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Abstract—Unsupervised domain adaptation (UDA) methods
have become a research hotspot in remote sensing scene classifi-
cation to reduce dependence on labeled samples. However, most
current methods focus on extracting domain invariant features,
ignoring the problem of large intraclass differences and the im-
balanced sample numbers between categories in remote sensing
images. To address these issues, we propose a remote sensing scene
domain adaptive method based on middle-layer feature extraction
and nuclear norm maximization (MFE-NM). In the MFE module,
the middle-layer features of the feature extractor are randomly ex-
tracted and processed. Since the receptive field of the middle-layer
features is smaller and the resolution is higher, the effective use of
the middle-layer features can reduce the impact of image feature
heterogeneity caused by large intraclass differences in remote sens-
ing images. In addition, it can be concluded that the constrained
nuclear norm can simultaneously improve the prediction diversity
and discriminability of the model through theoretical derivation.
Therefore, the NM module is proposed to solve the problem of
reduced prediction diversity caused by entropy minimization meth-
ods when dealing with scene classification problems with imbal-
anced sample numbers between categories. Extensive experiments
and analyses on three public remote sensing datasets demonstrate
the effectiveness and competitiveness of our proposed method.

Index Terms—Middle-layer feature extraction (MFE), nuclear
norm maximization (NM), remote sensing scene classification,
unsupervised domain adaptation (UDA).

I. INTRODUCTION

ITH the advancement of satellite and remote sensing
Wtechnology, the number of remote sensing images is
rapidly increasing [1], [2], [3]. Scene classification is a method
that can effectively process remote sensing images, which aims
to classify remote sensing images into different semantic cate-
gories. Remote sensing scene classification plays an important
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role in urban planning, geological hazard detection, and other
fields [4]. However, due to differences in geographical distri-
bution, imaging conditions, sensors, etc., the data distribution
of different remote sensing datasets is distinct [5]. To adapt to
the distribution differences between different datasets, domain
adaptation (DA) methods have been proposed [6]. DA consists
of two domains, the source domain and the target domain. Due
to differences in data distribution between different domains, it
is often difficult to obtain satisfactory results when the model
trained on the source domain is tested directly on the target
domain [7]. In DA, the data from the source and target domains
are mapped to the same feature space, and the distribution
differences between the two domains are minimized in this
feature space, enabling the target domain to fully utilize the
rich information in the source domain.

At present, deep learning plays a significant role in the field of
DA [8],[9], [10], [11], [12], [13]. Convolutional neural network
(CNN) is one of the most representative models in deep learning
methods. CNN usually needs to use a large amount of labeled
data during the training process. Although the number of remote
sensing images that can be obtained has greatly increased,
labeling these images not only relies on expert knowledge, but
also consumes a large amount of human resources, which is
usually uneconomical [14]. To reduce the dependence on labeled
data, unsupervised learning is introduced [15]. Compared with
supervised or semisupervised methods, the target domain in
unsupervised domain adaptation (UDA) technology does not
contain labeled samples, but learns relevant information from
the labeled source domain [16], [17].

UDA methods can generally be divided into two categories.
The first type is based on statistical methods, which use mean
or higher order moments to measure the distribution differences
between domains and minimize this statistical measure to
align different domains [8]. The second type is based on
adversarial learning methods. However, due to the complex
features of remote sensing images, manually designed statistical
metrics are difficult to characterize complex feature distribution
information. Therefore, researchers mostly focus on methods
based on adversarial learning. Domain adaptive neural network
(DANN) [18] is the first method to introduce the generative
adversarial networks (GANS) into the field of transfer learning.
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Fig. 1. Examples of five types of images in different datasets. Shown are five
types of images in the UC Merged land use dataset (UCM) [20], Aerial Image
Datasets (AID) [21], and NWPU-RESISC45 (NWPU) [22]. It can be found
that even for the same category, there are differences in key parts of images in
different datasets.

In DANN, the domain discriminator is used to distinguish
whether the sample comes from the source domain or the target
domain, while the feature extractor extracts features that are
difficult for the domain discriminator to distinguish as much as
possible. When the domain discriminator and feature extractor
reach dynamic equilibrium, the source domain and target
domain are aligned. Although this adversarial learning-based
methods can reduce the distribution differences between
different domains in the feature space, it is likely to sacrifice
the discriminability of features [19].

In traditional adversarial training methods, only the last layer
features output by the feature extractor is usually selected to
represent image features. However, as shown in Fig. 1, due to the
difference in shooting satellite, location, and other factors, the
key parts of remote sensing images are quite different, so it is not
enough to only extract the deep features of the image. Compared
with the deep features, the shallow features of the image have a
smaller receptive field and higher resolution, which enables the
network to capture detailed information. The selection method
of middle-layer features can also have a significant impact
on performance. Therefore, we adopt the method of randomly
extracting the middle-layer feature to enhance the discrimination
of the model in the feature extraction module. By fully utilizing
the middle-layer features, it is possible to capture key parts in
remote sensing images and reduce the distribution differences
between the source and target domains.

At the same time, as shown in Fig. 2, in the same remote
sensing dataset, there may be an imbalance in the number of
images between categories. In this case, the method based
on entropy minimization currently used has side effects [23].
It tends to judge a small number of category samples as a
large number of categories, which will reduce the prediction
diversity of unlabeled data. In response to the issue of category
imbalance, Bai et al. [24] used focal loss to reallocate the losses
of samples from different categories. Although the focal loss can
effectively suppress the negative impact of imbalanced category
numbers on model training, it suppresses well-classified
samples and inevitably introduces difficult-to-classify samples.
Cui et al. [23] proposed that in an ideal state, the F-norm and
rank of the output matrix can be used to measure the prediction
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Fig. 2. Image number of different categories in AID dataset.

discriminability and diversity of unlabeled samples, thereby
reducing the impact of reduced prediction diversity caused by
the imbalanced sample numbers between remote sensing image
categories. However, the actual training results often deviate
from the ideal state. Therefore, we introduce a scale factor to
make the prediction output closer to the assumed ideal state.
Overall, we propose an improved nuclear norm maximization
module to address the issue of reduced prediction diversity
of unlabeled samples caused by imbalanced sample numbers
between categories in remote sensing datasets.

In general, the contributions of this article are as follows.

1) This article proposes a novel DA framework based on
middle-layer feature extraction and nuclear norm maxi-
mization (MFE-NM) for remote sensing scene classifica-
tion, which can effectively improve the accuracy of the
model and enhance the prediction diversity of unlabeled
samples.

2) The MFE module is proposed to solve the problem of
feature heterogeneity caused by large intraclass differ-
ences in remote sensing images. During the model training
process, middle-layer features are randomly selected and
fully utilized, which can achieve domain alignment.

3) The NM module is proposed to solve the problem of reduc-
ing prediction diversity caused by entropy minimization
methods when dealing with scene classification problems
with imbalanced sample numbers between remote sens-
ing image categories. By constraining the nuclear norm,
the prediction discriminability and diversity of unlabeled
samples are effectively improved, thereby improving the
classification accuracy of the model.

The rest of this article is organized as follows. In Section II, the
related work is introduced. Section III describes our proposed
method in detail. Section I'V introduces the dataset, experimen-
tal setup, and experimental results. The MFE-NM method is
compared with existing methods and its effectiveness is verified
through a large amount of experiments. Finally, Section V
concludes this article.
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II. RELATED WORK

A. Unsupervised Domain Adaptation

In recent years, a large number of DA methods have been
proposed, which can be roughly divided into two categories. The
first is to achieve DA by measuring the distribution difference
between the source domain and the target domain; the second
category is mainly based on GANs. The feature representation
with both domain invariance and class discriminability is ob-
tained through the game process between the feature extractor
and the domain discriminator.

Most methods based on statistical criteria use mean or higher-
order moments to measure the distance between the source
domain and the target domain. In [8], [18], and [25], researchers
applied maximum mean discrepancy (MMD) to the DA classi-
fication. Tzeng et al. [25] proposed a deep domain confusion
(DDC) by introducing a common adaptive layer to align the
feature representations of the source domain and target domain,
and using an additional domain confusion loss to automatically
learn the feature representations during joint training between
the domains, enabling the network to learn domain invariant fea-
tures and optimize classification results. Long et al. [8] proposed
adeep adaptation network (DAN), which is further developed on
the basis of DDC. Compared with the method of only one layer
of network adaptation and using single-core MMD in DDC,
DAN adopts multilayer adaptation and uses multiple kernel
variants of MMD, which can enhance the transfer ability of the
model.

The adversarial-based method applies the idea of GANs to
the field of DA. Ganin and Lempitsky [18] first applied GANs
to transfer learning. In addition, [9], [10], [11], [12], [13], and
other articles also try to use this method to solve the domain shift
issues. In [26], they found through principal component analysis
that the largest singular value represents the most important com-
ponent. However, cross-domain classification problems require
the proximity of the primary components and the alignment of
the secondary components. Therefore, they proposed the batch
spectral penalization (BSP) method. By adding the penalty term,
the difference between the singular penalty will not be too
large, thus effectively enhancing the feature discriminability of
the model. Adversarial discriminative domain adaptation [27]
is also one of the representative methods in the adversarial-
based methods. This method adopts an asymmetric mapping
approach, where the source domain and the target domain use
two feature extractors with the same network structure but
independent of each other. The target domain feature extractor
uses pretrained parameters from the source domain for initial-
ization operations, making the extracted features more domain
specific.

The above methods are all based on natural scenes, but due
to the fact that remote sensing scene images usually come from
satellites, their image characteristics differ significantly from
natural scene images. Therefore, when the above unsupervised
domain adaption methods are directly applied to remote sens-
ing scenes, there may be a decrease in classification accuracy.
Therefore, it is necessary to develop specialized UDA methods
tailored to the characteristics of remote sensing scenes.
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B. UDA in Remote Sensing

In the field of remote sensing, many effective DA methods
have also emerged. For example, Elshamli et al. [28] fully
applied the DANN method in the field of remote sensing, studied
the end-to-end mode of DA in the background of pixel-based
remote sensing image classification, and evaluated its perfor-
mance. In [29], based on the BSP method, a new multisource DA
method was proposed, which maps different groups of source
and target domains into a group-specific subspace using adver-
sarial learning with metric constraints, and aligns the remaining
source and target domains in the subspace. In addition, DA
methods based on remote sensing scenes have been proposed
in [19], [30], [31], [32], [33], and [34].

In the practical application of remote sensing images, the
source domain data is sometimes inaccessible due to confi-
dentiality or privacy considerations. At this time, the existing
DA methods cannot be applied. Considering this situation,
the authors in [30] and [35] proposed a novel source data
generation-based universal DA model. The model distills the
source domain knowledge from the pretrained model, and re-
describes it as the conditional distribution of the source domain
data, thereby obtaining unknown source domain information.
Afterward, transferable weights are further used to distinguish
between shared and private label sets for each domain. The
authors in [31] and [33] take into account the current situation
where remote sensing DA methods lack effective utilization
of target domain information. Zheng et al. [31] proposed a
DA via a task-specific classifier (DATSNET) framework that
uses two neural networks as task-specific classifiers, and used
task-specific decision boundary in the target domain to align the
distribution of source domain and target domain features. Ma
et al. [33] proposed an error-correcting boundaries mechanism
with a feature adaptation metric (ECB-FAM) structure. The
ECB structure can fully utilize the information of the target
domain, effectively correcting classification errors when the
classifier acts on the target domain, and reducing the uncertainty
of difficult-to-classify samples; the FAM structure targets fuzzy
features and is used to construct domain invariant features.

In the context of remote sensing, due to the fact that most of the
methods based on statistical criteria only measure the distance
between the source domain and the target domain through mean
or variance, this simple method is difficult to achieve accurate
alignment between the two domains. Since the idea of GANs
was introduced into the field of DA, this method can effectively
obtain the common feature representation between two domains,
and has more advantages in domain alignment. However, the
methods proposed above did not fully consider the significant
differences in key parts of remote sensing images, and aligning
the source and target domains directly may not achieve satis-
factory results. At the same time, due to the imbalance in the
number of images between classes, the use of entropy-based
methods will reduce the diversity of class prediction in the target
domain.

In response to the above issues, we propose a new network
framework to achieve two goals: 1) learning the key representa-
tion of features to obtain accurate domain invariant features and
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2) improving the reduction of prediction diversity of unlabeled
samples caused by entropy minimization.

III. METHODS
A. Preliminary Knowledge

In UDA, the source domain is usually represented as Dy =
{2,y } =, containing N, labeled samples. Represent the tar-
getdomain as D; = {z!} ?21 containing NV; unlabeled samples.
The source domain and the target domain are sampled from the
joint distribution p(x*, y*) and p(x?, y') of features and labels,
respectively. The goal of DA is to design a network that can align
the distribution between the source domain and target domain,
so that the classifiers trained on the labeled source domains can
be applied to the unlabeled target domains. The UDA network
implemented in the article uses an adversarial training method,
and its structure mainly includes three parts: a feature extractor
F for image feature extraction, a classifier G for categories clas-
sification, and a domain discriminator D for judging the domain
to which the sample belongs, where f = F(z) and g = G(z)
are used to represent features and classifier predictions, and ¢ is
the prediction label. Long et al. [36] proposed that when the joint
distributions p and ¢ of the source and target domains are not
similar, it is difficult to achieve domain alignment by adjusting
only the features. At the same time, the distribution of features
often contains complex multimodal structural information, and
only adjusting the features is not conducive to the training of
adversarial networks. Based on these two points, it was found
that classifier prediction g may contain discriminant information
that can interpret multimodal structures. Therefore, modeling
the feature representation f and classifier prediction g enables
the network to reveal the multimodal information behind the
data. f and g are modeled using a multilinear mapping method,
formulated as follows:

h=f®ag. (1)

The proposed framework is shown in Fig. 3. First, both the
source domain data and the target domain data are input into
the feature extractor, and while outputting the last layer, the
middle-layer features output by the feature extractor are it-
eratively and randomly selected. Pass the randomly selected
features and the last layer of features through a classifier to
obtain the corresponding classifier prediction g. The feature
and its corresponding classifier prediction through a multilinear
mapping to obtain a joint representation h, which is used as input
to the domain classifier. The entire model mainly includes two
parts: MFE-NM. The next two parts will specifically introduce
its mechanism of action.

B. Random Middle-Layer Feature Extraction

In the context of remote sensing, there are still significant
differences in the key parts of the same category images in
the source and target domains due to differences in factors,
such as shooting satellites, time, and location. At this time,
it is not sufficient to process only the last layer of features
output by the feature extractor. According to the research in [37],
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even under different datasets and training tasks, the features of
the first layer of the model are very similar. As the network
progresses from shallow to deep, the features also shift from
general to specific, commonly referred to these shallow features
as fuzzy features [8]. In the field of transfer learning, previous
research has often focused on aligning high-level features in
CNN networks, which often contain unique information about
task objects, which will cause overall alignment attenuation [37].
Compared with advanced features, fuzzy features of images
have smaller receptive fields and higher image resolution. At
the same time, fuzzy features are general and contain less
obvious semantic information specific to task objects. If fuzzy
features are aligned, the negative impact on domain alignment is
relatively small [33]. This means that the network trained on the
source domain dataset can also achieve satisfactory results when
tested in the target domain. Therefore, for remote sensing images
with large interdomain differences, using multilayer features can
effectively represent invariant information, thereby improving
classification accuracy.

Making full use of shallow features can obtain accurate do-
main invariant information, but using all feature layers in the
training process not only consumes a large amount of computing
resources, but may also have a negative impact on the domain
transfer process. To address this issue, a random middle-layer
feature extraction method is proposed. As shown in Fig. 3, the
last layer of features output by the feature extractor is task-based,
therefore maintaining this layer of features unchanged. On this
basis, in order to fully utilize shallow features, n middle-layer
features are randomly selected from the m middle-layer features
output by the feature extractor during each training period, and
input these n middle-layer features into a classifier to obtain
their corresponding classifier predictions. The random extrac-
tion process is represented as

where R,, is an iterative random selection, f; is the randomly
extracted middle-layer features, ¢ represents the number of fea-
ture layers, the last layer feature is represented as fgna, and
the corresponding classifier predictions are represented as g;
and gfna. Both feature and classifier predictions are connected
through a multilinear mapping, and the corresponding joint
variables are represented as

hi = (fi, 9i) (3)
Nfinal = (fﬁnalv gﬁnal) . (4)
At this point, the domain discriminator loss can be expressed as
1
ACMFE = m Z (L (D (hﬁnal) 3 di)
z;~(DsUDy)
+AY L(D(hy),d;)) )

j=1

where d;(i = 0, 1) represents the domain label, when 7 = 0, it
indicates that the corresponding sample comes from the source
domain, and when ¢ = 1, it indicates that the corresponding
sample comes from the target domain.
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Fig. 3. Framework based on MFE-NM.

C. Nuclear Norm Maximization

In the field of remote sensing, labeling samples not only
requires a lot of time, but also requires expert knowledge, so the
number of labeled samples is relatively scarce. In this context,
researchers endeavor to obtain a deep neural network that can
be trained directly on unlabeled samples. But directly using
unlabeled samples for training can lead to an increase in data
density near the decision boundary, thus reducing prediction dis-
criminability. To balance data density, most methods use entropy
minimization methods. However, the method based on entropy
minimization also has a certain negative effect [38], which can
lead to a decrease in the number of predicted categories, that
is, it is easy to judge the samples from the category with fewer
samples into the category with more samples, thereby reducing
the prediction accuracy, as shown in Fig. 4.

POOL

— Forward of Target Images

Iterative Random Sm/

Source domain
stitching features f;°

Domain

classifier Target domain

stltchmg features fi

Iterative Random Selection

{ Weights-shared |
i feature extractor

Cui et al. [23] found that the Frobenius-norm and rank of
the output matrix can constrain the prediction discriminability
and diversity of unlabeled data. Shannon entropy H(P) is
usually used to measure the uncertainty of the prediction. When
H(P) reaches its minimum value, the prediction uncertainty
is minimized, which means the prediction discriminability is
maximum. At this point, the value in the prediction matrix P is
fixed, and this fixed matrix is represented as P*. According to
the derivation in [23], the F-norm of a matrix is strictly opposite
to the monotonicity of Shannon entropy. Therefore, when the F-
norm reaches its maximum value, the corresponding prediction
matrix P reaches P*, and H(P) reaches its minimum value,
it can be considered that the F-norm and H(P) are equivalent
in representing the prediction discriminability. The expression
and upper limit of the F-norm are as follows, where L is the
prediction output number of unlabeled sample data batches and
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Fig. 4. Entropy minimization methods tend to classify triangles and circles
with fewer sample numbers in the graph as block, resulting in a decrease in
prediction diversity and classification accuracy.

K is the number of categories:

1Pl =/, S ol
L K 2
(S ()

< VL. (6)

The prediction diversity can be reflected by the number of
predicted categories. The overall number of predicted categories
E should be the expected value of the number of categories in all
prediction matrices. In an ideal state, according to the correlation
principle of matrix rank, when two randomly selected row
vectors in the prediction matrix belong to different categories,
they can be considered linearly independent, and when they
belong to the same category, they can be considered linearly
correlated. Therefore, the rank of the prediction matrix can be
approximately equal to the number of predicted categories.

However, due to the similarity of ground features in remote
sensing images, there may be some correlation between images
of different categories, so the line vectors corresponding to dif-
ferent categories in the prediction matrix cannot be completely
linear independent. To solve this problem, we introduce a scale
factor 17 and obtain an improved prediction matrix

exp (2;/n)
P @
> XD (2 /1)
Py=Ip1,-..pj...px)" Vji€(l...K). (8)

When 7 taking values within the range of (0,1) and n — 0, it
can be obtained that

lim p_, = lim —P /)

70 1703 m xp (2m /1)

1
= lim 7
=01+ 3 exp((zm — 2i) /)

=1 (9
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= lim =0 (10

101 4 Zgﬂ exp((zm — 2i) /1)

where c represents the class with the highest probability of class
prediction in the row vector. The row vectors corresponding to
images belonging to different categories each obtain the maxi-
mum probability value of 1 at the corresponding category. At this
point, the two vectors are completely linearly independent. If the
value of the scale factor 7 is between (0,1), the linear indepen-
dence between the row vectors belonging to different categories
in the prediction matrix can be higher, so as to be closer to the
ideal state. At this time, the rank of the prediction matrix can be
used to approximate the number of predicted categories E. For
the classic low-rank matrix completion optimization problem, a
common method is to use nuclear norm || P||. to approximate
the rank of the matrix, where all singular values of the matrix
are required to be less than or equal to 1 [39]. By combining
the (6), the convex envelope of the prediction matrix rank can
be obtained. According to [37], the relationship between the
F-norm and nuclear norm is as follows:

1Pl < I1PI. < VQIIPIlp - (11)
Among them, @) = min(L, K'), where the nuclear norm can
simultaneously constrain the discriminability and diversity of
predictions. When the nuclear norm reaches its maximum value,
the discriminability and diversity of predictions are also maxi-
mized. The loss function is expressed as

1
L =——||P,]. . 12
NM I 121, (12)

D. MFE-NM Framework

In summary, our proposed MFE-NM method consists of
two parts: MFE-NM. The MFE module can accurately capture
domain invariant information in DA problems by fully utilizing
middle-layer features. The NM module improves the diversity
and discriminability of prediction by constraining the nuclear
norm of the prediction matrix. In the actual training process,
the source domain data is input into the feature extractor and
category classifier to obtain classification loss

1 K
Les = K Z _Zya:“jlog(G(F(‘rl))) (13)

$ 2~Dy  j=1

where v, ; represents the true value probability of class K on
the source domain sample. In order to train the network as a
whole, we synchronously optimize multiple losses. The loss of
the middle-layer feature extraction module and the nuclear norm
maximization module can be determined through the parameter
Amre and Anm combined with classification loss, the overall loss

function is represented as follows:
La = Las + AmreLvrE + AnMLNM- (14)

Algorithm 1 demonstrates the main steps of training the MFE-
NM model.
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Algorithm 1: MFE-NM Model Training Process.

Data: Labeled source domain sample set {x°,y®} and
unlabeled target domain sample set {xt} ,
feature extractor F' , classifier G and domain
discriminator D, the feature representation f7
and ff, where f5 ., and ff__, represents the last
layer of features, g§ and g} are the
corresponding classifier outputs.

Result: Classification accuracy of x*.

1 for i in epochs do

2 x® and x* are passed through F and obtain ff and
£r.

3 Pass ff and f} through G to obtain the
corresponding g§ and gf.

4 Splicing £ and ff to obtain f;, and performing the
same operation on gf and g to obtain g;.

5 Randomly select from fj other than fgy,4;-

6 Multiply the fana1 and gana1 matrices, and
perform the same operation on the randomly
selected middle-layer features f; and its
corresponding g; in the previous step.

7 Enter the joint representation into D and calculate
L rE according to Eq.(5)

8 Calculate the nuclear norm of gf to obtain the loss
L according to Eq.(12).

9 Calculate classification loss L.;s according to
Eq.(13).

10 Obtain the total loss L,;; according to Eq.(14), and
update the network.

11 Obtain the classification accuracy of the target
domain.

12 end

IV. EXPERIMENTS

In this section, specific information, such as the dataset and
experimental settings, used in the experimental process was
introduced, and a large number of experiments were conducted
to demonstrate the effectiveness of the proposed method.

A. Dataset Description

Due to the lack of a remote sensing dataset specialized for
transfer learning research, in order to evaluate the method, three
commonly used remote sensing datasets are used to form a
subdataset with 12 common classes for testing. The three remote
sensing datasets used are UCM [20], AID [21], and NWPU [22].
The UCM dataset includes 21 types of earth scenes, each consist-
ing of 100 images with a pixel size of 256256, with a ground
resolution of 0.3 m. The images in this dataset are all extracted
from the USGS National Map Urban Area Imagery series. The
AID dataset contains 30 types of scenes, the number of each type
is about 220-420, and the total number of all types of images
is 10 000. Image pixel size is 600x 600, with ground resolution
ranging from 0.5 to 8 m. These pictures were collected from
Google Earth and released by Wuhan University and Huazhong
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University of Science and Technology. The NWPU dataset
contains a total of 31 500 images with a pixel size of 256 x256,
covering a total of 45 categories. Each category contains 700
images, and the ground resolution ranges from 30 to 0.2 m.

The categories of the constructed remote sensing cross do-
main dataset are airfield, anchorage, beach, dense residential,
farm, flyover, forest, game space, parking space, river, sparse
residential, and storage cities. Due to the fact that different
remote sensing datasets are labeled by different experts, cat-
egories may have different names, and such images need to
be merged, such as the ground track field and stage in NWPU
to form the game space, circular farms, and rectangular farms
to form the farm, and airplane and airport to form the airfield.
Table I gives the formed remote sensing cross domain dataset
and its detailed information. Abbreviate the three datasets as A
(AID), U (UCM), and N (NWPU). During the experiment, two
of the three remote sensing datasets were randomly selected as
the source and target domains, respectively. The proposed model
was trained on the source domain dataset and tested on the target
domain dataset, resulting in six adaptive tasks: A —U, U— A,
N—U U—-N,N—A,and A—N.

B. Experimetal Setting

We use the Pytorch framework to implement our model on
NVIDIA TITAN RTX GPU. In order to train faster, a pretrained
ResNet-50 network on ImageNet is used as a feature extractor.
Due to the different sizes of images in different datasets, the size
of the input images is unified to 224 x 224 and the batch size
is set to 32. The training process uses an Adam optimizer with
a learning rate set to 10~*. During the training process, 80%
of the source domain data is divided into training sets and the
remaining 20% is divided into test sets. Simultaneously divide
50% of the target domain data into training sets [40].

C. Hyperparameters Determination

It is necessary to determine the number of middle-layer fea-
tures used in the MFE module. In the experiment, resnet-50 is
used as the feature extractor, which includes three additional
shallow layer features in addition to the last layer feature out-
put. The shallow features are represented as I;(¢ = 1,2, 3). In
order to determine the number of randomly selected middle-
layer features, fixed middle-layer feature extraction, and random
middle-layer feature extraction were performed on the cross
domain dataset. The experimental results obtained are given
in Table II. According to the results in the table, it can be
found that using fixed middle-layer features is difficult to achieve
optimal classification results for multiple cross domain datasets
simultaneously. Compared with randomly selecting one middle-
layer feature and aligning all middle-layer features, randomly
selecting two middle-layer features yielded the best experimen-
tal results. Therefore, the method of randomly selecting two
middle-layer features was ultimately chosen.

In the NM module, it is necessary to determine the value of
the hyperparameter scale factor 7. According to Section III-C,
7 is taken at intervals of 0.05 within (0.6,1), and experiments
are conducted on six cross-domain tasks. The relationship curve
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TABLE I
DETAILED INFORMATION AND COMMON CATEGORIES OF THE THREE REMOTE SENSING DATASETS USED IN THE MFE-NM METHOD

Datasets | Classes Numt;z; (C)lfalsrsnages Total number of images | Spatial resolution (m)| Image size | Data source Public class
UCM 21 100 2100 0.3 256x256 USGS airfield, anchorage, beach,
dense residential, farm, flyover,
AID 30 220-420 10000 0.5-8 600x600 | Google Earth forest, game space, parking space,
NWPU | 45 700 31500 0.2-30 256x256 | Google Earth | river, sparse residential and storage cities
TABLE II 87
CROSS DOMAIN CLASSIFICATION RESULTS WHEN SELECTING DIFFERENT
MIDDLE-LAYER FEATURES, INCLUDING A SINGLE MIDDLE-LAYER FEATURE, h
TwO MIDDLE-LAYER FEATURES, AND THREE MIDDLE-LAYER FEATURES g 85
£ w
Methods A—U U—sA N-U UsN N—A AN <
Backbone 81.63 57.68 9225 5139 9121 8332 =
Backbone+l1 87.58 62.02 90.17 5256 90.96 84.04 01 03 05 07 09 11 13 15 17
Backbone+l2 81.58 60.11 9225 5332 90.25 84.53 =
Backbone-+ls 82426234 9183 5524 9121 8438 Fig. 6. Result of accuracy changing with the hyperparameter a.
Backbone+l; 8383 64.61 9192 5150 90.87 8297
Backbone+11+l2 88.50 60.93 91.58 5731 9140 83.61
Backbone+l1+l3  87.83 59.89 90.67 52.14 9053 83.76 ::
Backbone+l2+3 8142 6561 91.67 54.62 9091 83.37 - ”'0
Backbone+l;+l 87.58 65.67 93.83 58.54 91.55 84.09 %’ .
Backbone+l1+l2+l3 84.83 60.31 9275 54.14 90.51 84.24 2’ .0
The bold part represents the best accuracy result when using single and two middle- :':
layer features respectively. '
0.‘1 0:3 0:5 0:7 0:9 L1 1:3 I:S l.‘7
Anm
—-A->U —-N->U —+-N->A
—o-U->A —-U->N —o—A->N . . .
Fig. 7. Result of accuracy changing with the hyperparameter Anm.

©
b3
|

°
S

£
b

Accuracy(%)
a3

2
=

EN
b

0.6 0.65 0.7 0.75 0.85 0.9 0.95

Fig. 5. Result of accuracy changing with the hyperparameter 7.

TABLE III
COMPARATIVE EXPERIMENTS WITH AND WITHOUT THE SCALE FACTOR

Methods A—-U U—-A N—-U U—-N N—A A—N
Backbone 81.63 57.68 9225 51.39 9121 8332
Backbone+NM*  90.05 73.12 9386 6329 91.34 85.09
Backbone+NM 9144 7597 95.03 67.33 92.63 85.24

*Indicates the situation where no scale factor is added.
The bold part represents the best classification accuracy.

between prediction accuracy and 7 is shown in Fig. 5. When
n = 0.75, among the five cross domain tasks except for N — U,
the prediction accuracy reached the maximum value. Based
on this, we chose 7 = 0.75 for the experiment. To verify the
effectiveness of the scale factor, we conducted comparative
experiments with and without the scale factor on six DA tasks.
The experimental results are given in Table III. It can be seen

that after adding the scale factor, the classification performance
has been improved by 0.15% — 4.04%.

There are two hyperparameters, Ay and Aypg in the method.
By adjusting the two hyperparameters on A — U, appropriate
hyperparameter values can be obtained. Set Aypg in form of
%&fﬁ?l), which means that the variable parameter in Aygg
is ag. The transformation range of the hyperparameter is set
to 0.1-1.7, and the variation interval is 0.2. The experimental
results are shown in Figs. 6 and 7, when ag = 0.7and Axy = 0.5,
the accuracy reaches its peak, so we will set these two fixed
values in the following experiments.

D. Ablation Study

To verify the effectiveness of the above two modules,
we conducted ablation experiments on cross domain remote
sensing datasets, including the backbone, MFE module, and
NM module. The final experimental results are presented in
Table IV. According to the results in the table, it can be seen
that when using the backbone, the experimental accuracy is the
lowest. When adding MFE module and NM module respectively
based on the backbone, and conducting data transfer on six
cross domain datasets, the classification accuracy is improved.
Compared with using only a single module at the same time,
when two modules are combined, the improvement effect of
the model is better, with the highest being 20.81% accuracy
improvement was achieved on the U— A. The classification
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TABLE IV
ABLATION STUDY OF OUR METHOD

Methods A—U U—A N—U U—N N—A A—N
Backbone 81.63£1.38 57.68+1.10 92.25+1.20 51.39+1.04 91.21+0.87 83.32+1.27
Backbone+MEF 85.38+0.85 65.70£2.02 92.39+0.84 56.88+0.53 91.55+0.98 84.68+0.97
Backbone+NM 91.44+0.36 75.97+0.60 94.83+1.23 67.33+1.98 92.63+0.73 85.24+1.15
our method 94.28+1.25 78.49+1.61 95.03+0.97 68.59+1.49 93.03+0.36 85.57+0.52
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Fig. 8. Confusion matrices of MFE-NM module. (a) A—U. (b) U—A.(c) N—U.(d) U—N. (e) N—A. (f) A—N.
TABLE V
CLASSIFICATION ACCURACY (%) OF EACH CATEGORY ON THE A — U
Storage . Parking  Sparse . Game Dense

Methods Farm Cisterns River  Flyover Space Residential Forest  Airfield Anchorage Space Residential Beach  Average
DeepCORAL 52 64 64 28 98 76 100 68 75 80 48 100 71.08
DDC 89 69 73 21 97 53 94 44 63 82 30 95 67.50
DAN 71 58 63 77 95 69 85 68 89 85 60 96 76.83
DANN 90 52 66 88 98 66 82 92 85 93 62 95 80.75
GVB 90 68 74 68 100 84 100 98 86 100 78 100 87.17
CGDM 71 63 73 39 100 64 100 76 100 91 30 100 75.58
CDTrans 89 64 29 39 100 75 89 97 100 66 70 100 76.50
MFE-NM(ours) 91 85 92 97 100 87 100 94 100 85 92 100 93.42

The bold part represents the best classification accuracy.

accuracy of each category in the MFE-NM module is shown in
Fig. 8 by the confusion matrices.

E. Comparison With Other Methods

To demonstrate the progressiveness of the MFE-NM method,
it is compared with some recent classical DA methods, in-
cluding DANN [18], DDC [25], DAN [8], DeepCORAL [41],

gradually vanishing bridge (GVB) [42], cross-domain gradi-
ent discrepancy minimization (CGDM) [43] and cross-domain
transformer (CDTrans) [44]. According to the original paper
of these methods, hyperparameters are set to obtain the best
performance. Experiments were conducted using these methods
on the cross domain remote sensing dataset produced, and the
obtained experimental results are given in Tables V and VI.
Table V gives the prediction accuracy for each category in
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TABLE VI
CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS ON THE CROSS DATASETS

Methods A—-U U—A N—U U—N N—A A—N
DeepCORAL 73.42 65.33 83.5 52.78 81.62 82.67
DDC 69.00 54.42 78.58 54.74 71.63 80.65
DAN 78.08 71.75 76.58 56.23 82.99 79.10
DANN 83.08 72.46 84.58 65.71 89.89 85.60
GVB 89.33 57.37 84.25 58.06 88.89 85.06
CGDM 75.58 61.57 80.67 47.90 92.82 83.28
CDTrans 76.50 67.30 91.84 67.70 92.53 85.40
MFE-NM(ours) 94.28 78.49 95.03 68.59 93.03 85.57
The bold values indicate the best performance.
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Fig. 9.

the MFE-NM method and other methods on the A — U task.
The MFE-NM method achieves optimal results in all categories
except for airfield and game space, and its average accuracy is
superior to other methods. Table VI gives the comparison results
between the MFE-NM method and other methods on six cross
domain classification tasks. It can be seen that MFE-NM method
is significantly superior to previous methods. Compared with
DA methods based on distance measurement, such as DAN and
DeepCORAL, the performance improvement is more signifi-
cant. Compared with other adversarial-based DA methods, such
as DANN, although our method is slightly lower in A — N task,
the gap is only 0.03, and on the whole, the MFE-KM method
is better than the DANN method, especially in the A — U task,
the performance improvement is 11.20%. Compared with the
recent DA method CDTrans, MFE-NM method also exhibits
certain advantages. This indicates that our proposed MFE-NM
model can fully utilize feature information, achieve alignment

®

T-SNE visualization results of backbone and MFE-NM (ours). (a) A—U. (b)) U—A. (¢c) N—-U.(d) U—N.(e) N—A. () A—N.

between source and target domains, and effectively solve the
problem of DA in remote sensing scene classification.

F. Visual Analysis

The feature clustering effect can effectively reflect the classifi-
cation results, and the distributed stochastic neighbor embedding
(t-SNE) [45] technique is a very effective feature visualization
display method [46]. Therefore, t-SNE is used to visualize the
distribution of the target dataset. T-SNE is a tool for dimen-
sionality reduction and visualization of high-dimensional data.
We used this tool to visualize the backbone and our proposed
MFE-NM method on cross domain datasets, and the results
are shown in Fig. 9. It can be seen that the MFE-NM model
can effectively cluster sample features. As shown Fig. 9(a),
the classification boundary between the airfield class and other
classes in the backbone is relatively fuzzy, while in the MFE-NM
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Backbone MFE-NM(ours)

Original image

Airfield

Dense
Residential

Game
Space

Fig. 10.
the CAM corresponding to the MFE-NM.

method, the sample feature aggregation degree is higher and the
classification boundary is clearer.

Moreover, the Grad-class activation map (cam) [47] method
is also used for the visual interpretation of images. After in-
putting the original image, a CAM can be obtained, which
is a thermal map that generates class activation for the input
image and can be understood as the contribution distribution
to the prediction output. The higher the score, the higher the
response of the corresponding position in the original image
to the deep neural network, indicating a higher contribution
to the category. In the image, the color tends to be closer to
deep red. To observe the importance of different positions in
the image sample and the effectiveness of our proposed model,
we conducted experiments on the remote sensing cross domain
datasets. As shown in Fig. 10, it can be clearly seen that after
the use of MFE-NM method, the range of the effective part in
the cam map is expanded and its contribution to the prediction
output is improved, which proves that MFE-NM method can
effectively capture key information in remote sensing images
and have a positive impact on DA.

V. CONCLUSION

Because the data of different remote sensing datasets may be
quite different, there may be DA problems in the actual appli-
cation process. To address the issue of significant differences
in data distribution between different remote sensing datasets,
we propose a UDA method based on adversarial learning,
namely, MFE-NM. The MFE module is proposed to address
the issue of feature heterogeneity caused by large intraclass
differences in remote sensing images, which effectively utilizes
middle-layer features to achieve alignment between the source
and target domains. Simultaneously using the NM module to
solve the problem of reduced prediction diversity when apply-
ing entropy minimization methods to remote sensing datasets
with imbalanced sample numbers between categories. Evalu-
ated on the cross domain remote sensing dataset produced, a
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Backbone

Original image

MFE-NM(ours)

Flyover

Sparse
Residential

Cam results of six types of images in the public data category. From left to right are the original image, the CAM corresponding to the backbone, and

large number of experimental results have proven that MFE-
NM method can effectively capture key information in remote
sensing images, obtain domain invariant features, and effec-
tively improve the prediction diversity of unlabeled samples.
Verified the effectiveness and competitiveness of the MFE-NM
model.
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