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Abstract—Modern deep neural networks (DNNs) are highly
accurate on many recognition tasks for overhead (e.g., satellite)
imagery. However, visual domain shifts (e.g., statistical changes
due to geography, sensor, or atmospheric conditions) remain a
challenge, causing the accuracy of DNNs to degrade substantially
and unpredictably when testing on new sets of imagery. In this
work, we model domain shifts caused by variations in imaging
hardware, lighting, and other conditions as nonlinear pixel-wise
transformations, and we perform a systematic study indicating
that modern DNNs can become largely robust to these types of
transformations, if provided with appropriate training data aug-
mentation. In general, however, we do not know the transformation
between two sets of imagery. To overcome this, we propose a fast
real-time unsupervised training augmentation technique, termed
randomized histogram matching (RHM). We conduct experiments
with two large benchmark datasets for building segmentation and
find that despite its simplicity, RHM consistently yields similar or
superior performance compared to state-of-the-art unsupervised
domain adaptation approaches, while being significantly simpler
and more computationally efficient. RHM also offers substantially
better performance than other comparably simple approaches that
are widely used for overhead imagery.

Index Terms—Augmentation, domain adaptation, segmentation.

I. INTRODUCTION

MODERN deep neural networks (DNNs) can now achieve
accurate recognition on a variety of tasks involving

overhead imagery (e.g., satellite imagery, aerial photography),
such as classification, object detection, and semantic segmenta-
tion [1], [2], [3]. One emergent limitation of DNNs in remote
sensing, however, is their sensitivity to the statistics of their
training imagery. Recent research has shown that DNNs often
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Fig. 1. Illustration of the domain shifts between different collections of
overhead imagery. These are representative images from two cities from the
Inria and DG datasets. Both Inria and DG serve as our experimental datasets in
this work.

perform unpredictably, and often much more poorly, when they
are applied to novel collections with respect to their training
data [4], [5], [6], [7]. Furthermore, this performance degradation
seems to occur even if DNNs are trained on relatively large
and diverse datasets, encompassing large and diverse geographic
regions [5], [7].

One cause of the performance degradation of DNNs on new
sets of imagery involves visual domain shift (i.e., distribution
shift); these are statistical differences between the training im-
agery and new collections of imagery [4], [5]. Fig. 1 presents
images from different collections of imagery where the domain
shift is readily visible. These domain shifts are caused by varia-
tions in a diverse set of factors that influence the appearance (i.e.,
statistics) of the overhead imagery including scene geography,
the built environment (e.g., building and road styles), imaging
hardware, weather, time-of-day, among others. Each of these
factors influences the imagery in a manner that is generally
complex and unknown in advance and, therefore, challenging
to address.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-4306-3901
https://orcid.org/0009-0007-8805-7579
https://orcid.org/0000-0002-6658-4366
https://orcid.org/0000-0001-9847-0243
https://orcid.org/0000-0002-7851-4920
mailto:cjyaras@gmail.com
mailto:cjyaras@gmail.com
mailto:kaleb.kassaw@duke.edu
mailto:bohao.huang@duke.edu
mailto:kyle.bradbury@duke.edu
mailto:jordan.malof@umt.edu


YARAS et al.: RANDOMIZED HISTOGRAM MATCHING: A SIMPLE AUGMENTATION FOR UNSUPERVISED DOMAIN ADAPTATION 1989

One straightforward solution to these domain shifts is to label
a subset of each new collection of imagery and then retrain the
DNN; however, this solution is costly and time consuming [4],
[5]. Instead, we would ideally have a model that performs well
across many different collections of imagery and does so without
the need for labels from each one. This setting is a special case of
a broader problem in machine learning known as unsupervised
domain adaptation, wherein it is assumed that we are given a
“source domain” dataset with ground truth labels and that we
aim to maximize recognition performance on one (or more) sets
of unlabeled “target domain” data [8].

A. Spectral Domain Shift and Adaptation

The unsupervised domain adaptation problem has been stud-
ied extensively in recent years [9], [10], and has also recently
received growing attention in the remote sensing community
due to the aforementioned challenges of domain shifts [4], [8],
[11], [12], [13]. Most recent domain adaptation approaches for
overhead imagery attempt to address all sources of domain shift
simultaneously. In this work, however, we attempt to simplify
the problem by focusing on a subset of domain shifts that can
be modeled as purely spectral (single-pixel) transformations.
Mathematically, this is given by

pt = T (ps) (1)

where ps and pt are the source and target domain pixel intensi-
ties, respectively, of an otherwise identical scene. We hypothe-
size that domain shifts of this type arise from variations across
imagery collections in several specific factors: e.g., camera spec-
ifications and calibration, time of day, and lighting conditions.
Variations in these factors are likely to occur, to varying degrees,
between almost any two collections of imagery so that domain
shifts of the kind in (1) are common. Our experiments here
suggest that this is not only the case, but that spectral domain
shifts appear to be responsible for a significant proportion of
the performance degradation of DNNs when applied to novel
collections of imagery.

B. Contributions of This Work

In this work, we begin by investigating whether spectral
domain shifts of the kind in (1) can be addressed simply through
data augmentation during training. We perform a systematic
study where we train DNNs of varying capacity (i.e., number
of parameters) with image augmentation comprising different
classes of spectral augmentations (e.g., gamma, affine, etc). We
then test the performance of these networks on collections of im-
agery that have been augmented with one of these same classes of
spectral transformations. We find that modern DNNs with large
encoders (e.g., ResNet-18, 50, 100 [14]) can become largely
robust to several different classes of spectral transformations
if provided with a matching training augmentation strategy. In
general, however, we do not know the transformation between
any two collections of imagery, or even the class of transforma-
tions from which it may be drawn (e.g., affine, gamma), so it is
unclear, which augmentation should be adopted.

Fig. 2. Illustration of the RHM concept. To produce an augmented training
dataset, we repeat the following process. For each image Is in the training
dataset (source domain), an image It is drawn randomly from the testing dataset
(unlabeled target domain). Then, the histogram of Is is matched to the histogram
of It, which yields the modified image Im. If the information loss ΔH (defined
in Section IV-A) between Im and Is is below a set threshold γ, Im is added to
the augmented training dataset. Otherwise, another random image is drawn from
the target domain and the process is repeated. This resampling is only performed
at most once.

To overcome this problem, we propose a simple augmentation
technique, termed randomized histogram matching (RHM) that
matches the histogram of each training image to a randomly-
chosen (unlabeled) target domain image, as illustrated in Fig. 2.
This approach results in a random spectral shift being applied to
each training image, and we hypothesize that this occasionally
(by chance) approximates the true spectral shift between the
source and target domains (see Section IV). Consequently, the
training data are occasionally augmented (again, by chance) with
the true spectral shift and can thereby become more robust to it.
Since RHM only requires the unlabeled testing data, it can be
viewed as a simple unsupervised domain adaptation approach.

To demonstrate the efficacy of RHM, we conduct benchmark
testing with two large publicly-available datasets for building
segmentation in two settings: 1) training on one collection
and testing on one collection (one-to-one adaptation, follow-
ing [13]), and 2) a more real-world scenario where we train on
multiple domains and test on multiple domains (many-to-many,
also following [13]). We focus on building segmentation because
it is a challenging task that has received substantial attention in
recent years, with large and diverse benchmark datasets to sup-
port our multidomain experiments (e.g., Inria [6] and DG [1]).
We now summarize our contributions as follows.

1) Can augmentation confer spectral robustness in DNNs?
We provide, to the best of authors’ knowledge, the first
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systematic empirical evidence that modern DNNs with
large encoders are capable of becoming robust to complex
spectral transformations via data augmentation during
training. We show that the ability of DNNs to become
robust depends upon their capacity, especially for more
complex classes of transformations. We also find that
DNNs only become robust to the precise class of spec-
tral transforms that were used for augmentation, rather
than becoming robust to generic spectral transforms. This
suggests that augmentation is an effective mechanism to
address spectral domain shifts, if a class of spectral trans-
forms is used that includes in it the particular transforms
that are often encountered in real-world imagery (e.g.,
between independent collections of imagery).

2) RHM augmentation: RHM is a simple, yet highly effec-
tive unsupervised domain adaptation approach via spec-
tral augmentation. We show that RHM almost always
offers substantial performance benefits in unsupervised
cross-domain settings (e.g., we wish to apply a model
in a new geo-location with no labeled data). Our results
also indicate that RHM usually offers substantially greater
performance benefits than other common types of spectral
augmentation [e.g., Affine, Gamma, or hue-saturation-
value (HSV)], and additionally performs competitively
with (or even better than) two state-of-the-art unsuper-
vised domain adaptation approaches (i.e., CycleGAN or
ColorMapGAN [4]), despite being substantially simpler
and faster in many cases (e.g., RHM only has one hyperpa-
rameter, and does not require training additional models).

Next, in Section II, we provide further details about related
work and how our contributions differ from them.

II. RELATED WORK

In this section, we review related work for unsupervised
domain adaptation in overhead imagery and how our work
relates and builds upon it. Unsupervised adaptation methods can
broadly be divided into two main groups: model adaptation and
data adaptation.

A. Unsupervised Model Adaptation

In many of these approaches, the goal is to obtain features
(e.g., through selection or learning) that are invariant across
the source and target domains, but still useful to discriminate
between the target classes. Some approaches have focused on
a feature selection strategy, often using a curriculum learn-
ing approach, where “easier” (i.e., far-from-margin or high-
confidence) samples are progressively given as training data un-
til convergence [15], [16], [17], [18]. Other approaches attempt
to learn the desired feature representation in target domains
using feature alignment techniques [19] or discriminators to
distinguish between domains [20], [21]. These approaches have
been widely used for domain adaptation of remote sensing
imagery, e.g., curriculum learning in [22], [23], discriminators
used in [24], and feature alignment in [25], [26], and [27].

B. Unsupervised Data Adaptation

Our work here builds directly upon recently proposed methods
of this kind. These methods are designed to modify the source
and/or target domain data so that they are statistically more
similar to each other. If successful, a recognition model that is
trained and evaluated on the modified source and target data
should be more accurate. These methods can be subdivided
into the following two main categories: (i) domain standard-
ization and (ii) domain matching. In (i), the goal is to map the
source and target domains into some common domain. Some
well-known examples of such approaches are normalization (or
z-scoring) [28]; histogram equalization [28], color invariance
approaches (e.g., [29], [30], [31], [32]), and recent approaches
using DNNs [11].

In (ii), the goal is to match the source domain to the target
domain. Graph matching [33], [34] and especially histogram
matching (HM) [11] are common approaches for this. Based on
the CycleGAN model [35], a large number of approaches have
been proposed to train a DNN to map source domain data to
be more similar to the target domain [4], [36], [37], [38], [39],
[40]. One challenge with many of these approaches is that they
can alter the semantic content of the source domain imagery [4]
(e.g., changing object shapes or even their semantic class).

More recently, ColorMapGAN [4] was proposed to address
this challenge by restricting the DNN to perform pixel-wise
intensity transformations, preventing the model from making
more complex semantic changes to the imagery. The authors
show that ColorMapGAN (along with CycleGAN [35]) outper-
formed a variety of types of unsupervised domain adaptation ap-
proaches for segmentation on overhead imagery. One limitation
of ColorMapGAN, however, is that a separate model has to be
learned between each pair of source and target domains, which
is impractical for a large number of source and target domains
(many-to-many testing). In this work, we propose RHM as a
simple and fast alternative to recent DNN-based unsupervised
domain adaptation approaches.

C. Data Augmentation

In this approach, the original training dataset is supplemented
with transformed yet semantically consistent views of the train-
ing data that create variations in the training imagery. Some
commonly utilized classes of transformations used for aug-
mentation in remote sensing are Gamma corrections [41] and
contrast changes (e.g., via HSV shifts [41]). These approaches
are designed to build invariance to different classes of spectral
shift. For this reason, we will compare RHM to Gamma and HSV
augmentation approaches, and investigate whether DNNs can
indeed become robust to these transformations, as is implicitly
assumed in their application.

III. EXPERIMENTAL MATERIALS AND METHODS

A. Experimental Datasets

In our experiments, we employ two large publicly-available
datasets for building segmentation: Inria [6] and DeepGlobe
(DG) [1]. Both datasets are composed of high-resolution (0.3 m)
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TABLE I
CITIES INCLUDED IN INRIA AND DEEPGLOBE WITH CORRESPONDING SURFACE

AREA OF IMAGERY

color overhead imagery and have accompanying pixel-wise
building labels. Both datasets include large quantities of im-
agery from several distant geographic locations, summarized in
Table I. Importantly, each collection varies greatly in both their
scene content and their spectral characteristics—Fig. 1 presents
examples of imagery from DG and Inria illustrating these dif-
ferences.

B. Segmentation Model and Training

In recent years, U-Net [42] and its variants (e.g., [43]) have
achieved state-of-the-art performance for building segmentation
in overhead imagery (e.g., [1], [6]). Following [43], we modify
U-Net by using ResNet encoders of varying size that have been
pretrained on the ImageNet dataset. In our experiments, we will
use a ResNet-50 encoder unless otherwise noted, to balance
training speed and performance. We also make the following
specific design choices for our models:

1) cross-entropy loss between the pixel-wise ground truth
and predictions;

2) the SGD optimizer;
3) 90 epochs of training;
4) a batch size of 8.
We also use a learning rate of 0.001 and 0.01, respectively, for

the encoder and decoder of the U-Net models. A smaller learning
rate is applied to the encoder since it is already pretrained
on ImageNet. For both the encoder and decoder, we drop the
learning rate by one order of magnitude after 50 and 80 epochs.
These settings are chosen to be nearly identical to that those
in [44]—the only variation is that we additionally drop the
learning rate after 80 epochs to ensure that the validation loss
converges by the end of training.

C. Baseline Adaptation Methods

For baselines, we focused upon spectral adaptation methods,
allowing us to compare RHM to methods with similar com-
plexity (e.g., only altering spectral content of the imagery).
We include computationally simple spectral augmentations that
are widely-used in remote sensing (e.g., Gamma, HSV, Affine
intensity augmentations), as well as ColorMapGAN, a recent
data-driven spectral adaptation method. We also consider one
state-of-the-art method that is not restricted to spectral trans-
forms, CycleGAN, to determine how spectral methods compare
with more general adaptation methods.

TABLE II
PARAMETERIZED FORMS OF TRANSFORMATIONS FOR EACH BASELINE

AUGMENTATION

1) Augmentation: We consider three parameterized transfor-
mations as baseline augmentations for comparison to RHM:
Affine, Gamma, and HSV. These are common transformations
for modeling spectral transformations and as such are most
relevant for comparison to our proposed method. Table II con-
tains the parameterized functional forms and their respective
distributions. The distribution of each parameter is chosen via
a standard Bayesian hyperparameter optimization procedure
using Gaussian processes, as described in [45]. For the HSV
augmentation, we fix the scaling factor of the hue channel α(H)

to be 1, since the hue value corresponds to the angular dimension
in the cylindrical geometry of HSV space. During training, we
apply these augmentations in real time throughout training, with
uniquely sampled augmentation parameters for each mini-batch
iteration.

2) Standardization. Histogram equalization [28]: One ap-
proach to standardizing each domain is to ensure that the contrast
of all images are the same. Histogram equalization achieves this
by adjusting the histogram of pixel intensities of each image
to be uniform. We transform images in both the source and
target domain in this manner and use the transformed images
for training and testing the U-Net model, respectively.

Gray world [29]: This approach attempts to find a standard-
ized domain in which each image’s average color is gray, and
therefore, invariant to illumination conditions that may affect
each color channel independently. By modeling the deviation in
color illumination of each channel from gray as a linear scaling,
we may remove the scaling factor by normalizing each channel
by its average pixel intensity. We transform images in both the
source and target domain in this manner and use the transformed
images for training and testing of the U-Net model, respectively.

3) Image-to-Image Translation. HM [28]: A naive method
for matching the distribution of the source domain to the target
domain is to match the histogram of each source image to the
aggregate histogram of the target domain. This matching is done
independently for each channel. We transform only the images
in the source domain in this manner and use the transformed
images for training the U-Net model.

ColorMapGAN [4]: This state-of-the-art approach aims to
learn an unconstrained pixel-wise mapping from the source to
target domain, modeled as a generator in an unsupervised adver-
sarial setting. As with most GAN set-ups, there is a generator G
and a discriminator D, where D attempts to differentiate images
generated by G from the images in the target domain. On the
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other hand, G learns a unique pixel-to-pixel mapping for every
possible RGB triple. G and D are trained simultaneously with
the LSGAN [46] loss. After training, G is used to generate
fake images from the source domain that look like the target
domain—these fake source images are then used to train the
U-Net model. We use the same hyperparameters as given in [4]
in our own experiments.

CycleGAN. [35]: Similar to ColorMapGAN, this method
learns a transformation between domains in an unsupervised
adversarial setting. However, we now have two generators G
and F where G attempts to transform the source domain S to
the target domain T and F attempts to transform the target
domain T to the source domain S. Unlike ColorMapGAN,
both G and F are multilayer networks that can realize more
complicated functions than pixel-wise transforms. We also have
two domain-specific discriminators DS and DT that attempt
to differentiate the real and fake images in their respective do-
mains. G and D are trained simultaneously via an objective that
combines the conditional GAN [47] loss in both directions with
a cycle-consistency loss term, which forces the compositions
F ◦G and G ◦ F to be the identity mapping. After training, G
is used to generate fake images from the source domain that look
like the target domain—these fake source images are then used
to train the U-Net model. We use the same hyperparameters as
given in [35] in our own experiments.

IV. RHM AUGMENTATION

RHM is a modification of conventional HM. In conventional
HM, one matches the histogram of pixel intensities of one set
of imagery to the corresponding histogram of another set of
imagery. For example, for cross-domain adaptation, we can
transform a single source image to match the histogram of
created from the full collection of target domain imagery (see
Section III-C). This approach works well if the scene content
of the source imagery and the target imagery are similar, in
which case the histograms of the two image collections should be
similar as well; any differences must be due to other factors (e.g.,
variations in lighting, imaging hardware, etc), which are often
modeled as spectral domain shifts. Consequently, matching the
histograms removes any existing spectral domain shift between
the two image sets, if their scene content is similar. However, we
hypothesize that it is unlikely that two random sets of imagery
will contain similar scene content. In such cases, the differences
in histograms will be due to content differences, in which case
the two histograms will not generally be the same, even if other
imaging conditions are similar (e.g., lighting, hardware). When
such content differences are present, therefore, conventional HM
produces undesirable results. For example, our experimental
results in Section V-B indicate that conventional HM often works
well, but that it is also inconsistent, and can sometimes fail badly.

RHM is intended to mitigate this limitation of HM by relying
upon matching many random pairs of imagery, making it likely
that the content between the pairs will sometimes (by chance) be
similar, causing HM to approximate the true underlying spectral
shift for those pairs. Specifically, as outlined in Fig. 2, RHM
matches the histogram of each training image with the histogram

of a randomly-sampled target domain image. We hypothesize
that this approach often results in image pairs with dissimilar
scene content (like conventional HM), but that it also sometimes
creates pairs with similar scene content. Consequently, some
training images are augmented in a way that approximates the
true underlying spectral shift between the source and target
domain imagery. Furthermore, we hypothesize that largely inac-
curate augmentations will be effective for training robust DNNs
as long as it periodically augments with the correct transfor-
mations. This is motivated by the experiments in Section V-A
suggesting that a given class of spectral augmentations will work
well as long as the true augmentation is a special case of the
class (e.g., augmentation with random spectral Affine transforms
works well for a given target-domain if that target domain is
shifted by any specific Affine transform).

A. RHM Algorithm

The detailed RHM training procedure is summarized in Algo-
rithm 1, and we describe two of the major components in more
detail: HM and entropy-based resampling.

HM: Mathematically, the HM is performed as follows: for a
source imageX ∈ RC×H×W , letFc : R→ [0, 1] be the normal-
ized cumulative histogram of each channel c ∈ [C], i.e., Fc(x)
is the proportion of pixels in channel c with magnitude no more
than x. Similarly, define Gc to be the normalized cumulative
histogram of channel c ∈ [C] for a randomly selected target
image X̃ ∈ RC×H ′×W ′

. Then, the RHM augmented version
T (X; X̃) of source X with target X̃ is defined as

T (X; X̃)c,i,j = G−1c (Fc(Xc,i,j)) (2)

where G−1c (y) � min{x : Gc(x) ≥ y}.
Entropy-based resampling: For some pairings of source and

target images, the transform in (2) can result in a large loss of
image information needed to perform the building segmentation
task, which can be detrimental to model training. To limit the
amount of image compression in RHM augmentations, we dis-
card augmentations that lead to large compressions of the image
intensity values. We measure the compression via the change in
Shannon entropy of their histograms, here denoted H(X) for an
image X and H(T (X)) for a transformed image, where H(X)
is defined as

H(X) = −1

c

∑
c∈[C]

∫
fc(x) log(fc(x)) dx (3)

where fc is the normalized histogram of each channel c ∈ [C]
of X . We then define the quantity ΔH , the change in image
information, as

ΔH � H(X)−H(T (X)). (4)

The distribution of values of ΔH for RHM transforms is shown
in Fig. 3 along with the associated augmented images. Here, the
loss of image information is apparent as ΔH increases.

By evaluating the value of ΔH for each source-target image
pair during training, and excluding those pairs with highΔH , we
limit the resulting image compression from RHM transforms.
We set a threshold γ, and in cases where RHM transforms
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Fig. 3. Distribution of changes in image informationΔH resulting from RHM
transforms. Higher values of ΔH correspond to greater degrees of loss in image
information.

Algorithm 1: Randomized Histogram Matching.

Input: Labeled source domain DS = {(Xi, Yi)},
unlabeled target domain DT = {X̃j}, training epochs
T , batch size B, learning rate schedule (ηt)t≥1,
segmentation loss �(·, ·)

Output: Segmentation model fθ∗(·) adapted to DT

Initialize (pretrained) segmentation model fθ(·)
for epoch t = 1, . . . , T do
Bt ← shuffle and group DS into batches of size B
for batch {(Xi, Yi)}Bi=1 in Bt do

for i = 1, . . . , B do
X̃i ← uniformly sampled from DT

Zi ← T (Xi; X̃i)
if H(Xi)−H(Zi) > γ then
X̃i ← uniformly sampled from DT

Zi ← T (Xi; X̃i)
end if

end for
θ ← θ − ηt∇θ

∑
i �(fθ(Zi), Yi)

end for
end for
θ∗ ← θ

produce ΔH > γ, the first pairing is discarded, a new randomly
selected target image is chosen, and the transformation in (2)
is computed once more. To limit overall computation time, we
only repeat this resampling step once for each source image.
We show in our experiments in Section V-B and V-C that this
filtering step is consistently beneficial.

As a result, we are able to utilize variations in the target
domain to apply random spectral shifts to the training im-
agery that we hypothesize periodically coincide with the true
spectral shift between the source and target domains. Like the
baseline augmentations described in Section III-C, we apply
RHM as an online augmentation to each training image, where
a new target image is sampled every iteration for matching. See
Algorithm 1 for a full description of training using RHM with

entropy resampling. RHM is not applied to the target domain
during testing.

V. EXPERIMENTS AND RESULTS

A. Does Spectral Augmentation Confer Robustness to Spectral
Transformations?

In this section, we investigate the extent to which modern
DNNs with high-capacity feature encoders can become robust
to spectral transformations of the form in (1). Many popular
augmentation approaches for remote sensing (and elsewhere)
apply random intensity transformations (e.g., HSV, Gamma)
with the implicit assumption that DNNs will become robust to
domain shifts with a similar functional form. To the best of
authors’ knowledge, there have been no controlled experiments
investigating these assumptions or evaluating how they depend
either on the complexity of the spectral transformations, or the
capacity of the DNNs involved. We also investigate whether
augmentation with one class of spectral functions (e.g., HSV)
confers general invariance to spectral transformations (e.g., the
DNN learns to ignore spectral shifts of any kind), or that the
DNN only becomes robust to the particular class of functions it
was trained upon.

To address these questions, we emulate several different kinds
of spectral domain shifts on the Inria dataset. We use the Inria
test partition to create five different testing datasets. Each testing
dataset is the result of applying just one of five possible types
of spectral augmentation to the original Inria testing dataset:
Original (no augmentation), Affine, Gamma, HSV, and RHM.
Each of these test datasets then represents one class of spectral
domain shifts. We then train five different models on the Inria
training partition, however, each models is trained with just one
of the five aforementioned augmentation strategies (including
“Original”). We consider a DNN to be robust to a particular
class of spectral domain shift (e.g., HSV) if its performance
does not degrade significantly—compared to the unaltered Inria
“Original” test dataset—when it is evaluated on that transformed
test dataset.

In these experiments, we can examine the robustness of
models when their augmentation is perfectly matched to the test
datasets spectral domain shift (e.g., evaluate the HSV-augmented
model on the HSV-augmented testing dataset)—an ideal sce-
nario. In this setting, performance degradation (relative to testing
on the “Original” unaugmented Inria test data) should arise
only due to: i) inability of the model to become robust to the
spectral transformation, or ii) loss of image information due to
the augmentations (e.g., some spectral augmentations compress
the imagery, by mapping several pixel intensities into a single
intensity).

The results of this experiment are presented on the diagonal
(bolded) entries in Table III. As we see, the performance degra-
dation for all domain shifts is relatively low, suggesting that
the DNNs do achieve relative robustness when trained with a
matching augmentation. We also applied each trained model to
all of the other test datasets (i.e., that have different augmenta-
tions), and the results of this are presented in the unbolded entries
in Table III. As expected, substantial performance degradation
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TABLE III
PERFORMANCE IN TERMS OF IOU OF A U-NET MODEL WITH A RESNET-50
ENCODER–DECODER STRUCTURE WHEN TRAINED AND TESTED ON DATA

WITH DIFFERENT CLASSES OF AUGMENTATION

is observed when applying the “Original” model to any of
the augmented testing datasets. This confirms the importance
of spectral augmentation of some kind when training DNNs
with overhead imagery. Furthermore, when an augmentation
is applied to the test set, we see that the best model for any
testing dataset is the model that was trained with a matching
augmentation.

Interestingly, we find that training with an augmentation that
does not match the test set augmentation usually results in further
performance degradation (i.e., compared to a matching aug-
mentation strategy), and sometimes a substantial degradation.
This has several implications. First, these results suggest that
spectral augmentations do not result in general robustness to
spectral domain shifts, so that the DNN learns to ignore many
or most kinds of spectral shifts. Instead, it appears that they
confer robustness only for the class of domain shifts that were
presented in training. A corollary of this is that it is important to
choose an augmentation strategy that does indeed emulate the
domain shifts that can be expected in real-world imagery, and
that failing to do so can result in substantial loss of otherwise
recoverable performance.

We also investigate the extent to which DNN robustness
depends upon the capacity of the model (e.g,. the number of
free parameters it has). Therefore, we repeated our experiments
using segmentation models with three different encoder sizes:
ResNet-18, ResNet-50, and ResNet-101. The results of this
experiment are presented in Fig. 4, where we only report results
when we train and test with the same augmentations. The results
indicate that a larger model does seem to enable a greater level of
invariance; except for RHM where ResNet-50 has slightly better
performance than ResNet-101, the ResNet-18, and ResNet-101
models consistently perform the worst and best, respectively.

B. One-to-One Domain Adaptation

In this section, we compare RHM to other unsupervised
domain adaptation methods when evaluated in a one-to-one
scenario, i.e., we are given a single source domain, and we
must maximize performance on a single (unlabeled) target do-
main [4], [12]. Following the practice of recent work [4], we
treat the imagery over a single city as a single domain, and
we randomly chose two pairs of cities (i.e., four total cities)
for our one-to-one experiments. For each pair, we alternately
trained on one of the two cities, and tested on the other. The

Fig. 4. Percent performance degradation as a function of model size and aug-
mentation type. For each combination of model size and training augmentation
type, we measure the percentage performance degradation when testing on the
augmented test set compared to the un-augmented test set.

only constraint on the selection of the city pairs is that they must
contain one city from the Inria dataset, and one city from DG
dataset. These two datasets were produced by different groups
and at different times, and therefore, we reason they are more
likely to exhibit domain shifts. All experiments were conducted
with a U-Net model with a ResNet-50 encoder, as described in
Section III-B. All results are reported in terms of intersection-
over-union (IoU).

Descriptions of our baseline methods can be found in Sec-
tion III-C. As baselines, we included a variety of methods that are
comparable in their simplicity and speed to RHM (e.g., HSV and
Gamma augmentation, gray-world standardization, etc.). We
also included ColorMapGAN [4], which is a more sophisticated
approach, which recently reported superior results to a large
number of other state-of-the-art unsupervised domain adaptation
methods when evaluated in the one-to-one scenario. As an
ablation study, we also test RHM without the entropy-based
resampling step described in Section IV-A, which is termed
“RHM w/o EBR” in Table IV.

The results of the benchmark experiments are presented in
Table IV. RHM gives a slightly better IoU than RHM w/o EBR,
while both RHM models perform substantially better than all
other baselines (on average). RHM achieves the highest IoU
on two of the four individual test cities (Vienna → Vegas and
Tyrol-w→ Shanghai). Although it does not achieve the highest
performance on Vegas → Vienna or Shanghai → Tyrol-w, in
both cases, it is the second best performing model, and achieves
very similar performance to the top-performing approach.

C. Many-to-Many Domain Adaptation

In this section, we compare RHM to other unsupervised
domain adaptation methods when evaluated in a many-to-many
scenario, i.e., we are given multiple source domains, and we
must maximize performance on multiple (unlabeled) target
domains [4], [12]. In contrast to the one-to-one scenario, the
many-to-many setting is more likely to reflect real-world testing
conditions in which a model is trained on a large and diverse
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TABLE IV
BENCHMARK OF DOMAIN ADAPTATION METHODS FOR ONE-TO-ONE USING A RESNET-50 ENCODER

TABLE V
BENCHMARK OF MANY-TO-MANY DOMAIN ADAPTATION METHODS FOR INRIA→ DG USING A RESNET-50 ENCODER

TABLE VI
BENCHMARK OF MANY-TO-MANY DOMAIN ADAPTATION METHODS FOR DG→ INRIA USING A RESNET-50 ENCODER

training set and then tested on multiple new collections of
imagery (i.e., multiple target domains). For these experiments,
we train each model on one of our two multicity benchmark
datasets (Inria and DG), and test on the other.

Because ColorMapGAN was designed specifically for the
one-to-one task and, therefore, may be at a disadvantage [4], for
these experiments, we utilized an additional benchmark method,
CycleGAN [35]. CycleGAN recently achieved comparable per-
formance to ColorMapGAN in [4], while being better-suited
for the many-to-many testing scenario. As in the previous sec-
tion, we also test RHM with, and without, the entropy-based
resampling step (see Section IV-A for details). The RHM model

without resampling is denoted “RHM w/o EBR” in Tables V
and VI.

Our many-to-many experimental results are reported in
Tables V and VI, respectively. In each case, the IoU for each
testing city is provided along with an “Overall” IoU (computed
after aggregating all test city predictions) and a “City Average”
(computed by averaging the IoUs of each test city). As with
the one-to-one setting, we find that entropy-based resampling
improves both the overall and per-city performance of RHM
(in all nine cities, except for Chicago). Moreover, RHM outper-
forms CycleGAN on 5 of the 9 cities, and achieves better city
average performance than all other baselines, while having a
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Fig. 5. Visualization of segmentation masks for several domain adaptation methods across various cities in Inria and DG. The masks are colored as follows:
black for true negative, blue for false negative, red for false positive, white for true positive.

very similar overall IoU to CycleGAN in both training/testing
directions. In Fig. 5, we illustrate example predictions for various
methods, including RHM—across diverse conditions, we see
that RHM yields considerably fewer false positives (encoded
in red), which can explain the improvement in IoU. Notably,
RHM gives comparable or better performance than CycleGAN
without the need to train an auxiliary DNN (e.g., our CycleGAN
typically required over three days to train on an NVIDIA Titan
RTX), or tune many hyperparameters. Compared to other simple
unsupervised domain adaptation approaches, RHM provides
substantially better average performances on both benchmark
test sets. Finally, we note that applying other augmentations
(e.g., HSV or Gamma) along with RHM does not improve per-
formance, and in fact substantially degrades the performance of
RHM—we postpone the results and discussion to the Appendix.

D. Run-Time Analysis

In this section, we demonstrate that employing RHM during
training only incurs modest computational costs compared to
similar online augmentation approaches. Following the model
and optimizer configurations outlined in Section III-B, we train
a U-Net with a ResNet-18 encoder over a single epoch of

TABLE VII
INCREASE IN TRAINING TIME DUE TO USE OF VARIOUS ONLINE

AUGMENTATION APPROACHES WITH A RESNET-18 ENCODER

the Inria dataset and benchmark the wall times of an average
single training iteration for each baseline augmentation given in
Table II, as well as RHM with entropy-based resampling. In
Table VII, we report the increase in wall time compared to no
augmentation used during training.

We see that the use of RHM only results in a marginal
increase in training time that is comparable to common base-
lines, and is in fact considerably faster than the widely-used
HSV augmentation. We note that our implementation of RHM
computes histograms on-the-fly during training, and does not
reuse previously computed histograms in future iterations. At the
cost of additional memory usage, it is possible to make RHM
even faster by precomputing all histograms before training so
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TABLE VIII
COMBINING AUGMENTATIONS IN MANY-TO-MANY DOMAIN ADAPTATION FOR

INRIA→ DG USING A RESNET-50 ENCODER

that they are readily available for the matching process, but this
is beyond the scope of our work.

VI. CONCLUSION

In this work, we address the problem of unsupervised domain
adaptation in overhead imagery. To do so, we model domain
shifts caused by variations in imaging hardware, lighting con-
ditions (e.g., due to time-of-day), or atmospheric conditions as
nonlinear pixel-wise transformations, and we show that DNNs
can become largely robust to these types of transformations if
they are provided with the appropriate training augmentation. In
general, however, we do not know the transformation between
any two sets of imagery. To overcome this problem, we propose
RHM, a simple real-time training data augmentation approach.
We then conduct experiments with two large benchmark datasets
for building segmentation and we find that RHM consistently
yields comparable performance to recent state-of-the-art unsu-
pervised domain adaptation approaches for overhead imagery,
despite being substantially easier and faster to use. RHM also
offers substantially better performance than other comparably
simple and widely-used unsupervised approaches for overhead
imagery. This new approach to training augmentation has the
ability to expand the efficacy of automated analysis of remote
sensing data to more applications while reducing the burden of
expensive labeled imagery from target domains.

APPENDIX

As briefly mentioned in Section V-C, applying spectral aug-
mentations, such as Gamma and HSV in conjunction with RHM
does not improve performance over standalone RHM—results
for Inria to DG many-to-many domain augmentation are shown
in Table VIII. We note that for all target cities, RHM alone
achieves a better IoU than either of the combined methods,
suggesting that this addition is not beneficial but detrimental
for performance.

ACKNOWLEDGMENT

The authors would like to thank the Energy Initiative at Duke
University for supporting this work.

REFERENCES

[1] I. Demir et al., “DeepGlobe 2018: A challenge to parse the Earth through
satellite images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshops, 2018, pp. 172–181.

[2] A. V. Etten, D. Lindenbaum, and T. M. Bacastow, “SpaceNet: A remote
sensing dataset and challenge series,” 2018, arXiv:1807.01232.

[3] N. Sergievskiy and A. Ponamarev, “Reduced focal loss: 1st place solution
to xView object detection in satellite imagery,” 2019, arXiv:1903.01347.

[4] O. Tasar, S. Happy, Y. Tarabalka, and P. Alliez, “ColorMapGAN: Unsuper-
vised domain adaptation for semantic segmentation using color mapping
generative adversarial networks,” IEEE Trans. Geosci. Remote Sens.,
vol. 58, no. 10, pp. 7178–7193, Oct. 2020.

[5] F. Kong, B. Huang, K. Bradbury, and J. Malof, “The Synthinel-1 dataset:
A collection of high resolution synthetic overhead imagery for building
segmentation,” in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., 2020,
pp. 1814–1823.

[6] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Can semantic
labeling methods generalize to any city? The inria aerial image label-
ing benchmark,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2017,
pp. 3226–3229.

[7] B. Huang, K. Bradbury, L. M. Collins, and J. M. Malof, “Do deep learning
models generalize to overhead imagery from novel geographic domains?
The xGD benchmark problem,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp., 2020, pp. 1476–1479.

[8] D. Tuia, C. Persello, and L. Bruzzone, “Domain adaptation for the clas-
sification of remote sensing data: An overview of recent advances,” IEEE
Geosci. Remote Sens. Mag., vol. 4, no. 2, pp. 41–57, Jun. 2016.

[9] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,”
Neurocomputing, vol. 312, pp. 135–153, 2018.

[10] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual domain adap-
tation: A survey of recent advances,” IEEE Signal Process. Mag., vol. 32,
no. 3, pp. 53–69, May 2015.

[11] O. Tasar, Y. Tarabalka, A. Giros, P. Alliez, and S. Clerc, “StandardGAN:
Multi-source domain adaptation for semantic segmentation of very high
resolution satellite images by data standardization,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops, 2020, pp. 747–756.

[12] O. Tasar, S. Happy, Y. Tarabalka, and P. Alliez, “SEMI2I: Semantically
consistent image-to-image translation for domain adaptation of remote
sensing data,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2020,
pp. 1837–1840.

[13] O. Tasar, A. Giros, Y. Tarabalka, P. Alliez, and S. Clerc, “DAugNet: Un-
supervised, multisource, multitarget, and life-long domain adaptation for
semantic segmentation of satellite images,” IEEE Trans. Geosci. Remote
Sens., vol. 59, no. 2, pp. 1067–1081, Feb. 2021.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[15] L. Bruzzone and M. Marconcini, “Domain adaptation problems: A
DASVM classification technique and a circular validation strategy,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 770–787,
May 2010.

[16] C. Persello and L. Bruzzone, “Kernel-based domain-invariant feature se-
lection in hyperspectral images for transfer learning,” IEEE Trans. Geosci.
Remote Sens., vol. 54, no. 5, pp. 2615–2626, May 2016.

[17] C. Chen et al., “Progressive feature alignment for unsupervised do-
main adaptation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit., 2019, pp. 627–636. [Online]. Available: https://ieeexplore.ieee.org/
document/8953748/

[18] J. Choi, M. Jeong, T. Kim, and C. Kim, “Pseudo-labeling curriculum for
unsupervised domain adaptation,” in Proc. Brit. Mach. Vis. Conf., 2019,
pp. 69.1–69.13, doi: 10.5244/C.33.69.

[19] H. Huang, Q. Huang, and P. Krahenbuhl, “Domain transfer through deep
activation matching,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 590–605.

[20] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and M.
Chandraker, “Learning to adapt structured output space for semantic
segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 7472–7481.

[21] J. Hoffman, D. Wang, F. Yu, and T. Darrell, “FCNS in the wild: Pixel-level
adversarial and constraint-based adaptation,” 2016, arXiv:1612.02649.

[22] J. Zhang, C. Liang, and C.-C. J. Kuo, “A fully convolutional tri-branch
network (FCTN) for domain adaptation,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2018, pp. 3001–3005.

[23] Y. Zou, Z. Yu, B. Kumar, and J. Wang, “Unsupervised domain adaptation
for semantic segmentation via class-balanced self-training,” in Proc. Eur.
Conf. Comput. Vis., 2018, pp. 289–305.

[24] X. Deng, H. L. Yang, N. Makkar, and D. Lunga, “Large scale unsupervised
domain adaptation of segmentation networks with adversarial learning,”
in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2019, pp. 4955–4958.

[25] L. Bruzzone and D. F. Prieto, “Unsupervised retraining of a maximum
likelihood classifier for the analysis of multitemporal remote sensing
images,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 456–460,
Feb. 2001.

[26] L. Bruzzone and D. F. Prieto, “A partially unsupervised cascade classifier
for the analysis of multitemporal remote-sensing images,” Pattern Recog-
nit. Lett., vol. 23, pp. 1063–1071, 2002.

https://ieeexplore.ieee.org/document/8953748/
https://ieeexplore.ieee.org/document/8953748/
https://dx.doi.org/10.5244/C.33.69


1998 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

[27] Y. Qin, L. Bruzzone, and B. Li, “Tensor alignment based domain adaptation
for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 57, no. 11, pp. 9290–9307, Nov. 2019.

[28] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Hoboken, NJ,
USA: Prentice-Hall, 2002.

[29] G. Buchsbaum, “A spatial processor model for object colour perception,”
J. Franklin Inst., vol. 310, no. 1, pp. 1–26, 1980.

[30] F. Pacifici, N. Longbotham, and W. J. Emery, “The importance of physical
quantities for the analysis of multitemporal and multiangular optical very
high spatial resolution images,” IEEE Trans. Geosci. Remote Sens., vol. 52,
no. 10, pp. 6241–6256, Oct. 2014.

[31] D. A. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput.
Vis., vol. 5, no. 1, pp. 5–35, 1990.

[32] K. I. Itten and P. Meyer, “Geometric and radiometric correction of TM
data of mountainous forested areas,” IEEE Trans. Geosci. Remote Sens.,
vol. 31, no. 4, pp. 764–770, Jul. 1993.

[33] D. Tuia, J. Munoz-Mari, L. Gomez-Chova, and J. Malo, “Graph matching
for adaptation in remote sensing,” IEEE Trans. Geosci. Remote Sens.,
vol. 51, no. 1, pp. 329–341, Jan. 2013.

[34] D. Das and C. G. Lee, “Unsupervised domain adaptation using regularized
hyper-graph matching,” in Proc. IEEE 25th Int. Conf. Image Process.,
2018, pp. 3758–3762.

[35] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. IEEE
Int. Conf. Comput. Vis., 2017, pp. 2242–2251.

[36] J. Hoffman et al., “CyCADA: Cycle-consistent adversarial domain adap-
tation,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 1989–1998.

[37] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image trans-
lation networks,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 700–708.

[38] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal unsupervised
image-to-image translation,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 172–189.

[39] H.-Y. Lee, H.-Y. Tseng, J.-B. Huang, M. Singh, and M.-H. Yang, “Diverse
image-to-image translation via disentangled representations,” in Proc. Eur.
Conf. Comput. Vis., 2018, pp. 35–51.

[40] B. Benjdira, Y. Bazi, A. Koubaa, and K. Ouni, “Unsupervised domain
adaptation using generative adversarial networks for semantic segmenta-
tion of aerial images,” Remote Sens., vol. 11, no. 11, 2019, Art. no. 1369.

[41] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and
A. A. Kalinin, “Albumentations: Fast and flexible image augmentations,”
Information, vol. 11, no. 2, 2020, Art. no. 125.

[42] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.- Assist. Interv., 2015, pp. 234–241.

[43] V. Iglovikov and A. Shvets, “TernausNet: U-Net with VGG11 encoder pre-
trained on ImageNet for image segmentation,” 2018, arXiv:1801.05746.

[44] V. Nair, P. Rhee, J. Yang, B. Huang, K. Bradbury, and J. M. Malof,
“Designing synthetic overhead imagery to match a target geographic
region: Preliminary results training deep learning models,” in Proc. IEEE
Int. Geosci. Remote Sens. Symp., 2020, pp. 948–951.

[45] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimization
of machine learning algorithms,” in Proc. Adv. Neural Inf. Process. Syst.,
2012, pp. 2951–2959.

[46] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, “Least squares
generative adversarial networks,” in Proc. IEEE Int. Conf. Comput. Vis.,
2017, pp. 2813–2821.

[47] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” 2014,
arXiv:1411.1784.

Can Yaras received the B.S.E. degree in electrical
and computer engineering and the B.S. degree in
mathematics from Duke University, Durham, NC,
USA, in 2021, and the M.S. degree in electrical and
computer engineering in 2023 from the University of
Michigan, Ann Arbor, Ann Arbor, MI, USA, where
he is currently working toward the Ph.D. degree in
ECE with the Electrical Engineering and Computer
Science Department.

His research interests include representation
learning, efficient deep learning, and nonconvex

optimization.

Kaleb Kassaw (Student Member, IEEE) received the
B.S.E.E. degree in electrical engineering from the
University of Arkansas, Fayetteville, AR, USA, in
2020 and the M.S. degree in electrical and computer
engineering in 2023 from Duke University, Durham,
NC, USA, where he is currently working toward the
Ph.D. degree in electrical and computer engineering,
advised by Dr. Leslie Collins and Dr. Jordan Malof.

His research focuses on applied machine learning
and computer vision.

Bohao Huang (Student Member, IEEE) received the
B.S. degree in electrical, electronics and communi-
cations engineering from the University of Electronic
Science and Technology of China, Chengdu, China,
in 2011 and the M.S. and Ph.D. degrees in electri-
cal and computer engineering from Duke University,
Durham, NC, USA, in 2017 and 2021, respectively.
His work in Ph.D. focuses on the application of com-
puter vision and machine learning in remote sensing.

Kyle Bradbury (Member, IEEE) received the
B.S.E.E. degree in electrical engineering from Tufts
University, Medford, MA, USA, in 2007, the M.S.
degree in electrical and computer engineering and the
Ph.D. degree in energy systems modeling from Duke
University, Durham, NC, USA, in 2008 and 2013,
respectively.

He is currently an Assistant Research Professor in
Electrical and Computer Engineering with Duke Uni-
versity and the Director of the Energy Data Analytics
Lab, Nicholas Institute for Energy, Environment and

Sustainability, Durham, NC, USA. His research focuses on developing and
applying machine learning techniques to better understand, plan, and manage
energy infrastructure, scarce energy resources, and climate impacts. In particular,
his work focuses on the use of remotely sensed data including satellite and aerial
imagery.

Jordan M. Malof (Member, IEEE) received the B.S.
degree in electrical and computer engineering (ECE)
from the University of Louisville, Louisville, KY,
USA, in 2008 and the Ph.D. degree in ECE from Duke
University, Durham, NC, USA, in 2015.

He is currently an Assistant Professor with the
Department of Computer Science, University of Mon-
tana, Missoula, MT, USA, where he develops ad-
vanced computer vision, machine learning, especially
deep learning approaches to solve challenging real-
world problems in fields such as materials science,
remote sensing, and defense.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


