are then input into the classifica-
tion layer for classification. The cross-entropy loss function is
employed, as shown in the following equation:

Lcross_entropy = −
M∑

i=1

yilog
exp(WT

i × f)
∑C

j=1 exp(W
T
j × f)

. (16)

Here, C represents the number of classes in the dataset and yi

denotes the true label of the ith sample.
Algorithm 1 provides pseudocode for pretraining and fine-

tuning.
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Algorithm 1: General Procedure of Pretraining and Fine-
Tuning.

Stage 1: Pre-training of two-stream networks
input: batch size N , constant τ , structure of fm(·), gm(·),
fa(·), ga(·), spectral data xm, spatial data xa

for sampled minibatch {xm
i }Ni=1, {xa

i }Ni=1 do
for all i ⊂ {1, 2, . . ., N} do

# Use augmentation to obtain spectral sample pairs.
A_mi

1, A_mi
2 = augment(Xi

m)
# Obtain their respective features.
f_mi

1, f_mi
2 = fm(A_mi

1), fm(A_mi
2)

# Project the features into a latent space.
z_mi

1, z_mi
2 = gm(f_mi

1), gm(f_mi
2)

# Perform the same operations on spatial data.
A_ai1, A_ai2 = augment(Xi

a)
f_ai1, f_ai2 = fa(A_ai1)
z_ai1, z_ai2 = ga(f_ai1)

end for
use (10) update network fm(·), gm(·), fa(·) and ga(·)

end for
return encoder fm(·), fa(·)
Stage 2: Multi-level Fusion
input: batch size M , structure of fm(·) and fa(·), spectral
data xm, spatial data xa, classification linear layer g(·)

Load pre-trained weights for fm(·) and fa(·).
for sampled minibatch {xm

i }Mi=1, {xa
i }Mi=1 do

for all i ⊂ {1, 2, . . .,M} do
#Obtain features from shallow, middle, and deep layers.
fs_m, fm_m, fm = fm(xm

i )
fs_a, fm_a, fa = fa(x

a
i )

use (12), (13), (14), (15) to obtain f
#Use g(·) to obtain one-hot label
ŷ = g(f)

end for
use (15) to update network fm(·), fa(·) and g(·).

end for

III. EXPERIMENTS

A. Dataset Description

This section presents a comprehensive evaluation of our HSI
classification model using four publicly available datasets: In-
dian Pines, Pavia University, WHU-Hi-LongKou, and WHU-
Hi-HanChuan. Our model demonstrates its effectiveness across
these datasets, showcasing its potential for accurate classifica-
tion.

1) Indian Pines: The Indian Pines dataset comprises images
captured by AVIRIS over an Indian pine tree area in Indiana,
USA. We extracted a subset of the image with dimensions
145×145 for HSI classification. The AVIRIS sensor operates
within the wavelength range of 0.4–2.5 μm and captures data
across 220 spectral bands. To account for water reflectance
limitations, we excluded 20 bands (104–108, 150–163, and
the 220th). Therefore, our study utilized a total of 200 bands,
containing 10 249 pixels classified into 16 different classes.

TABLE II
NUMBER OF SAMPLES FOR TRAINING AND TEST OF EACH CLASS ON THE

INDIAN PINES DATASET

Fig. 4. Visualization of the Indian Pines dataset. (a) Ground-truth map. (b)
Pseudocolor image of HSI.

TABLE III
NUMBER OF SAMPLES FOR TRAINING AND TEST OF EACH CLASS ON THE PAVIA

UNIVERSITY DATASET

Refer to Table II for the available sample counts for each class
and details in Fig. 4.

2) Pavia University: The Pavia University dataset was ac-
quired by ROSIS-03, an airborne hyperspectral sensor, in 2003
over the city of Pavia, Italy. The sensor captured continuous
imaging across 115 spectral bands within the wavelength range
of 0.43–0.86 μm. Considering noise, 12 bands were excluded,
resulting in 103 spectral bands used for analysis. The image size
is 610×340, encompassing 207 400 pixels, only 42 776 pixels
containing objects. These pixels belong to nine different classes,
including trees, asphalt, bricks, meadows, etc. Detailed infor-
mation about the sample counts for each class can be found in
Table III and Fig. 5.
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Fig. 5. Visualization of the Pavia University dataset. (a) Ground-truth map.
(b) Pseudocolor image of HSI.

TABLE IV
NUMBER OF SAMPLES FOR TRAINING AND TEST OF EACH CLASS ON THE

WHU_HI_LONGKOU DATASET

3) WHU-Hi-LongKou: The WHU-Hi-LongKou dataset rep-
resents Longkou Town, Hubei Province, China, and was ac-
quired using the Headwall NanoHyperspec sensor. The original
dataset comprises 270 spectral bands, with an image size of
550×400. Among these pixels, a total of 204 542 have been
identified as suitable for classification purposes. These pixels are
distributed across nine distinct categories, which encompass a
variety of agricultural crops, including corn, cotton, and others.
Please refer to Table IV for a comprehensive overview of the
available samples for each class and details in Fig. 6.

4) WHU-Hi-HanChuan: The WHU-Hi-HanChuan dataset
was acquired in 2016 over HanChuan City, Hubei Province,
China, using a Headwall NanoHyperspec sensor equipped on
a Leica Aibot X6. This sensor captured 274 bands in the
wavelength range of 400–1000 nm, with an image size of
1217×303 pixels. Among these pixels, 257 530 pixels were
utilized for classification. The dataset comprises 16 categories,
including grass, water, road, and more. However, due to data
collection occurring during periods of lower sun elevation angles
in the afternoon, the images exhibit numerous shadow-covered
areas. An overview of this dataset can be found in Fig. 7 and
Table V.

Fig. 6. Visualization of the WHU-Hi-LongKou dataset. (a) Ground-truth map.
(b) Pseudocolor image of HSI.

Fig. 7. Visualization of the WHU-Hi-HanChuan dataset. (a) Ground-truth
map. (b) Pseudocolor image of HSI.

B. Experimental Setup

The experimental environment for this model consisted of
an Ubuntu 20.04 LTS operating system, two Intel(R) Xeon(R)
Silver 4214 CPUs @ 2.20 GHz, 125.6 GB of RAM, and an
Nvidia GeForce RTX 3090 GPU for image processing. The deep
learning framework PyTorch was employed.

In the pretraining stage, the spectral bands of the spatial
samples were reduced to 3 using PCA. The patch size was set to
31 for the Indian Pines, 35 for the WHU-Hi-LongKou and WHU-
Hi-HanChuan datasets, and 41 for the Pavia University dataset.
The spatial samples were augmented through random cropping,
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TABLE V
NUMBER OF SAMPLES FOR TRAINING AND TEST OF EACH CLASS ON THE

WHU_HI_HANCHUAN DATASET

TABLE VI
CLASSIFICATION ACCURACY(%) UNDER DIFFERENT SPECTRAL

AUGMENTATION POLICY

random flipping, color distortion, and conversion to grayscale
with a certain probability to construct positive sample pairs. The
spectral modality was augmented through random_select. The
patch size was set to 3. The mini-batch size was set to 400, and
the number of epochs was set to 200; the learning rate was set
to 1e−3.

In the fine-tuning stage, 30 samples were selected from each
class for all the datasets. If the sample size is insufficient, take
15 samples from each class. The mini-batch size was set to
64, and the RMSProp optimizer with a decay rate of 0.9 was
utilized for training, the number of epochs was set to 100. The
performance of different algorithms was evaluated using overall
accuracy (OA), average accuracy (AA), and Kappa coefficient.

C. Ablation Study

Efficient data augmentation facilitates the model in thor-
oughly exploring the diversity of features, enhancing the dis-
similarity between sample pairs, and compelling the encoder to
acquire advanced semantic characteristics. Thus, we conducted
an evaluation to assess the classification performance of various
data augmentation methods within the proposed framework.
Table VI presents the classification accuracies achieved using
different combinations of data augmentation techniques on the
PU dataset, and it is evident that “random_select” is the most
effective data augmentation method. Random_select involves
randomly choosing a spectrum from the vicinity of the target
pixel to form a positive sample pair, which, compared to adding
Gaussian noise, better captures the influences of noise from

natural sources and light reflection that align with the distribution
of the current samples space.

Table VII displays the classification accuracies of various
modules in the model. The model consists of the following three
parts: spectral encoder, space encoder, and multilevel fusion.
The OA obtained from each module is presented in Table VII.
In addition, the first column of Table VII indicates whether
contrastive learning was used for pretraining, with “�” denoting
its usage for that particular module. Due to structural differences
and variations in light reflection, different objects may exhibit
similar spectral features in the same spectral bands. Therefore,
the classification accuracy of the space encoder, which leverages
spatial information, is superior to that of the spectral encoder.
Specifically, on the PU dataset, the OA are 56.24% and 76.37%,
respectively. This indicates that incorporating spatial informa-
tion into HSI features is more advantageous for image classi-
fication. However, when combining the two encoders, further
improvement in accuracy has been achieved. For instance, on
the IP dataset, the OA of a single space encoder is 73.62%,
while the OA accuracy of the combined encoders is 76.54%.
This result suggests that fully exploring spatial–spectral features
is more conducive to classification. By applying contrastive
learning, on the LongKou datasets, the accuracies are improved
by 3.27%. This indicates that contrastive learning can unearth
latent features of unlabeled samples and enhance the model’s
generalization ability. Taking the HanChuan dataset as an ex-
ample, after incorporating the multilevel fusion module, the
accuracy is improved by 0.44%, indicating that features from
shallow and middle-level networks contribute to the downstream
classification task.

To further substantiate the authenticity of extracting superior
features through the exploration of spectral diversity and the
utilization of a multilevel fusion network, we present in Fig. 8,
visualizations achieved through t-distributed stochastic neigh-
bor embedding of distinct feature sets, which exclusively mine
spatial diversity, mining spatial–spectral diversity, employing
the multilevel fusion network. Across the IP, PU, LongKou, and
HanChuan datasets, we deduce that features capturing space-
spectral diversity yield greater discriminability compared to
networks focusing on spatial diversity. The distances between
samples of different classes have increased, while the distances
between samples of the same class have become closer. This
underscores the efficacy of harnessing spectral diversity for
enhanced feature extraction capabilities. Furthermore, following
the incorporation of the multilevel fusion network, a notable
reduction in the number of outliers is observed, this reduction
signifies the potential of leveraging shallow-to-intermediate net-
work fusion to enhance the model’s generalization performance.

D. Sensitive Analysis of the Number of Labeled Samples

Due to the significant impact of the sample size on the clas-
sification performance of deep networks, this section conducts
data sensitivity experiments on nine classification algorithms.
Figs. 9–12 displays the OA values of various algorithms on the
four datasets under different numbers of training samples. We
experimented with sample quantities of 10, 20, 30, and 40 for
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TABLE VII
ABLATION STUDIES ON DIFFERENT DATASETS

(a) (b) (c) (d)

(h)(g)(f)(e)

(i) (j) (k) (l)

(p)(o)(n)(m)

Fig. 8. Feature visualization of encoders for HSI on four datasets. (a), (b), (c), (d) Results on the Indian Pines dataset. (e), (f), (g), (h) Results on the Pavia
University dataset. (i), (j), (k), (l) Results on the WHU-Hi-LongKou dataset. (m), (n), (o), (p) Results on the WHU-Hi-HanChuan dataset. The first column denotes
features that only explore spatial diversity, the second column denotes features that explore spectral–spatial diversity, the third column denotes features obtained
by incorporating multilevel fusion modules on the basis of exploring spectral–spatial diversity, and the last column shows the color represented by each class.

each class. It should be noted that if the sample quantity exceeds
the total number, we took 15 samples.

As the number of training samples decreases, the accuracy
of the nine classification algorithms shows varying degrees
of decline on the four datasets. On the Indian Pines dataset,
our proposed algorithm exhibits a relatively small decrease in

accuracy compared to other algorithms. Specifically, spectral–
spatial residual blocks networks (SSRN) and 3-D convolutional
neural network (3DCNN) algorithms experience a significant
decrease in OA, while our algorithm is the only one with accu-
racy above 80%. DCFSL is sensitive to the number of samples,
and as the sample quantity increases, the accuracy tends to
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Fig. 9. Classification results in terms of OA values under different training
samples on Indian Pines dataset.

Fig. 10. Classification results in terms of OA values under different training
samples on Pavia University dataset.

Fig. 11. Classification results in terms of OA values under different training
samples on WHU_Hi_LongKou dataset.

exhibit nearly linear growth. On the Pavia University dataset,
the data sensitivity of various algorithms is similar to that of
the Indian Pines dataset. Our algorithm achieves high levels of
classification accuracy for 20, 30, and 40 training samples. On
the LongKou dataset, due to a significant overlap in the sample
space between the Chikusei and LongKou datasets, the transfer
effectiveness of DFSCL is quite remarkable, exhibiting the best
classification performance when utilizing 10 and 20 samples.
Our approach demonstrated superior performance in subsequent
stages, delivering the best results with 30 and 40 samples. On

Fig. 12. Classification results in terms of OA values under different training
samples on WHU_Hi_HanChuan dataset.

(a) (b)

Fig. 13. Parameter analysis of patch size. (a) Performance of different patch
size in Indian Pines, LongKou, and Hanchuan datasets. (b) Performance of
different patch size in Pavia University dataset.

the HanChuan dataset, the accuracy of C-SS-MTr increases
nearly linearly. Overall, our proposed algorithm shows insen-
sitivity to samples and achieves the best performance across
different datasets and various numbers of training samples. This
also verifies that the contrastive representation learning method
and the pretraining method employed in this study effectively
enhance the feature extraction capability of the network under
small-sample conditions and improve the overall performance
of the fusion network.

E. Analysis of Patch Size

As demonstrated in Fig. 13, the impact of spatial block size
on the classification accuracy of various datasets is evident. A
larger spatial block size allows for the utilization of more spatial
correlation information, but simultaneously, it could introduce
interference to the classification from pixels within the spatial
block that does not belong to the same class as the target pixel.
Moreover, the complex structure requires a larger number of
samples for training parameter fitting. Our model harnesses joint
spatial–spectral feature information to mitigate the influence of
nontarget pixel classes within the spatial block. In addition,
we employ contrastive learning, enabling the utilization of a
substantial amount of unlabeled samples for model training. The
optimal patch size is 35 for the LongKou and Hanchuan datasets,
31 for the IP dataset, and 41 for the PU dataset.
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TABLE VIII
CLASSIFICATION PERFORMANCE OF DIFFERENT MODELS ON THE INDIAN PINES DATASET

F. Comparison of Classification Results

In this section, we compare our proposed model with RBF-
SVM [63], 3DCNN [64], SSAD [65], SSRN [66], DCFSL [47],
C-SS-MTr [67], DMVL [68], and SSCL [69] under the same
experimental conditions. Among these approaches, SVM is a
classic machine learning classification method, and 3DCNN
and SSRN are deep learning methodologies that capitalize on
the combined spatial and spectral information. SSAD repre-
sents an excellent semisupervised HSI classification method,
and DCFSL is a transfer learning method. C-SS-MTr, DMVL,
and SSCL are HSI classification methods based on con-
trastive learning. C-SS-MTr is a contrastive learning method
based on the transformer architecture. DMVL is a con-
trastive learning method that explores spectral diversity, while
SSCL is a contrastive learning method that explores spatial
diversity.

1) RBF-SVM: Employing a nonlinear Support Vector Ma-
chine based on Gaussian radial basis kernel functions for
the classification of hyperspectral features.

2) 3DCNN: In consideration of the characteristics unique
to hyperspectral data, a 3DCNN architecture has been
devised, accompanied by the implementation of regular-
ization strategies to mitigate overfitting concerns.

3) SSAD: Drawing inspiration from active learning princi-
ples, this approach involves iteratively selecting samples
to construct a valuable training set, which is subsequently
utilized for feature extraction using convolutional net-
works.

4) SSRN: Formulating an end-to-end approach involving
SSRN designed to independently learn more distinctive
spectral and spatial features.

5) DCFSL: Using meta-learning in both the source and target
domains enables the encoder to quickly adapt to new
tasks. Subsequently, employing conditional adversarial
techniques achieves domain alignment, reducing the dif-
ficulty of transfer.

6) C-SS-MTr: Utilizing HSI patch masking as an augmenta-
tion view of the original patch for contrastive learning to
obtain instance discrimination information. In addition, it
employs a transformer for mask block reconstruction to
obtain local semantic information.

7) DMVL: Treating different spectral bands of HSI as differ-
ent perspectives of the image allows for the exploration of
spectral diversity.

8) SSCL: Implementing spatial feature augmentation to gen-
erate pairs of samples with enhanced spatial features,
subsequently employed for contrastive learning within the
same class.

1) Indian Pines: The classification results of the IP dataset
are presented in Table VIII, encompassing the average clas-
sification accuracies and standard deviations for each class
across five independent experimental runs. In addition, OA, AA,
and Kappa coefficient averages and standard deviations over
the five experiments are documented. The performance of the
RBF-SVM method, which only employs spectral information,
overlooking the spatial information, is notably inferior to the
3DCNN. The SSRN model, incorporating residual blocks, effec-
tively retains feature information in deep networks, mitigating
accuracy degradation and improving OA by 7.89% compared to
the 3DCNN method. However, due to the class imbalance issue
within the IP dataset, instances, such as the seventh and ninth
classes exhibit terrible classification results in SSRN, owing to
their limited sample sizes. Approaches utilizing pretraining on
unlabeled samples, such as SSAD and SSCL, demonstrate sig-
nificant advancements over previous methodologies. C-SS-MTr,
built upon the transformer architecture, necessitates a substan-
tial volume of samples for parameter fitting. Consequently, it
exhibits a 3.72% lower performance in terms of OA compared
to SSCL. In contrast to the SSCL method, which focuses solely
on spatial diversity, our proposed model harnesses the diversity
of spectral information, leading to improvements of 2.41%,
1.45%, and 2.69% in terms of OA, AA, and Kappa, respectively.
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Fig. 14. Classification maps of each algorithm on the Indian Pines dataset. (a) Ground Truth. (b) RBF-SVM (59.38%). (c) 3DCNN (77.05%). (d) SSAD (87.86%).
(e) SSRN (84.94%). (f) DCFSL (85.36%). (g) C-SS-MTr (87.10%). (h) DMVL (90.73%). (i) SSCL (90.82%). (j) Proposed method (93.23%).

Fig. 15. Classification maps of each algorithm on the Pavia University dataset. (a) Ground Truth. (b) RBF-SVM (79.32%). (c) 3DCNN (79.01%). (d) SSAD
(92.24%). (e) SSRN (94.88%). (f) DCFSL (94.30%). (g) C-SS-MTr (94.67%). (h) DMVL (92.63%). (i) SSCL (93.06%). (j) Proposed method (97.72%).

This illustrates that harnessing the diversity within spectral can
enhance the performance of models in downstream classification
tasks. Moreover, our model attains superior performance across
all seven classes, including precise classification of the severely
undersampled seventh and ninth classes.

Fig. 14 presents the classification result maps of various
algorithms, where our model demonstrates the best performance.
Specifically, the utilization of RBF-SVM solely based on spec-
tral information has resulted in the presence of numerous point
noises. The SSAD method demonstrates good classification
performance at category edges but suffers from numerous mis-
classified points within regions. The enlarged region typically

consists of a homogeneous medium where samples mostly be-
long to the same class but with significant spectral variations.
Therefore, our approach, along with the spectral diversity mining
contrastive method DMVL, has demonstrated promising results.
While SSCL focuses solely on exploring spatial diversity, it
encounters interference from other classes in the edge regions.
Our approach, on the other hand, combines spectral features
with spatial information not only preserves edges effectively but
also exhibits fewer noise artefacts within regions, outperforming
other methods.

2) Pavia University: Table IX displays the classification
accuracy and evaluation metrics of different algorithms on the
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TABLE IX
CLASSIFICATION PERFORMANCE OF DIFFERENT MODELS ON THE PAVIA UNIVERSITY DATASET

TABLE X
CLASSIFICATION PERFORMANCE OF DIFFERENT MODELS ON THE WHU-HI-LONGKOU DATASET

TABLE XI
CLASSIFICATION PERFORMANCE OF DIFFERENT MODELS ON THE WHU-HI-HANCHUAN DATASET

PU dataset. The PU dataset exhibits a scattered sample distri-
bution and contains numerous boundary regions. When relying
on spatial information and utilizing image patches, there might
be interference from incongruent information with the target
pixel, potentially affecting classification. SSAD, through its
semisupervised training approach, achieves better results for
RBF-SVM and 3DCNN by selecting samples that contribute
to classification. In contrast, SSCL primarily explores spatial
diversity, disregarding spectral diversity. Consequently, its per-
formance is relatively inferior when compared to the SSRN

method, which leverages a dual-branch network approach incor-
porating spatial and spectral information. Compared to SSRN,
our proposed method achieves notable improvements of 2.84%
in AA, 6.46% in OA, and 3.75% in the Kappa coefficient.

Fig. 15 displays the classification result maps of various
algorithms on the Pavia University dataset. The enlarged region
encompasses multiple different classes, and because the spectral
of different classes may be similar, using SVM methods that
rely solely on spectral information results in significant point
noise. SSCL, due to interference from nontarget pixel classes at
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Fig. 16. Classification maps of each algorithm on the WHU-Hi-LongKou dataset. (a) Ground Truth. (b) RBF-SVM (85.05%). (c) 3DCNN (95.11%). (d) SSAD
(92.87%). (e) SSRN (95.00%). (f) DCFSL (98.27%). (g) C-SS-MTr (94.91%). (h) DMVL (93.44%). (i) SSCL (97.84%). (j) Proposed method (98.94%).

Fig. 17. Classification maps of each algorithm on the WHU-Hi-HanChuan dataset. (a) Ground Truth. (b) RBF-SVM (67.82%). (c) 3DCNN (84.56%). (d) SSAD
(78.19%). (e) SSRN (90.66%). (f) DCFSL (84.78%). (g) C-SS-MTr (88.31%). (h) DMVL (75.67%). (i) SSCL (90.37%). (j) Proposed method (93.52%).

category edges, exhibits suboptimal classification performance.
In contrast, DMVL only exhibits sporadic misclassification
points within the regions. Our approach, however, demonstrates
the best results in addressing these challenges.

3) WHU-Hi-LongKou: Table X presents the classification
results of various methods on the LongKou dataset. The
LongKou dataset has fewer boundary regions and more homoge-
neous areas, making SSCL methods that explore spatial diversity



1918 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

superior to DMVL methods, resulting in a relative accuracy
improvement of 4.4%. Regarding the DCFSL, the sample space
distribution between the Chikusei dataset and the LongKou
dataset is similar, and the sample space deviation is relatively
small, making the transfer relatively easier, the classification
accuracy reached the second best. However, our method still
outperformed it by 0.67% in OA, 1.14% in AA, and 0.87% in
Kappa, our method achieves the highest accuracy among the six
classes.

Fig. 16 presents the classification result maps of various
algorithms on the LongKou dataset. Similar to the previous
datasets, our method achieves the best classification results in the
enlarged region by combining spatial and spectral features. The
SSCL, which explores spatial diversity, is influenced by pixels
from different classes within the same image block, leading to
classification errors in boundary areas. Meanwhile, due to the
characteristic of hyperspectral data, where different materials
may have similar spectral, DMVL exhibits some misclassifica-
tion points within regions.

4) WHU-Hi-HanChuan: The classification results for the
HanChuan dataset are presented in Table XI. Due to the influence
of sunlight angles on dataset acquisition, resulting in a significant
amount of noise in the dataset, the DMVL method, which aims
to extract spectral diversity, performs poorly on this dataset.
Compared to SSCL, our proposed method achieves better im-
provements of 3.15% in OA, 2.73% in AA, and 3.65% in Kappa
coefficient. Among these 16 classes, 8 classes achieved the best
classification performance.

Fig. 17 illustrates the classification maps for different meth-
ods on the HanChuan dataset. Regarding the SSAD, it can be
observed in the zoomed-in regions that suboptimal sample se-
lection leads to error accumulation, resulting in nearly the entire
area being misclassified in certain cases. Our method exhibits
the best classification performance both within the region and
along the boundaries.

IV. CONCLUSION

In this article, we propose a two-stream contrastive learning
network to address the challenge of few-shot HSI classification.
Building upon the existing contrastive learning framework that
primarily explores spatial feature diversity within surface sam-
ples, we introduce an additional stream dedicated to exploiting
the spectral diversity of target points. Meanwhile, we devise four
distinct data augmentation methods to enrich spectral diversity.
Moreover, to mitigate the issue of inconsistency between up-
stream and downstream tasks, we architect a multilevel network
structure, this structure fuses information from varying network
levels, rendering the model more generalized. Extensive exper-
imental results and visualization of feature maps indicate that
our proposed approach can uncover discriminative features that
are more conducive to generalization for downstream tasks. It
can improve the classification accuracy on four public datasets.
Our approach delves into both spatial and spectral aspects of
contrastive learning, ignoring mutual interaction between the
two types of features during the pretraining phase.

In the future, we aspire to leverage deep learning networks,
such as GAN-based models, to design more effective data
augmentation techniques. In addition, we intend to craft a

module that facilitates interaction between spatial and spectral
information.
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