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Abstract—Hyperspectral target detection (HTD) methods aim to
exploit the abundant hyperspectral information to distinguish the
key target pixels from multifarious background pixels. However,
the performances of existing HTD methods are limited by the
dilemmas of scarcity of target prior spectra, imprecise estimation
of background spectra, as well as noise pollution. For the issues,
this article proposes a novel target prior augmentation and back-
ground suppression-based multidetector fusion (TBMF) method
for HTD, based on the joint optimization of the target prior spectra
augmentation, low-rank pure background spectra separation, and
nontarget nonbackground noise component removal. Specifically,
a constrained linear spectral mixture model is seamlessly incor-
porated to implicitly augment the target’s prior spectra. Also, the
nontarget nonbackground components of HSI, i.e., noise with com-
plex distribution are removed by a noise-robust l1,1-norm-based
regularization. Subsequently, multiple basic constrained energy
minimization detectors are trained using the augmented diverse
target spectra in the background-suppression subspace derived by
the separated background spectra. The detection results of these
basic detectors are fused with a winner-take-all strategy to acquire
the final detection result. Plenty of experimental results on four
HSI datasets show that the proposed TBMF method performs
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promisingly when compared with several classical and recently
proposed HTD methods.

Index Terms—Hyperspectral target detection (HTD), linear
spectral mixture model, matrix decomposition, noise modeling.

I. INTRODUCTION

THE hyperspectral spectrometer can simultaneously mea-
sure and record the electromagnetic energy scattering of

land-cover objects in dozens or even hundreds of approximately
continuous spectral bands [1], [2], [3], [32], [33], [34], [39], [40],
[41]. As a result, the characteristic of high spectral resolution has
enabled HSI to effectively identify different kinds of materials
through precise spectral analysis, which has promoted a series
of applications based on hyperspectral imaging [4], [5]. Among
them, hyperspectral target detection (HTD) has attracted wide
attention and shown great potential in both military and civilian
fields, such as mineral resource exploration, military target
survey, and object searching [6], [7], [8].

The basic task of HTD is to label each HSI test pixel as
background or target and distinguish a small number of critical
target pixels in HSI with the supervision of preacquired target
prior spectra [9]. Many HTD methods have been proposed
to address this challenging task and have achieved significant
advances, such as the adaptive coherence estimator (ACE) [10],
spectral angle mapper [11], adaptive subspace detector [12],
and orthogonal subspace projection detector [13]. The exist-
ing methods usually construct detectors with the principles of
suppressing the nontarget background spectra or highlighting
the potential target spectra. For example, the constrained energy
minimization (CEM) [14] and target-constrained interference
minimization filter [15] impose constraints on the target or
nontarget interference components and then construct a detector
to highlight the target component by restricting the detector re-
sponses for background or nontarget interference components in
HSI. Nevertheless, without accurate and sufficient background
and target prior spectra, these methods cannot achieve reliable
and satisfactory performance. In practice, obtaining adequate
high-quality background and target prior spectra for HTD is
labor-intensive or even impossible [16], [17].

Meanwhile, due to atmospheric interference, sensor noise,
limited spatial resolution, and some other constraints during
hyperspectral imaging, HSI pixels with blending and noise
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pollution are ubiquitous, which has brought great difficulties
for the accurate detection of target pixels [18]. In addition to
this, the real-world target pixels for remote detection are usually
different from the target prior spectra previously acquired using
a handheld spectrometer in the laboratory or in the wild [19].
The handheld spectrometer is always very close to the surface of
the target object rather than through remote sensing. Obviously,
in a real HTD task, there is a data characteristic difference
between the target spectra to be detected and the preacquired
target prior spectra, which will increase the error probability for
target spectra detection.

The root of the above problem lies in the variability of spectra,
i.e., the same substance might show many differences in spectral
characteristics. To alleviate the problem, one effective solution is
the sparse representation-based target detection (SRD) method
[20], by learning a sparse representation coefficient vector
of a test pixel on a background and target union dictionary,
and the detection of a target pixel is conducted by comparing
the representation residuals. The main idea of SRD stems
from linear subspace theory, with the underlying assumption
that the spectra from background and target classes lie in
different subspaces. Thus, target and background spectra can
be separated by accurately constructing target and background
spectral subspaces. The subspace models can produce diverse
spectra through the linear combinations of limited preacquired
target and the background prior spectra and, thus, have shown
good efficiency in dealing with the spectral variability problem
in HTD.

Therefore, SRD has triggered many representation-learning-
based methods, such as the sparsity representation-based binary
hypothesis (SRBBH) detector [21], binary-class collaborative
representation-based detector [20], combined sparse and col-
laborative representation detector [22], and the sparse and dense
hybrid representation-based target detector [23]. However, these
representation-based HTD methods are extremely dependent on
a pure and accurate estimation of background spectra dictionary,
and the frequently used local dual concentric window strategy
for background dictionary construction is cumbersome and sub-
ject to window parameters [21]. Thus, increasing efforts have
been devoted to constructing or learning a unified background
spectra dictionary. For example, Zhu et al. [17] proposed to con-
struct a global overcomplete background spectra dictionary by
using a classification-based background pixel selection strategy.
Bitar et al. [19] proposed to directly learn a low-rank background
dictionary from the observed HSI with the constraints of limited
target prior spectra. However, these methods suffer from the
problem of insufficient target prior spectra and are vulnerable to
complex real-world noise interference, which will make the ba-
sic model assumptions no longer valid. As a result, the detection
results of these methods will become unreliable.

In addition to the above shallow learning-based methods,
some hierarchical learning-based methods have also been in-
vestigated for HSI applications [24], [25], [26], [35], [36], [37],
[38]. For example, Gao et al. [38] proposed the depthwise feature
interaction network with a depthwise cross-attention module
to extract self-correlation and cross correlation from multi-
source feature pairs. Zou and Shi [24] proposed a multilayer

hierarchical CEM (hCEM) detector by suppressing the unde-
sired background spectra and preserving target spectra through
a layer-by-layer filtering procedure. Zhu et al. [25] introduced a
two-stream convolutional neural network-based target detector.
However, the above-mentioned existing methods paid more
attention to the discrimination and separability of target and
background spectral components. However, HTD is not a naïve
binary classification problem, and an ideal HSI target detector’s
function is beyond classification and should go further, that is,
to highlight the target component and simultaneously suppress
the background component. Furthermore, the imbalance in the
number of the two classes of background and target prior spectra
is also a key factor affecting detection performance.

Based on the above analysis, the dilemmas for existing HTD
methods can be boiled down to one point for solving, i.e., learn-
ing adequate and high-quality target and background prior spec-
tral components, and then highlighting the target component and
suppressing the background component to distinguish targets.
Accordingly, as shown in Fig. 1, this article proposes to augment
the limited target prior spectra, and simultaneously to guide the
separation of pure background component through HSI data
decomposition. Specifically, we propose to insert a restricted
linear spectral mixture model into the HSI data decomposition
model, and implicitly generate and augment the target prior
spectra via linear combinations of the limited target prior spectra,
to provide more supervision information for target and back-
ground components decomposition. In addition, an l1,1-norm
regularization based on l1-norm is introduced for complex HSI
noise removal and endows the proposed model with noise-robust
property. The above-mentioned several subproblems can be
simultaneously optimized for the target augmentation and back-
ground suppression-based multidetector fusion-based HTD. In
summary, the main contributions and highlights of this article
are listed as follows.

1) The key objectives of HTD, i.e., diverse target prior
spectra augmentation, low-rank pure background spectra
separation, as well as complex nontarget nonbackground
noise removal are jointly formulated in a single novel HSI
data decomposition model for each individual component
optimization with variables grouping.

2) A constrained linear spectral mixture model is seamlessly
embedded into the HSI data decomposition model to
implicitly augment the target prior spectra via the com-
binations of the limited target prior spectra. In addition,
a complex noise-robust l1,1-norm-based regularization is
introduced to model and remove nontarget nonbackground
noise components in HSI.

3) A group of basic CEM detectors is trained to make full
use of the augmented diverse target prior spectra in the
background-suppression subspace derived by the sepa-
rated pure background spectra. The detection results of all
these detectors are fused by a winner-take-all max-pooling
strategy for the final detection result.

In the following, Section II presents some related works.
An elaboration of the proposed TBMF method is given in
Section III. The experimental results are reported in Section IV.
Section V concludes the article.
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Fig. 1. Flowchart of the proposed TBMF method for HTD. 1©HSI data decomposition model is established to pursue the augmentation-based target component,
low-rank pure background component, and the nontarget nonbackground complex noise component. As shown in 2© and 3©, a constrained linear spectral mixture
model is designed and embedded into the HSI decomposition procedure to simultaneously augment target prior spectra by linear combinations of limited target prior
spectra. Through model optimization, the pure background component is separated to construct a background suppression subspace as in 4©. The simultaneously
obtained augmented target spectra are used to train multiple CEM detectors in the subspace, and the detection values from the CEM detector group are fused by a
winner-take-all strategy for the final detection result.

II. RELATED WORKS

This section will introduce some relevant works to our pro-
posed method for HTD, such as the low-rank learning method-
ologies and their applications for HTD.

A. Low-Rank Learning Methodology

The low-rank and low-dimensional characteristics of high-
dimensional data are ubiquitous and usually follow the inherent
physical mechanism of data generation. This is because many
real-world data are an observation of some physical processes
governed by certain generative mechanisms. For example, mag-
netic resonance images are generated by manipulating a mag-
netic field that obeys Maxwell’s equations.

Due to the ubiquity and importance of low-rank structures,
low-rank learning methodologies for high-dimensional data
analysis are surging in popularity, such as robust principal com-
ponent analysis (RPCA) [27] and low-rank representation (LRR)
[28]. Specifically, RPCA considers how to recover the low-rank
structure of a corrupted dataset when there is sparse noise
with arbitrary magnitude. Considering a dataset L ∈ �d×n is
corrupted by noise E ∈ �d×n that has the noised elements with
arbitrary magnitude, and thus leads to a highly corrupted dataset
Y ∈ �d×n. The problem of recovering the original dataset L
and its associated low-dimensional subspace from the highly
corrupted observations Y is the so-called RPCA problem, i.e.,

min
L,E

rank (L) + λ‖E‖0 s.t. Y = L+E (1)

where ‖E‖0 indicates the number of the nonzero elements of
the noise component E. However, the RPCA model can only
robustly extract a single subspace, that is, the linear subspace
formed by all clean data. To solve the problem of clustering
a set of data points that are sampled from a union of multiple
low-dimensional subspaces with potential noise and corruptions,
Liu et al. suggested the LRR model. Inspired by the sparse
subspace clustering method [29], LRR promotes the represen-
tation coefficient matrix Z to be low rank by taking advantage
of the self-expression property of data Y. When considering
possible sparse corruptions or outliers that are sampled outside
of the subspaces, the LRR learning problem Y = YZ+E is
solved with E being sparse or column-sparse, which leads to the
following optimization formulation:

min
L,E

rank (Z) + λ‖E‖l s.t. Y = YZ+E (2)

where l = 0 or l = 2,0 in ‖E‖l, which means the noise in data
is sparse or sample specific.

B. Low-Rank Modeling-Based HTD

The low-rank matrix recovery theory and methods have been
applied and shown promising performance in the field of HSI
processing, such as the HTD. For example, Bitar et al. [19]
proposed a sparse and low-rank matrix decomposition method
for automatic target Detection (SLRMDD) in hyperspectral
imagery. Suppose an HSI is of the size of h× w × p, where h
and w are the height and width of the image scene, respectively,
and p is the number of the spectral bands. The HSI image is
rearranged into a 2-D matrix D, which is decomposed into a
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low-rank matrix A as the pure background, a sparse matrix
capturing any spatially small signals residing in the known target
subspace spanned by the preacquired prior target spectra S, and
the noise, as follows:

min
A,X

‖D−A− SX‖2F + τ‖A‖∗ + λ‖X‖2,1 (3)

where the nuclear norm ‖A‖∗ is used as a surrogate for the
matrix rank function rank(A). The parameters τ and λ balance
the contributions of the corresponding terms in the objective
function. With the separated background component A and
the target component SX, the detection of target pixels is then
performed by using the SRBBH scheme or using SX as the
detector.

One of the key concerns for the model is the insufficient
preacquired target prior spectra. If the available prior target
spectra are limited, an accurate data decomposition cannot be
guaranteed. In addition, the detection results will also be fragile
to complex nontarget nonbackground interference noise.

III. PROPOSED TARGET AUGMENTATION AND BACKGROUND

SUPPRESSION-BASED MULTIDETECTOR FUSION FOR HSI
TARGET DETECTION

A. Model Formulation

In an HTD task, the observed HSI dataset D ∈ �p×N is
considered to contain three basic components, i.e., the back-
ground component A ∈ �p×N , target component T ∈ �p×N ,
and the nontarget nonbackground noise component E ∈ �p×N .
The three kinds of basic components mix to make up the final ob-
served HSI data D. Conversely, inferring the three components
from the observed D with the guidance of preacquired target
prior spectra S ∈ �p×n1 is regarded as an inversion problem
through data decomposition, which is mathematically formu-
lated as follows:

min
A,B,E

Φ(A) + Ψ (T,S) + Ω (E) s.t. D = A+T+E.

(4)
Obviously, there are numerous solutions to the above problem,

and without some prior knowledge and regularizations about the
characteristics of the three HSI components, an accurate and
meaningful data decomposition is unable to be obtained. Con-
sequently, in the objective function of (4), Φ(A) contains some
prior knowledge or constraint regularizations for background
component A. Ψ(T,S) should be able to characterize the target
component T in HSI, and the target component T must have
a high similarity to the preacquired target prior spectra S. At
last, the nontarget nonbackground noise component E should
be properly identified and handled with via Ω(E) to reduce
its repercussions on the accurate decomposition of target and
background components.

In real-world HSI data, a key observation is that the back-
ground pixels, which contain some different materials, are lo-
cally similar and with limited variability [19]. When unfolding
the HSI data and lexicographically arranging the locally similar
background pixels, it will be found that the pure background
component should have a low-dimensional structure, which can

be modeled using the low-rank constraint. However, when mix-
ing with target and noise components, the rank of the background
component will increase. In other words, the pure background
component can be achieved by separating a rank-reduced com-
ponent A from D as follows:

min
A,T,E

rank (A) + Ψ (T,S) + Ω (E)

s.t. D = A+T+E. (5)

It is known that in comparison to the background pixels, target
pixels are small in number. As a result, the nonzero column
supports of T are sparse and can roughly indicate the positions
of the target pixels. In addition, the similarity between the target
component T and preacquired target prior spectra S must be
strengthened. In the end, one can choose to promote T = SX
with a learnable abundance matrix X. The principle behind this
is that the linear combinations of the preacquired target prior
spectra S can be used to form the target component T of D.
However, the number of the preacquired target spectra S is
always very limited, i.e.,n1 is usually very small, which might be
unable to provide sufficient and diverse supervision knowledge
for accurate data decomposition. Alternatively, we introduce a
learnable target component dictionary B ∈ �p×n2 containing
n2 atoms to replace S with n2 > n1. Thus, the number of target
pixels in the data decomposition model (5) will be augmented
from n1 to n2, which can provide more degrees of freedom for
fitting the data decomposition model in comparison to directly
using the original target prior spectraS, resulting in the following
model:

min
A,B,X,E

rank (A) + Ψ (B,S,X) + Ω (E)

s.t. D = A+BX+E (6)

where Ψ(B,S,X) is used to regulate the target component
dictionary B and the column-spare target component BX, with
the guidance of preacquired target prior spectra S. Since a
column-sparse X can promote BX to be sparse in the column,
the sparsity prior property of target component BX can be
achieved by minimizing the nonzero column supports of X,
which can be modeled as the l2,0-norm of X, i.e., ‖X‖2,0 =
#{i : ‖[X]:,i‖2 �= 0}, and [X]:,i is the ith column ofX. To incor-
porate the target prior spectra S, we proposed to connect B and
S via a constrained linear spectral mixture model as B = SC
with a sum-to-one constraint for the linear combination matrix
C ∈ �n1×n2 , i.e., CT 1n1×1 = 1n2×1, and 1 is a column vector
with all its value per dimension as 1, which can enhance the
physical interpretability of the linear mixture model. Finally,
the complex nontarget nonbackground noise component E is
estimated using ‖E‖1,0 = #{j : ‖[E]:,j‖1 �= 0}, and [E]:,j is
the jth column of E. Accordingly, our target and background
decomposition model is finally formulated as follows:

min
A,B,X,C,E

rank (A) +
α

2
‖B− SC‖2F + β‖X‖2,0 + γ‖E‖1,0

s.t. D = A+BX+E, CT 1n1×1 = 1n2×1. (7)
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TABLE I
MAIN NOTATIONS AND THEIR MEANINGS USED IN THIS ARTICLE

The above-mentioned data decomposition problem is gen-
erally NP-hard because of the existence of the matrix rank
function rank(·) and l0-norm. Fortunately, it is feasible and
efficient to use the nuclear norm as a surrogate for the matrix
rank function in (7). Also, l2,1 and l1,1 norms are applicable
relaxations for l2,0 and l1,0 regularization norms, respectively.
Therefore, the proposed model is transformed into the following
relaxed optimization problem:

min
A,B,X,C,E

‖A‖∗ +
α

2
‖B− SC‖2F + β‖X‖2,1 + γ‖E‖1,1

s.t. D = A+BX+E, CT 1n1×1 = 1n2×1. (8)

The main notations and their meanings used in the article
are summarized in Table I. In summary, the proposed model
focuses on the three important problems in HTD, i.e., pure
background component separation, diverse target prior spectra
augmentation, as well as the complex nontarget nonbackground
noise component estimation and removal. The three objectives
affect each other and a satisfactory solution can be achieved via
proper and efficient optimization.

B. Model Optimization

There are five variables in the HSI data decomposition model
(8), which is a multiple-variable optimization problem involving
three subproblems, including: 1) target spectra augmentation
(TSA); 2) target spectra abundance optimization (TSAO); and 3)
background spectra optimization (BSO). Therefore, the original
optimization problem is divided into three subproblems for
solving with variables grouping, including the TSA subproblem
for optimizing B, C, and E with the other variables fixed, the
TSAO subproblem for optimizing X and E by fixing the other
variables, and the BSO subproblem for optimizing A and E
with the other variables frozen. The details for solving these
subproblems are presented as follows.

1) TSA Subproblem Optimization: In this optimization prob-
lem, variablesA andX are fixed to optimizeB,C, andE, which
results in the following problem:

min
B,C,E

α

2
‖B− SC‖2F + γ‖E‖1,1

s.t. D−A = BX+E, CT 1n1×1 = 1n2×1. (9)

This can be solved by the augmented Lagrange multiplier
(ALM) method [30] that converts (9) into the following mini-
mized equivalent problem:

min
B,C,E

α

2
‖B− SC‖2F + γ‖E‖1,1 +

μ

2
‖D−A−BX−E‖2F

+ 〈Y1,D−A−BX−E〉
s.t. CT 1n1×1 = 1n2×1 (10)

where 〈P,Q〉 = trace(PTQ). Y1 is the Lagrange multiplier
and μ is a penalty parameter. Algorithm 1 summarizes the
solution to problem (9) and step 2 is solved via the soft-threshold
operation.

2) TSAO Subproblem Optimization: Afterward, the TSAO
subproblem will be handled, i.e., optimizing variables X and E
by fixing the others as follows:

min
X,E

β‖X‖2,1 + γ‖E‖1,1
s.t. D−A = BX+E. (11)

To make the problem (11) more tractable, an auxiliary variable
J is introduced to convert (11) into the following equivalent
optimization problem:

min
X,E,J

β‖J‖2,1 + γ‖E‖1,1
s.t. D−A = BX+E, X = J. (12)

Again, the ALM method is applied to covert (12) into an
unconstrained minimization optimization problem as follows

min
X,E,J

β‖J‖2,1 + γ‖E‖1,1 +
μ

2
‖D−A−BX−E‖2F

+ 〈Y2,D−A−BX−E〉+ μ

2
‖X− J‖2F + 〈Y3,X− J〉

(13)

where Y2 and Y3 are the Lagrange multipliers and μ a penalty
parameter. The inexact ALM method to solve (11) is outlined
in Algorithm 2, of which steps 2 and 3 are solved by the soft-
threshold operation.

3) BSO Subproblem Optimization: With the optimized B
and X fixed, the last step is to optimize the variables A and
E, i.e., solving the BSO subproblem as follows:

min
A,E

‖A‖∗ + γ‖E‖1,1
s.t. D−BX = A+E. (14)
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Algorithm 1: Solving TSA Subproblem (9) by Inexact ALM.
Input: D, A, X, and parameters α and γ.
Initialize: B = J = 0, E = 0, Y1 = 0, Y2 = 0, μ = 10−3, μmax = 106, ρ = 1.5, θ = 10−6.
While not converged do
1. Fix the other variables and update B via
B = (αSC+ μ(D−A−E+Y1/μ)X

T ) (αI+ μXXT )
−1

2. Fix the other variables and update E via
γ
μ‖E‖1,1 + 1

2‖E− (D−A−BX+Y1/μ)‖2F
3. Fix the other variables and update C via
C = α(αSTS+ 2I)

−1
STB with CT 1n1×1 = 1n2×1

4. Update μ by μ = min(ρμ, μmax)
5. Check the convergence condition: ‖D−A−BX−E‖2F < θ
end
Output: B and C

Algorithm 2: Solving TSAO Subproblem (11) by Inexact ALM.
Input: D, A, B, and parameters β and γ.
Initialize: X = E = 0, Y2 = 0, Y3 = 0, η = 10−3, ηmax = 106, ρ = 1.5, θ = 10−6.
While not converged do
1. fix the others and update X via
X = (BTB+ I)

−1
(BT (D−A−E+Y2/η) + J−Y3/η)

2. fix the others and update E via
E = argmin

E

γ
η ‖E‖1,1 + 1

2‖E− (D−A−BX+Y2/η)‖2F
3. fix the others and update J via
J = argmin

J

β
η ‖J‖2,1 + 1

2‖J− (X+Y3/η)‖2F
4. update penalty parameter η by η = min(ρη, ηmax)
5. check the convergence conditions: ‖D−A−BX−E‖2F < θ and ‖X− J‖2F < θ
end
Output: X.

Algorithm 3: Solving BSO Subproblem (14) by Inexact ALM.
Input: D, A, B, C, and the parameters β and γ.
Initialize: X = E = 0, Y4 = 0, ζ = 10−3, ζmax = 106 , ρ = 1.5, θ = 10−6.
While not converged do
1. fix the others and update A via
A = argmin

A
‖A‖∗ + ζ

2‖D−BX−A−E+Y4/ζ‖2F
2. fix the others and update E via
E = argmin

E
γ‖E‖1,1 + ζ

2‖D−BX−A−E+Y4/ζ‖2F
3. update ζ by ζ = min(ρζ, ζmax)
4. check the convergence condition: ‖D−A−BX−E‖2F < θ
end
Output: A.

Similarly, the ALM scheme is applied to covert (14) into an
unconstrained minimization problem as follows:

min
A,E

‖A‖∗ + γ‖E‖1,1 +
ζ

2
‖D−BX−A−E‖2F

+ 〈Y4,D−BX−A−E〉 (15)

where ζ is a penalty parameter and Y4 is the Lagrange multi-
plier matrix. The procedures for solving (14) are presented in

Algorithm 3, wherein steps 1 and 2 both have closed-form
solutions [29], [30].

C. Target Detection by Fusing Multiple CEM Detectors

After solving the optimization Algorithms 1–3, the pure back-
ground component A ∈ �p×N and augmented diverse target
component B = [b1, b2, . . . , bn2

] ∈ �p×n2 will be obtained.
To enhance the discrimination and separation between the target



GUO et al.: HTD WITH TARGET PRIOR AUGMENTATION AND BACKGROUND SUPPRESSION-BASED MULTIDETECTOR FUSION 1771

Algorithm 4: Proposed Target Augmentation and Background Suppression-Based Multidetector Fusion for HTD.
Input: HSI dataset D and target prior spectra S. The parameters α, β, and γ. Iteration number In.
Initialize: X and C. SVD of D = UΣVT, A = U(:, 1 : 10)∗Σ(1 : 10, 1 : 10)∗V(:, 1 : 10)′.
1. for 1: In do

I. solving TSA subproblem using Algorithm 1.
II. solving TSAO subproblem using Algorithm 2.
III. solving BSO subproblem using Algorithm 3.

end
2. utilize the optimized background component A to construct a background-suppressed space as in (16).
3. transform the target component B into the background-suppressed space to get the background-suppressed target

component Bbs and HSI data Dbs.
4. train multiple CEM target detectors using Bbs, and fuse the multiple detection maps via winner-take-all to get the final

detection map.
Output: Detection map.

and background components, an orthogonal complement sub-
space is constructed based on A as follows:

S⊥
A = I−A

(
ATA

)−1
AT. (16)

The subspace spanned by S⊥
A is orthogonal to the back-

ground component subspace, and thus constitutes a background-
suppression subspace, wherein the background component is
suppressed and the nonbackground components, such as the tar-
get component and nontarget nonbackground noise interference
component can be relatively highlighted.

After that, the target component B and noise re-
moved HSI data Dnr = D−E are projected into the
background-suppressed space, obtaining the corresponding
background-suppressed target and background mixed compo-
nents, i.e., Bbs = S⊥

A B = [bbs
1 ,bbs

2 , . . . ,bbs
n2
,] ∈ �p×n2 and

Dbs
nr = S⊥

A Dnr = [dbs
nr·1,d

bs
nr·2, . . . ,d

bs
nr·N ] ∈ �p×N . The

background-suppressed target components Bbs with n2 diverse
target spectra are then utilized for training n2 CEM detectors,
and the filter for the ith CEM detector is established as follows:

wi =
(
R−1bbs

i

)
/
((

bbs
i

)T
R−1

(
bbs
i

))
(17)

where R =
(∑N

j=1(d
bs
nr·j)(d

bs
nr·j)

T
)
/N is the covariance ma-

trix for the background-suppressed HSI data Dbs
nr. The obtained

n2 CEM detectors are then utilized for detecting the targets in the
background-suppressed HSI data Dbs

nr, with each CEM detector
producing one detection map. Afterward, the winner-take-all
max-pooling fusion operation is performed to acquire the final
detection result as follows:

DetecMap = MaxPool
{
wiD

bs
nr

}n2

i = 1
. (18)

The operation makes full use of the enhanced diverse target
spectra, which can lead to a robust detection result. The whole
procedures for our HTD method are outlined in Algorithm 4.

D. Algorithm Complexity Analysis

In Algorithm 1, the main computational complexity
lies in steps 1 and 3, which involve matrix inversion
and matrix multiplications. In step 1 of Algorithm 1,
(αI+ μXXT )

−1
costs O(Nn2

2 + n3
2) and can be precalcu-

lated and cached. In step 3 of Algorithm 1, (αSTS+ 2I)
−1

is computed and cached at the cost of O(pn2
1 + n3

1).
The main computational complexity of Algorithm 1 is
O(Nn2

2 + n3
2 + pn2

1 + n3
1 + ρ(pn2

2 + pn2
1 + pn1n2)), where ρ

is the iteration number. Similarly, the main computational com-
plexity of Algorithm 2 lies in step 1, whose matrix inversion and
matrix multiplications cost O(pn2

2 + n3
2 + ω(Nn2

2 + pNn2))
with ω iterations. The singular value decomposition (SVD) in
step 1 of Algorithm 3 costsO(N3). The computation complexity
Algorithm 4 mainly comes from Algorithms 1–3, with a factor
of iteration number In. Step 2 involves matrix multiplication
and inversion, the total computation complexity of which is
O(N3 +N2p).

In addition, the convergence property of inexact ALM has
been proved [28], and the performance and convergence curves
of our algorithm shown in Section VI provide evidence that the
devised algorithms converge quickly in practice.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The first three datasets used in the experiments are denoted
as AVIRIS I, AVIRIS II, and AVIRIS III, which are collected
by the airborne visible/infrared imaging spectrometer (AVIRIS)
from San Diego with a spatial resolution of 3.5 m. The low
signal-to-noise ratio, water absorption, and some bad bands are
removed. A total of 189 bands were remained for experiments
[24]. The three datasets and their corresponding ground-truths
are shown in Figs. 2–4, which have 60 × 60 pixels, 100 × 100
pixels, and 100 × 100 pixels, respectively. In Fig. 2(b), there
are 14 airplanes containing 119 pixels to detect in the AVIRIS
I dataset. For the AVIRIS II dataset, the airplanes with special
spectral characteristics were selected as the targets to detect,
which have 58 pixels, as shown in Fig. 3(b). In the AVIRIS III
dataset, there are 134 pixels distributed in planes for detection,
as demonstrated in Fig. 4(b).

The fourth benchmark data are collected in an HSI data
collection campaign called “Viareggio 2013 trial” [17]. The
datasets in the campaign are assembled via a push-broom sensor
termed “Sistema Iperspettrale Modulare Galileo Avionica.” In
the datasets, the D1F12H1 is used in the experiment, and the
subset has 375 × 450 pixels and covers a parking lot, a football
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Fig. 2. AVIRIS I hyperspectral data. (a) Image scene. (b) Ground-truth.

Fig. 3. AVIRIS II hyperspectral data. (a) Image scene. (b) Ground-truth.

field, and several sports facility buildings, as shown in Fig. 5(a).
The wavelength range of this dataset is 400–1000 nm and
there are 511 spectral bands in total. The spatial resolution
and spectral resolution are 0.6 m and 2.3 nm, respectively.
A subscene, as shown in Fig. 5(b) with 100 × 100 pixels,
is used. There are three panels containing 24 pixels that are
regarded as targets for detection and the ground-truth is given in
Fig. 5(c).

To evaluate the performance of different HTD methods,
the probability of false alarm (Pτ

F) and the probability of
detection (Pτ

D) under different thresholds τ are calculated as
follows:

P
(τ)
D =

TP(τ)

Nt
(19)

P
(τ)
F =

FP(τ)

Nb
(20)

where TP(τ) and FP(τ) represent the number of targets and
background pixels whose detection value is larger than the given
threshold τ . Nt and Nb are the total numbers of true target and
background pixels, respectively.

The receiver operating characteristic (ROC) curve can provide
a threshold-free performance metric in terms of P(τ)

F and P
(τ)
D .

Under the sameP(τ)
F level, a detector with higherP(τ)

D is claimed
to have better detection performance. In addition, the area under
the curve (AUC) enclosed by the ROC curve and the coordinate

axes is also widely employed as a quantitative index for detection
performance evaluation.

However, an ROC curve of (P
(τ)
D ,P

(τ)
F ) under all possible

threshold τ can only be used to evaluate the effectiveness of
a detector but not its target detectability and background sup-
pressibility. BothP(τ)

D andP(τ)
F are a function of the independent

parameter specified by the threshold τ . On some occasions, two
detectors yielding two different ROC curves indeed obtain the
same AUC value in terms of (PD,PF). To alleviate the problem,
the 3-D ROC curve is designed to include the threshold value as
an independent variable [31] and then generates an ROC curve
in a 3-D space of (PD,PF, τ). In addition to the 3-D ROC
curve, three corresponding 2-D ROC curves, i.e., 2-D ROC
curve of (τ,PF), 2-D ROC curve of (τ, PD), and 2-D ROC
curve of (PF,PD), and the AUC of the three kinds of 2-D ROC
curve are used to comprehensively evaluate the performance
of different detectors [31]. As a result, an efficient detector
should have a higher AUC(PF,PD) and AUC(τ, PD) when they
approach 1, and meanwhile, a lower AUC(τ, PF) approaching 0
will be preferred. Therefore, an overall AUC value is calculated
by comprehensively considering AUC(PF,PD), AUC(PF,PD),
and AUC(τ, PF) for overall performance evaluation as
follows:

AUCOA = AUC(PF,PD) + AUC(τ,PD) − AUC(τ,PF) (21)

AUCSNPR = AUC(τ,PD)/AUC(τ,PF). (22)

B. Comparison Methods

In the experiments, several representative HTD methods have
been selected for performance comparison, including ACE,
CEM, SRD, hCEM, SLRMDD, and SSBRTD. Among them,
ACE is a benchmark detector, which has been proved to be
effective with a single prior target spectrum, and is taken as an
example of the matched filter type detectors. The CEM detector
achieves detection results by filtering technique, which is an
effective method to highlight the targets in HSI. SRD utilizes the
sparse representation theory to pursue a sparse representation
of a test pixel on the background and target union dictionary,
the calculated two representation residuals are compared for the
final detection decision [20]. Through a layer-by-layer hierar-
chical filtering procedure, hCEM can hierarchically suppress
the undesired background spectra and hold the main energy
of target spectra [24]. SLRMDD can be seen as a modified
RPCA model and can separate the known targets of interest
from the background in hyperspectral imagery [19]. SSBSTD
proposes to construct a target dictionary and an overcomplete
background dictionary by the manners of target predetection
and common pixels selection [17]. In summary, ACE and CEM
are widely used the baseline HSI detectors. SRD is the most
classic representation-learning-based HTD. hCEM is a famous
hierarchical learning-based HSI target detector by suppressing
undesired nontarget spectra while maintaining the key infor-
mation of targets. SLRMDD and SSBRTD follow a similar
detection paradigm to our proposed method by constructing or
learning a unified background for detecting targets in HSI. Most
of the source codes for these comparing methods are provided
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Fig. 4. AVIRIS III hyperspectral data. From left to right: (a) Image scene. (b) Subimage scene. (c) Ground-truth of subimage scene.

Fig. 5. Viareggio hyperspectral data. From left to right: (a) Image scene. (b) Subimage scene. (c) Ground-truth of subimage scene.

by the original authors and the key parameters therein are set as
suggested by the authors.

C. Results and Analysis

This section will present the experimental results of different
comparative methods on the four HSI target detection tasks from
the perspectives of both qualitative and quantitative evaluations.

1) Qualitative Results: The detection maps of different
methods on the four HSI datasets were plotted in Table II and
compared with the ground-truth to evaluate the target detection
performance of different methods qualitatively and intuitively,
including the abilities of both target highlighting and back-
ground suppressing. Since the basic function of a target detector
is to distinguish the target pixels from the observed HSI scene by
suppressing the background pixels, an overall high-performance
detector should generate a clear detection map, that is, it must
highlight the target and, meanwhile, suppress the background
component. According to the above-mentioned principles, some
observations can be made from these results presented in
Table II.

1) Most of the detection values in the detection maps pro-
duced by ACE are large, which might result in a high
probability of target detection. However, the probability
of a false alarm will also be high. Therefore, the results
show that ACE has a higher target detection ability but
lacks background suppression ability.

2) In contrast, CEM performs better in background suppres-
sion, but its target highlighting ability is fragile. Only a
few of the target pixels can be detected and highlighted by
CEM.

3) Comparatively speaking, the target and background pixels
can be better distinguished and located by SRD, hCEM,
SLRMDD, and SSBRTD. Among these four methods,
SRD seems to perform better in highlighting targets.
Nevertheless, the background suppression ability of SRD
varies drastically from one dataset to another, which shows
that the detection performance of SRD is not very stable.

4) The detection maps of hCEM, SLRMDD, and SSBRTD
show better target highlighting ability, and the target
location areas can be roughly observed in the obtained
detection maps. However, their detection maps contain
many pixels of detection value noise, which might lead to
a higher probability of false alarms.

In comparison to the above-mentioned methods, the proposed
TBMF detector can produce a more salient target detection
map with fewer detection value noise pixels, and the target and
background parts can be more clearly distinguished, especially
at the edges of the target object, which indicates that the proposed
TBMF detector performs efficiently in terms of both target
highlighting and background suppression.

2) Quantitative Evaluation: Apart from the above qualitative
assessments, some quantitative evaluation metrics were also
used to evaluate different comparing methods, including the
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TABLE II
VISUALIZATION FOR THE DETECTION MAPS OF DIFFERENT DETECTION METHODS

Fig. 6. Three kinds of 2-D ROC and the corresponding curves of different comparing methods on the AVIRIS I dataset. (a) ROC (PF, PD). (b) ROC (τ , PD). (c)
ROC (τ , PF). (d) 3-D ROC curves.

TABLE III
AUC (PF, PD) VALUES OF DIFFERENT METHODS ON THE FOUR TASKS

three kinds of 2-D ROC curves, the 3-D ROC curve, as well
as the corresponding AUC values for the three different 2-D
ROC curves.

TABLE IV
AUC (τ , PD) VALUES OF DIFFERENT METHODS ON THE FOUR TASKS

From the results presented in Figs. 6–9, and Tables III –V, one
can see that the proposed TBMF method can achieve apparent
superior results in comparison to the other methods in terms
of the AUC(PF, PD) and AUC(τ, PF), which shows that the
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Fig. 7. Three kinds of 2-D ROC and the corresponding curves of different comparing methods on the AVIRIS II dataset. (a) ROC (PF, PD). (b) ROC (τ , PD).
(c) ROC (τ , PF). (d) 3-D ROC curves.

Fig. 8. Three kinds of 2-D ROC and the corresponding curves of different comparing methods on the AVIRIS III dataset. (a) ROC (PF, PD). (b) ROC (τ , PD).
(c) ROC (τ , PF). (d) 3-D ROC curves.

Fig. 9. Three kinds of 2-D ROC and the corresponding curves of different comparing methods on the Viareggio dataset. (a) ROC (PF, PD). (b) ROC (τ , PD).
(c) ROC (τ , PF). (d) 3-D ROC curves.

proposed TBMF method has good target detection efficiency
and background supersession ability. Although the comparing
detectors, such as ACE and CEM, can achieve a higher AUC
(τ , PD) than our proposed method on the AVIRIS I and Viareggio
data, the AUC (τ , PF) for these comparing detectors also tend to
be high, which means that their background suppression ability
is insufficient.

In fact, it is challenging for a detector to simultaneously yield
the highest AUC (τ , PD) as well as the lowest AUC (τ , PF). A
good detector should strike a balance between target highlighting
ability and background suppressing ability, i.e., higher AUC
(τ , PD) and lower AUC (τ , PF).

Recent studies show that any individual AUC value cannot
truly and objectively evaluate the detection performance of
different methods. When comprehensively considering the three
AUC values based on AUC(PF,PD), AUC(τ,PD), and AUC(τ,PF),
using AUCOA and AUCSNPR, our proposed TBMF method can
generally yield superior performance.

Concretely, as given in Table VI, the proposed TBMF method
can achieve the highest AUCOA value on the AVIRIS II, AVIRIS
III, and Viareggio datasets. The performance improvements
are 29.85% (1.2404→1.6107), 14.02% (1.3886→1.5834), and
4.97% (1.5088→1.5838), when compared with the second-best
results achieved by hCEM and SRD. As for the AVIRIS I
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TABLE V
AUC (τ , PF) VALUES OF DIFFERENT METHODS ON THE FOUR TASKS

TABLE VI
AUCOA VALUES OF DIFFERENT METHODS ON THE FOUR TASKS

TABLE VII
AUCSNPR VALUES OF DIFFERENT METHODS ON THE FOUR TASKS

data, the AUCOA value of the proposed TBMF method is
in second place, which is slightly lower than that of SRD
with a degradation of about 7% (1.3427→1.4368). Simi-
larly, our TBMF method can yield the highest AUCSNPR val-
ues on the AVIRIS I, AVIRIS II, and AVIRIS III datasets
as shown in Table VII, and the gains of our method than
the second-best results are about 155.49% (3.4581→8.8352),
657.13% (2.6048→19.7219), and 274.70% (5.4703→20.4970),
respectively.

As a result, the proposed TBMF method shows promising per-
formance when evaluating the different methods using the two
overall AUC values, i.e., AUCOA and AUCSNPR, and yields com-
prehensive target detection and background suppression benefits
when compared with some other state-of-the-art methods.

TABLE VIII
AUCOA VALUE COMPARISON FOR THE FOUR DATASETS WITH GAUSSIAN AND

STRIPES NOISE POLLUTED

TABLE IX
AUCSNPR VALUE OF COMPARISON FOR THE FOUR DATASETS WITH GAUSSIAN

AND STRIPES NOISE POLLUTED

D. Discussion

1) Experiments With Noisy Data: For a real-world HSI target
detection task, the collected HSI data are always corrupted by
noise from both internal sensors and the external observation
environment, which will introduce complex nontarget nonback-
ground noise interference information contained in the HSI
data, and bring great challenge to the accurate detection of
targets. As a result, an HSI target detector should deal with the
complex noise and reduce its negative impact on the detection
performance. Thus, the proposed TBMF method proposes to
precisely model the target component, background component,
and nontarget nonbackground noise component. This section
will study the noise-robust properties of different methods. In
the experiments, the noisy HSI datasets containing Gaussian and
stripes noise corresponding to the AVIRIS I, AVIRIS II, AVIRIS
III, and Viareggio datasets are simulated. The Gaussian noise
elements n ∼ N (0, (Dm)2), where Dm is a diagonal matrix
with diagonal sampled from a uniform distribution U(0, 0.01).
In addition, the oblique stripe noise randomly affects 30% of
the bands and then leads to the final noisy HSI data, as shown
in Fig. 10. The overall AUCOA and AUCSNPR performance
of different methods on the noisy HSI dataset is reported in
Tables VIII and IX. The results show that, in comparison to
the other methods, the proposed method can consistently yield
promising performance when the data are severely polluted by
complex mixed noise. The results verify that the l1,1-norm-based
noise regularization introduced in the proposed method can bet-
ter characterize the complex distribution of noise than the other
noise regularization, such as the Frobenius norm-based noise
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Fig. 10. Gaussian and stripes noise polluted HSI data. (a) AVIRIS I. (b) AVIRIS II. (c) AVIRIS III. (d) Viareggio.

Fig. 11. AUCOA and AUCSNPR values of the proposed detector with different k on the AVIRIS I dataset. (a) AUCOA. (b) AUCSNPR.

Fig. 12. AUCOA and AUCSNPR values of the proposed detector with different k on the AVIRIS II dataset. (a) AUCOA. (b) AUCSNPR.

regularization adopted in the SLRMDD method. As a result, the
noise in HSI data can be accurately removed with our method,
and thus, more accurate target and background components can
be separated to achieve stable detection performance.

2) Parameters Analysis: The proposed TBMF method pro-
poses to introduce a learnable target spectra dictionary B ∈
�p×n2 containing n2 atoms to augment the limited available
target prior spectra and appropriately embed them into the HSI
data decomposition model. With the idea, in the experiments,

considerable target prior spectra can be generated and aug-
mented through our model to guide the accurate separation of
background components from HSI data. Empirically, the pixel
number of the augmented target spectra dictionary n2 can be
manually set and is usually larger than the number of the original
available prior target prior spectra n1. For simplicity, n2 can
be set around the number of spectral bands p as k · p with
k = 0.1, 0.5, 1.0, 2.0, wherein k is the spectral augmentation
index. Figs. 11 and 12 show the influences of k on the detection
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Fig. 13. Target prior spectra augmentation ability of our proposed method when k = 1 on the AVIRIS I dataset. (a) Original available target prior spectra. (b)
Augmented target prior spectra simultaneously generated by our method.

Fig. 14. Performance of TBMF with respect to different settings of parameter α with β and γ changing in the candidate parameter set
{2−3, 2−2, 2−1, 20, 21, 22, 23} on the AVIRIS I dataset. (a) α = 0.5. (b) α = 1. (c) α = 2.

performance reflected by AUCOA and AUCSNPR on the AVIRIS
I and AVIRIS II datasets, respectively.

When the parameter k is low (= 0.1, 0.5), the detection
performance on the testing datasets is unsatisfactory, the possible
reason for this is that a lower k can only generate less target prior
spectra through the embed-constrained linear spectral mixture
model. When k increases, more diverged target prior spectra can
be generated to supervise the separation of the pure background
component, and thus, the proposed method tends to achieve
improved detection performance. However, when k is too large,
some redundant and interference information will be introduced,
which may degrade the detection performance. Therefore, in
the experiments, the parameter k can be empirically set to 1,
i.e., n2 = p, and the number of the newly augmented target
prior spectra is equal to the number of spectral bands. Fig. 13
illustrates a case for the target prior spectra augmentation ability
of our proposed method on the AVIRIS I dataset. In comparison
to the original available target prior spectra, embed-constrained
linear spectral mixture model can generate considerable target
prior spectra, which share a similar spectral curve with the orig-
inal available target prior spectra, and provide more supervision

information for HSI data decomposition and the subsequent
target detection.

In addition, there are three parameters α, β, and γ in the
objective function (8), which can balance the corresponding
modules in the optimization objective model. Empirically, dif-
ferent settings of these parameters will influence the conver-
gence property and performance of the optimization algorithms
and then lead to different detection performances of the TBMF
method.

For parameter setting, it is reasonable to assume that the three
components weighted by α, β, and γ play equally important
roles in the optimization problem, that is, α, β, and γ can take
value around 1. As a result, for simplicity, the three parame-
ters can be empirically adjusted from the candidate parameter
set {2−3, 2−2, 2−1, 20, 21, 22, 23}. Fig. 14 shows the detection
performance variations of the TBMF method with respect to
different settings of parameter α, when β and γ change in the set
{2−3, 2−2, 2−1, 20, 21, 22, 23} on the AVIRIS I dataset. The fig-
ure shows that the detection performance of our TBMF method
varies significantly under different settings of α, β, and γ. When
α < 1, the detection performance of our TBMF method seems to



GUO et al.: HTD WITH TARGET PRIOR AUGMENTATION AND BACKGROUND SUPPRESSION-BASED MULTIDETECTOR FUSION 1779

Fig. 15. Iteration stop criterion variations of the three optimization algorithms on the AVIRIS I dataset with proper balancing parameter settings. (a) Algorithm 1.
(b) Algorithm 2. (3) Algorithm 3.

be inferior, even when the settings ofβ andγ are set with the grid-
search strategy. By comparison, when α ≥ 1, the performance
of TBMF tends to be more stable and better when β and γ vary
in the whole parameter candidate range. Specifically, when γ ∈
(2−3, 1) and β ∈ (1, 8), more stable and promising detection
performance can be achieved by our proposed TBMF method.
Similar results can be observed in the other datasets. Therefore,
it is recommended to adjust the settings of the three parameters
to around 1, according to different specific detection tasks.

In addition to the detection performance, proper settings of
the balancing parameters will also influence the convergence
property of the devised Algorithms 1–3. Fig. 15 shows the
iteration stop criterion value variations for the stop criteria in
the three optimization algorithms on the AVIRIS I dataset. The
three optimization algorithms can converge quickly within 50
iterations, which demonstrates the efficiency of the devised three
optimization algorithms with proper parameters.

V. CONCLUSION

This article has presented a novel TBMF method for target
detection in HSI. The method focuses on the dilemmas of
HTD, including pure background spectra separation, insufficient
target prior spectra, and data noise pollution. Concretely, the
method proposes to learn adequate and high-quality target and
background spectra and then highlight the target component by
suppressing the background component for accurate detection
of target pixels in HSI. To achieve this, a unified HSI data de-
composition model is formulated for diverse target prior spectra
augmentation, pure background spectra separation, and complex
nontarget nonbackground noise removal. Furthermore, a group
of basic CEM detectors is trained in parallel in a background-
suppressed subspace induced by the separated pure background
component. The detection results achieved by these basic de-
tectors are fused to take full advantage of all the augmented
diverse target prior spectra. Experimental results on several
benchmark HSI target detection datasets show that the proposed
TBMF method can yield promising detection performance when
compared with several state-of-the-art detection methods even
when the HSI data are severely polluted with complex noise.
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