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Abstract—Accurate and efficient landslide identification is an
important basis for landslide disaster prevention and control. Due
to the diversity of landslide features, vegetation occlusion, and
the complexity of the surrounding surface environment in remote
sensing images, deep learning models (such as U-Net) for landslide
detection based only on optical remote sensing images will lead to
false and missed detection. The detection accuracy is not high, and
it is difficult to satisfy the demand. Synthetic aperture radar (SAR)
has penetrability, and SAR images are highly sensitive to changes
in surface morphology and structure. In this study, a multi-input
channel U-Net landslide detection method fusing SAR, optical,
and topographic multisource remote sensing data is proposed.
First, a multi-input channel U-Net model fusing SAR multisource
remote sensing data is constructed, then an attention mechanism is
introduced into the multi-input channel U-Net to adjust the spatial
weights of the feature maps of the multisource data to emphasize
the landslide-related features, and finally, the proposed model is
applied to the experimental scene for validation. The experimental
results demonstrate that the proposed model combined with SAR
multisource remote sensing data improves the perception ability of
landslide features, focuses on learning landslide-related features,
improves the accuracy of landslide detection, and reduces the
rate of false detections and missed detections. Compared with
the traditional U-Net landslide detection method based on SAR
multisource remote sensing data and the traditional U-Net method
that disregards SAR multisource remote sensing data, the proposed
method has the best quantitative evaluation indicators. Among
them, the proposed method obtained the highest F1 value (66.18%),
indicating that fused SAR remote sensing data can provide rich
and complementary landslide feature information, simultaneously
setting up a multichannel U-Net model to input multisource remote
sensing data can effectively process landslide feature information.
The proposed method can provide theoretical and technical sup-
port for landslide disaster prevention and control.
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1. INTRODUCTION

ANDSLIDES are considered one of the most serious natu-
L ral disasters in the world, in which soil, rocks, and objects
located above or below unstable slopes are affected by various
factors such as rainfall, earthquakes, and human activities to
move downward and form landslides [1], [2], [3], [4]. Land-
slide characteristics are strong suddenness, high harm, causing
many casualties and economic losses, and causing damage to
the surface environment [5], [6], [7], [8]. After a landslide
occurs, accurately obtaining and recording information on the
location and size of the landslide is critical for providing disaster
emergency response, disaster damage estimation, and postdis-
aster reconstruction [9], [10]. In addition, landslide detection is
extremely important for updating landslide inventory datasets
with accurate location and extent information and is also neces-
sary for further landslide sensitivity modeling and mapping for
disaster warning and risk assessment [11], [12], [13].

With the development of remote sensing technology, visual
interpretation, pixel-based and object-based methods based on
optical remote sensing images such as Landsat, RapidEye,
Sentinel-2A, etc., have been widely used in landslide inter-
pretation [14], [15]. The visual interpretation method generally
produces more accurate results while avoiding hazardous field
investigations, but the method relies on the knowledge of the
interpreter [16]. Pixel-based and object-based methods are often
combined with support vector machine, random forest, and other
machine learning methods to achieve landslide detection [17].
The pixel-based method mainly utilizes the pixel information of
remote sensing images for landslide detection, but this method
only considers the characteristics of a single pixel, neglects the
correlation between adjacent pixels, and is sensitive to noise
[18], [19]. The object-based approach can widely utilize the
shape, statistics, texture features, and contextual information of
landslides for further analysis. However, the method is diffi-
cult to determine a reasonable segmentation scale for different
regions, which affects the effectiveness of landslide detection
[20], [21]. In recent years, the development of deep learning has
provided new ideas for landslide detection and is gradually being
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applied to landslide detection with better results than traditional
machine learning methods. Among them, the methods based
on convolutional neural networks (CNN) and U-Net combined
with optical remote sensing images are more frequently used in
landslide detection tasks [22], [23], [24], [25], [26], [27].

However, the occurrence of landslides is often accompanied
by adverse weather conditions and complex geographical envi-
ronments, such as heavy rainfall and obstruction caused by cloud
or vegetation cover. Therefore, landslide detection based solely
on optical remote sensing images combined with deep learning
methods may have certain limitations. Synthetic aperture radar
(SAR) can image normally under bad weather conditions, and
at the same time has a certain penetration ability to penetrate
clouds, vegetation, and other information, so it is able to observe
the ground all day long and all-weather [28], [29]. In addition,
the formation of landslides is closely related to topographic
features [30], and SAR images are highly sensitive to changes
in surface morphology and structure, so SAR images can be a
better data source for landslide detection [31]. Nava et al. [32]
used CNN to conduct landslide detection in Iburi Prefecture,
Hokkaido, Japan, using SAR data. Meena et al. [33] conducted
a study on automated landslide detection in the Himalayan re-
gion using RapidEye optical data and ALOS-PALSAR, derived
topographic data (DEM, slope) and analyzed the potential of
U-Net and machine learning methods for automated landslide
detection in this region.

Although the landslide detection methods based on U-Net and
its variant structures and various types of remote sensing data
have achieved good results, there is still little attention paid to
the deep learning model for landslide detection using SAR data
fusion optical and terrain factors and other multisource remote
sensing data input. In addition, multisource remote sensing data
contains abundant information while also introducing redun-
dant data. When extracting landslides, U-Net directly fuses the
shallow and deep feature information extracted through the skip
connection structure. The semantic differences between the two
are significant, resulting in feature redundancy and a semantic
gap that can interfere with the landslide features learned by
the model [34]. Therefore, how to improve the deep learning
model (U-Net), effectively input and process multisource remote
sensing data, strengthen the learning of landslide features, effec-
tively distinguish landslides from similar ground objects, and
improve the accuracy of landslide detection in complex scenes
is a challenging problem faced by using multisource remote
sensing data for landslide detection.

This study constructs a multi-input channel U-Net landslide
detection method based on multisource remote sensing data
such as SAR, optics, and terrain factors. The goal of this article
is to

1) construct a multi-input channel U-Net landslide detection

framework that integrates SAR multisource remote sens-
ing data;

2) verify the proposed model in Bailong River basin experi-

mental scene;

3) compare and analyze the results and performance of land-

slide detection with traditional U-Net models and different
types of remote sensing data.
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II. DATA SOURCES AND METHODS

A. Data Sources

The data used in this study include landslide vector data, SAR
(Sentinel-1A) data, optical remote sensing image (Sentinel-2A)
data, and terrain (slope, aspect) data. The landslide vector data
are processed as labeled data, which provide a definition of the
true class of each pixel in the image for subsequent training and
testing of the deep learning model. SAR, optical remote sensing
image, and terrain data are used as the image data for landslide
detection, which provides the visual information required by
the model to understand the semantic content in the image and
classify the image at the pixel level.

1) Landslide Vector Data: Based on the historical landslide
data and combined with fieldwork verification, landslides in the
study area were vectorized and labeled by visual interpretation
on Google Earth to obtain landslide boundary information, and a
total of 732 landslide vectors were obtained. Then the vectorized
and labeled landslide data were imported into ArcMap 10.7,
converted into raster data, and exported as binary image, which
was used as label data for deep learning model training. The
labeled image contained two types of pixels, white for landslide
areas and black for nonlandslide areas.

2) SAR Remote Sensing Data: SAR data are adopted from
Sentinel-1A data obtained from the Alaska Satellite Facility
(ASF, https://asf.alaska.edu/) website. The Sentinel-1A satellite
is equipped with SAR sensors, which can observe the Earth’s
surface in an all-weather and all-day manner. Compared to
optical sensors, SAR has the advantage of providing high-quality
observation data even under night, cloud cover, and low visibility
conditions. When downloading SAR data, the data obtained
were in L1 single look complex mode on May 29, 2021, using
“Vertical Transmit and Horizontal Receive” (VH) and “Vertical
Transmit and Vertical Receive” (VV) polarization methods and
interferometric wide acquisition mode. SAR intensity images
are heavily affected by noise, so this study conducts “filtering”
processing on SAR data to minimize the impact of noise as much
as possible. SAR images are affected by geometric distortions,
and this study used terrain correction for compression and other
distortions, while shadows are difficult to correct. However,
in this study, we mainly used multisource data (optical, SAR,
and terrain) for landslide identification, with the aim of utiliz-
ing the rich and complementary information of these data to
comprehensively present diverse landslide features and improve
the performance of landslide detection. First, the Sentinel-1A
data and digital elevation model (DEM) data were imported
into SARscape software, the VH and VV polarization modes
were selected, and then the operation of multilooking, filtering,
geocoding, and radiometric calibration was carried out sequen-
tially (specific parameters are shown in Tables I-III). Finally,
the preprocessed data were imported into ArcMap10.7 software,
and the results were exported in PNG format after resampling to
obtain the Sentinel-1A image data of VH and VV polarization
modes in the experimental scene [see Fig. 1(a) and (b)].

3) Optical Remote Sensing Data: Sentinel-2A data from Eu-
ropean Space Agency (ESA, https://scihub.copernicus.eu/) were
used as optical remote sensing data. The cloud-free Sentinel-2A
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TABLE I

MULTILOOKING PARAMETERS

Main Parameters

Multilooking

Range Looks

Azimuth Looks

Grid Size for Suggested Looks

Time Domain
1

1

15

TABLE II

FILTERING PARAMETERS

Main Parameters

Filter Method Lee
Equivalent Number of Looks -1
Azimuth Window Size 5
Range Window Size 5
Iteration Number 2
Directionality Number 12

TABLE III

GEOCODING AND RADIOMETRIC CALIBRATION PARAMETERS

Main Parameters

X Grid Size 15

Y Grid Size 15

Radiometric Calibration True

Scattering Area Method Local Incidence Angle
Radiometric Normalization True

Local Incidence Angle False

Output type Linear
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data on April 29, 2021 were selected according to the setup.
Sentinel-2A is a high-resolution multispectral imaging satellite,
which includes visible light band, near-infrared band, and mid-
infrared band, and provides image data with three resolutions
of 10, 20, and 60 m. The Sentinel-2A data obtained from
ESA at the L1C level were not atmospherically corrected, and
to eliminate atmospheric effects, they were imported into the
Sen2Cor plug-in in the SNAP software developed by ESA for
atmospheric correction to obtain L2A data. Subsequently, the
SNAP software was used to resample the L2A-level dataat 10 m
resolution to obtain Sentinel-2A data in 12 bands. Finally, the
resampled images of each band were imported into ArcMap
10.7 software, and the experimental scene was embedded and
cropped to obtain the Sentinel-2A images of each band, which
were exported in PNG format, and some of the images of the
bands are shown in Fig. 1(c) and (d).

4) Terrain Data: Terrain data include slope and aspect,
which provide important terrain auxiliary data for subsequent
landslide detection. Slope and aspect were calculated based on
DEM data with ALOS 12.5 m DEM Resolution. ALOS 12.5
m DEM data were elevation data produced by using advanced
land observing satellite (ALOS) phased array L-band synthetic
aperture radar (PALSAR). After generating slope and aspect
data, imported them into ArcMap10.7 software for resampling,
and exported the results in PNG format. Through the above
steps, slope and aspect image data in the experimental scene
were obtained [see Fig. 1(e) and (f)].

104°16 . 10429 104°42°E 104°3E.

Slope (degree) Aspect
P High:82 B [ e [Tsw

0o 15 30 60 km
T T T N Y S |

Fig. 1. SAR, optical, and terrain image data. (a) Sentinel-1A (VH),
(b) Sentinel-1A (VV), (c) Sentinel-2A(Band3), (d) Sentinel-2A(Bandl11), (e)
Slope, (f) Aspect.

s Low:o

B. Methods

First, the acquired Sentinel-1A, Sentinel-2A, slope, and aspect
data were preprocessed and converted into image data suitable
for deep learning model training, and the corresponding datasets
were created. Then, the multi-input channel U-Net network
model was constructed by combining Python language with
TensorFlow as the base framework. The experimental scene was
selected to train the model using the dataset in the training area
and test the model using the testing area. Finally, the landslide de-
tection results of different models combined with different data
types were evaluated according to the visual effect and relevant
quantitative evaluation indexes, and the model performance was
analyzed. The specific flow is shown in Fig. 2, and the following
sections provide detailed information about various aspects of
the methodology of this study.
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1) Dataset Construction: Because the size of original remote
sensing image is too large to be directly input into the model for
training, images were cut into several subimages of the same
size. At the same time, the size selection of subimages had
a certain impact on the performance of the model. Too small
size led to failure to cover large-scale landslide areas, while
too large size led to GPU memory overflow [35]. Through the
experimental test, considering the landslide scale and hardware
constraints, the subimage size was set to 256 <256 pixels in this
study. In the process of image cutting, the overlapping cutting
strategy with a step size of 128 was adopted. The Sentinel-1A
images, Sentinel-2A images, slope images, aspect images, and
ground truth images were cut into several subimages with a
size of 256x256 according to the same cutting strategy, and
each subimage contains at least one landslide area, to ensure the
effective learning of landslide characteristics by the model.

Flowchart of a multi-input channel U-Net landslide detection method fusing SAR multisource remote sensing data.

To increase the number and diversity of samples, improve the
generalization ability and robustness of the model, and make the
deep learning model better adapt to different data distributions
and real scenes, this study used some data enhancement strate-
gies to expand the dataset [36]. Specific data enhancement meth-
ods included mirroring and rotating the cut image and ground
truth (90° counterclockwise rotation). Through these operations,
3153 samples were finally obtained. Then, the obtained samples
were randomly divided according to the ratio of the training set
to the verification set of 8:2. After the division, the training set
contained 2850 samples, and the verification set contained 573
samples. The training set and the verification set were mutually
exclusive (see Fig. 3). The training set is used to train the
parameters and weights of the model, and the validation set is
used to evaluate the performance of the model and select the
optimal model parameters [37]. Through the data enhancement
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Sentinel-1A Sentinel-1A Ground
(VH) V) Slope Band2 Band3 Band4 Band5 Band6 Band7 Band8 Band8A Band9 Band 11 Band 12 truth
Fig. 3. Partial dataset.

strategy and dataset partition, we can make full use of the sample
data and improve the performance and robustness of the model.

In this study, the experimental scene is divided into training
area and testing area, which are completely independent and
mutually exclusive. The data from the training area are used
for model training, and the data from the test area are used to
test the landslide detection effect of the model and evaluate the
performance of the model in landslide detection. It is worth
noting that all training samples are generated from the training
area, and no image data of the test area are used during model
training. This strict distinction can ensure that the model is
faced with unprecedented data during the test phase. By dividing
the training and testing areas, the generalization ability and
adaptability of the model in the real scene can be evaluated.
This method verifies the reliability of the model and can provide
an objective evaluation of the landslide detection effect.

2) U-Net Model: U-Net proposed by Ronneberger et al. [39]
in 2015 is a 2-D image semantic segmentation network based
on fully convolutional networks [38]. Due to its robustness,
it makes this network widely used in remote sensing image
segmentation as well. U-Net is a classic “U” network struc-
ture, which is mainly composed of encoder, decoder, and skip

connection. The encoder part includes convolution layer and
pooling layer. The convolution layer is used to extract the spatial
features of the image, and the pooling layer is used to reduce the
dimension of the features and increase the receptive field while
reducing the size of the feature map; the decoder maps deep
abstract features, including upsampling layer and convolution
layer. According to the upsampling, it restores a certain spatial
size, and uses convolution layer to gradually restore the spatial
details; skip connection is one of the key ideas of U-Net. By
copying the feature map of the corresponding depth in the
encoder and decoder and concatenating the dimension with the
upsampling results in the decoder in the channel dimension,
it realizes the fusion of shallow features and deep features,
and achieves the purpose of feature fusion in the encoding and
decoding process. In this study, U-Netis used as the base network
for the landslide detection model, and its structure is shown
in Fig. 4.

3) Multi-Input Channel U-Net Model: In this study, fusing
SAR multisource remote sensing data for landslide detection,
and how to input the data effectively into the model are cur-
rent problems to be considered. In addition, the nonlandslide
background occupies most of the area in the image, and the
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background information other than landslides will also af-
fect the accuracy of landslide detection. Therefore, this study
first constructs a multiple input channel to abstract the mul-
tisource remote sensing data into multiple input channels so
that they can be inputted better. In the field of computer vision,
the attention mechanism enables the model to selectively fo-
cus on the subject feature information and perform weighted
aggregation calculations in the spatial dimension of the feature
map, and its basic function is to highlight the subject-related
feature part of the feature map, so that the related information
will have higher weights in the subsequent calculations [40],
[41]. Therefore, for the nonlandslide background, during the

skip connection between the encoder and the decoder, this
study abandons the traditional U-Net direct splicing method and
introduces an attention mechanism module to process it in order
to adjust the spatial weights of the feature map, focusing on the
landslide features [42]. It contains the concatenate operation,
two 1 x 1 convolution operations, and the final Hadamard product
operation. The structure of the attention mechanism module is
shown in Fig. 5 and the structure of the multi-input channel
U-Net model is shown in Fig. 6.

The specific coding form of the multi-input channel U-Net
model is to first construct a multi-input channel, divide the
multisource data into two categories (SAR and optical remote
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sensing images slope and aspect images) to enter the network in
the form of multiple inputs, and then after a scale of convolution-
pooling feature extraction, the feature maps of the two types of
data will undergo the operation of concatenate, so as to make
them merge into a single feature map in the channel dimension
to facilitate the subsequent step-by-step encoding of landslide
features. The specific operation of the attention mechanism mod-
ule is to present the feature maps after each feature extraction
of the U-Net encoder, which are further feature processed by
convolution as the input (x) of the attention mechanism module.
At the same time, the feature maps of the same size in the U-Net
decoder of the corresponding depth (g) and the input feature
maps after feature processing are concatenated and merged in
the channel dimension to realize the feature fusion between
the encoder and the decoder in U-Net; and then for the fused
feature maps after two 1x1 convolution operations, Relu and
Sigmoid are selected sequentially as activation functions. The
Relu function is used to suppress overfitting in the attention
mechanism module, and then the Sigmoid function is operated
to form a single-channel spatial attention matrix that suppresses
redundant features, and then the weight matrix and the feature
map inputted in the first step undergo the Hadamard product
operation to form a feature map that incorporates the upsampling
results of the decoder and then cocalculates the spatial weights
of the attention map to assign higher weights to the landslide
area and realize the integration of the landslide area into the
decoder and the decoder. Higher weights can be assigned to
landslide areas to realize the focus on landslide feature areas.
Finally, the output map of the attention module is fused with
the upsampling results of the decoder at the corresponding
level, and then the detail reconstruction and decoding process
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of the feature map is continued. This mechanism can not only
complete the feature fusion of the corresponding depth of the
encoder and decoder in the semantic segmentation process of
the U-Net network, but also solve the shortcomings of the fixed
spatial weight and the semantic gap between the encoder and
decoder feature maps of the traditional U-Net network structure
in the corresponding depth feature fusion, so as to improve the
performance of the model for landslide feature learning, and
then improve the accuracy of landslide detection results.

4) Model Training: Table IV shows the hardware and op-
erating system configuration used for the experiment and
Table V lists the details of the software configuration. After
the pre-experimental test, considering the hardware limitations
and the computational efficiency of the model, the number of
iterations (epoch) in the experimental process is set to 128, the
batch size is set to 16, the learning rate is set to 0.0001, and
the optimizer is selected Adaptive moment estimation (Adam)
[43]. The Adam algorithm is an optimization of the gradient
descent Adagrad algorithm and the Rmsprop algorithm. At the
same time, the Adam algorithm is not affected by the gradi-
ent scale transformation when the parameters are updated. It
can automatically adjust the learning rate, which is easy to
implement and has high computational efficiency [44]. This
article studies the binary classification of image pixels, so binary
cross-entropy is selected as the loss function. It is defined as
follows:

N
Loss = — Z “log(p(yi)) + (1 —y) -log (1 —p(vys))
- (1)
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TABLE IV
EXPERIMENTAL PLATFORM

Project Operating system CPU Memory Hard disk GPU
Version Windows 10 Intel Core i5- DDR4 32G KINGSTON NVIDIA
Professional 13400F 3200MHz SNV2S500G GeForce RTX
3060
TABLE V
CORE SOFTWARE
Project CUDA CUDNN Python Keras Tensorflow
Version 12.0.133 8.1.1 3.10.10 2.10.0 2.10.1
X X formula is as follows:
Confusion Matrix
TP
Recall = ——. 3
L. Landslide Non-Landslide
Prediction F1 score (F1) is the harmonic mean of precision and recall,
considering both precision and recall indicators. For imbalanced
" . datasets, F1 can provide a more comprehensive performance
Landslide Wi U el e evaluation, a more balanced indicator, and better reflect the
(TP) (FP) .
comprehensive performance of the model. The larger the F1, the
better the performance of the model. The calculation formula is
. False Negative True Negative as follows:
Non-Landslide FN T
e . Fl— 2 X Precision x Recall @)
~ Precision + Recall

Fig. 7. Confusion matrix of landslide detection results.

where N is the number of categories (N = 2 in this article), y is
the binary label O or 1, and p(y) is the probability that the output
belongs to the y label.

During the training process, the area under curve is selected to
monitor the training process of the model. All the deep learning
models in this article are implemented in Python programming
language and are developed and implemented based on Tensor-
flow API and Keras library.

5) Evaluation Index: To quantitatively evaluate the model
landslide detection results, this study first calculated the confu-
sion matrix of the landslide detection results (see Fig. 7). Sub-
sequently, based on the confusion matrix, this study calculated
four quantitative evaluation indicators, namely precision, recall,
F1 score, and mean intersection over union (MIoU), to conduct
a more comprehensive quantitative evaluation of the model.

Precision is used to evaluate the proportion of samples pre-
dicted by the model as positive cases (landslides), and it is an
indicator to measure the accuracy of the model in predicting
positive cases. The calculation formula is as follows:

TP

recision TP + FP

@

Recall is used to evaluate the proportion of samples correctly
predicted as positive examples (landslides) by the model to
all actual positive examples. It is an indicator that measures
the model’s ability to cover positive examples. The calculation

MlIoU is a commonly used evaluation metric for semantic
segmentation models, used to measure the performance of the
model in semantic segmentation tasks. It provides an evaluation
of the overall segmentation accuracy by considering the overlap
of pixel levels in various categories. The calculation formula is
as follows:

TP 4+ _IN
MIoU — FPHIPTEN . FPHTNFFN (5)

III. RESULTS AND ANALYSIS

In this section, an experimental scene is selected to apply
and comprehensively evaluate the proposed method. First, the
proposed model is trained according to the datasets of different
data types in the training area, and then the trained model is used
to detect landslides in the test area, to compare and analyze the
effect of landslide detection of different types of data from the
perspective of visual and quantitative evaluation indexes, and
to prove the effectiveness of fusing SAR multisource remote
sensing data for landslide detection. In addition, to demonstrate
the effectiveness of the multi-input channel U-Net model fusing
SAR multisource remote sensing data for landslide detection,
as well as to comparatively analyze its landslide detection ef-
fect from different perspectives, we compute the TP, FP, and
FN diagrams of the landslide detection results of the different
network models fusing SAR multisource remote sensing data.
The comparative experiments and visualization analysis can
comprehensively evaluate the landslide detection performance
of the proposed method in the experimental scene.
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Fig. 8.

A. Experimental Scene

Bailong River Basin is located in the southeast of Gansu
Province, China. It is a tributary of the Jialing River, a tributary
of the Yangtze River. It is in the transition zone from the
second-level ladder to the third-level ladder in mainland China. It
belongs to the transition area from the Qinghai-Tibet Plateau to
the Qinba Mountains and the Loess Plateau (see Fig. 8). The
climate conditions in the basin are well, the annual average
temperature is 2 °C—15 °C, and the annual average precipitation
is about 700 mm. The topography and geomorphology in the
basin are complex, the alpine gorge landform and the loess
landform are distributed alternately, the neotectonic movement
is strong, the active faults are developed, and the weak rock
and soil bodies (phyllite, etc.) are widely distributed, forming a
fragile and sensitive geological environment. At the same time,
frequent seismic activities and deep valleys provide favorable
conditions for the occurrence of landslide disasters, making
landslide disasters frequent [45], [46]. Affected by complex

[ ] Landslide boundary

factors such as complex terrain, vegetation cover, and weather
conditions in the basin, it is difficult to detect landslides only
using optical remote sensing data. Therefore, it is necessary to
use other types of remote sensing data in combination to make
up for the limitations of optical remote sensing data.

B. Analysis of Landslide Detection Results Fusing SAR
Multisource Remote Sensing Data

To further validate the usability and effectiveness of the
proposed method fusing SAR multisource data for landslide
detection, a total of four sets of experiments were designed for
two-by-two comparisons in this study, which area as follows:

1) traditional U-Net combined with 12 bands of Sentinel-2A
images (U-Net + 12 channels);

2) traditional U-Net combined with SAR multisource remote
sensing data (two polarization modes of Sentinel-1A im-
ages, 12 bands of Sentinel-2A images, slope, and aspect
images, U-Net + 16 channels);
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TABLE VI
RESULTS OF EVALUATION INDEX

Models Recall (%) Precision (%) Fl-score (%) MloU (%)
U-Net + 12 channels 50.56 46.95 48.69 66.00
U-Net + 16 channels 53.77 56.88 55.28 69.03
Multi-input channel U-Net + 12 channels 57.45 47.49 52.00 67.48
Multi-input channel U-Net + 16 channels 69.74 62.96 66.18 74.67

3) multi-input channel U-Net combined with 12 bands of
Sentinel-2A images (multi-input channel U-Net + 12
channels);

4) multi-input channel U-Net combined with SAR multi-
source remote sensing data (two polarization modes of
Sentinel-1A images, 12 bands of Sentinel-2A images,
slope, and aspect images, U-Net 4 16 channels).

In this study, the model was trained based on the training
dataset produced in the same training area, and the model was
tested in the same testing area. To obtain an overview of the land-
slide detection results of the different methods, all the subimages
of the detection results were combined to form a complete
landslide image of the testing area based on their geographic co-
ordinates. Meanwhile, we calculated the four evaluation indexes,
recall, precision, F1, and MIoU (see Table VI), respectively,
based on the confusion matrix to further quantitatively evaluate
the landslide detection results (see Figs. 9 and 10).

Comparing Fig. 9(a), (b) and (c), (d), and Fig. 10(a), (b)
and (c), (d), it can be found that whether based on the tradi-
tional U-Net model or the multi-input-channel U-Net model,
the landslide detection results with the fusion of the SAR
multisource remote sensing data are better than the landslide
detection results using only the Sentinel-2A optical remote
sensing images in terms of overall visual effect, and the overall
results of the detection are more refined, with fewer false detec-
tions and missed detections. Meanwhile, the landslide detection
results with the fusion of SAR multisource remote sensing
data are also superior to the landslide detection results using
only Sentinel-2A optical remote sensing images for all four
quantitative evaluation indexes. Among them, high recall means
that the coverage rate of landslide detection is high, that is,
more landslides are detected, regardless of how many objects are
mistakenly classified as landslides (in Fig. 11, the multi-input
channel U-Net model combined with SAR multisource remote
sensing data obtained the maximum landslide area, indicating
that this method can comprehensively and completely detect
landslides). High precision indicates that the object detected
as a landslide has a high probability of being a landslide. F1
comprehensively considers the model’s detection coverage of
landslides and the accuracy of being detected as landslides
and provides an overall performance based on recall and pre-
cision. MIoU can be used to measure the similarity between
the model’s prediction results of landslides and nonlandslides
at the pixel level and the real labels. In this scene, the number

of background pixels representing nonlandslides is much higher
than the number of images representing landslides, and the dis-
tribution between sample categories is unbalanced. Therefore,
MIoU is higher than the three metrics of recall, precision, and
F1 in the four sets of experiments. On both traditional U-Net
and multi-input channel U-Net models, F1 values of landslide
detection results incorporating SAR multisource remote sensing
data are higher by about 6.6% and 14.2%, respectively, which
comprehensively proves that the incorporation of SAR multi-
source remote sensing data can deal with the phenomena of false
detections and missed detections better in the face of the complex
scene.

The comparison between different models shows that, due to
the complex geographic environment of Bailong River (complex
topography, vegetation cover, and cloud cover.), it is difficult to
provide enough landslide feature information for the model to
learn based on only optical remote sensing images. The landslide
detection method fusing SAR multisource remote sensing data
can effectively introduce and utilize the rich and comprehensive
landslide feature information between multisource data, which
facilitates the model to understand and learn the landslide fea-
tures from different perspectives, effectively differentiating the
landslide from its surrounding similar and complex features, and
then improve the landslide detection accuracy. The visualization
and quantitative evaluation results demonstrate the usability and
effectiveness of fusing SAR multisource remote sensing data for
landslide detection.

C. Accuracy Analysis of the Proposed Model

In this study, multi-input channel U-Net is constructed as a
deep learning model for landslide detection and combined with
multisource remote sensing data such as SAR (Sentinel-1A),
optical (Sentinel-2A), and terrain (slope and aspect) for model
training and landslide detection. To validate the effectiveness of
the landslide detection model in this study and to demonstrate
the superiority of its performance, we compare the multi-input
channel U-Net landslide detection results with the traditional
U-Net landslide detection results for the test area. The results
show that both models can detect most of the landslides in the
test area. Some areas are randomly selected and enlarged (see
Fig. 12).

Comparing the landslide detection results of ground truth with
that of multi-input channel U-Net and traditional U-Net, it can
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be found that the traditional U-Net model can detect relatively
complete landslide boundary information, but there are many
false detections [see yellow circles in Fig. 12(c)] and missed
detections [see red circles in Fig. 12(c)]. The false detections
mostly occur near known landslide areas, and the scale of the
objects that were mistakenly detected as landslides is relatively
small, some landslides that are close to each other have miscon-
nected at the boundary. At the same time, the phenomenon of
missed detection is more significant on small-scale landslides,
and the detection results are not precise enough, indicating
that traditional U-Net models have certain shortcomings in

landslide feature extraction and learning. Compared with tra-
ditional U-Net models, the overall detection performance of
the multi-input channel U-Net model is better [see Fig. 12(d)],
which is closer to the ground truth. The landslide detection
results are more complete, and there are fewer false detections
and missed detections. This effectively improves the recognition
ability of landslide and nonlandslide feature differences, reflect-
ing the comprehensive ability of the multi-input channel U-Net
model in the landslide detection task of this study. Multi-input
channel U-Net model can better learn landslide features and
achieve more accurate landslide detection.
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To further analyze the accuracy of the landslide detection
results of the proposed model, we calculate the TP, FP, and FN
of the landslide detection results of the traditional U-Net and
multi-input channel U-Net models based on ground truth and
landslide detection results, and visualize them (see Fig. 13).
The accuracy of the detection results is compared from the
overall large-scale area. As shown in Fig. 13, compared to
traditional U-Net [see Fig. 13(a) and (b)], multi-input channel
U-Net has more TP pixels [see Fig. 13(c) and (d) blue area, the
model predicted landslide, actual landslide], fewer FP pixels [see
Fig. 13(c) and (d) red area, the model predicted landslide, actual
landslide], and fewer FN pixels [see Fig. 13(c) and (d) yellow
area, the model predicted non-landslide, actual landslide], this
phenomenon indicates that the multi-input channel U-Net model
can better balance precision and recall, indicating that the multi-
input channel U-Net model has achieved more accurate detection

of landslides, with fewer false detections and missed detections.
This proves the effectiveness of the multi-input channel U-Net
model in the research method of this article. In addition, we also
randomly select some subregions to plot TP, FP, and FN results
and enlarge them (see Fig. 14) for visual comparison of accuracy
at different scales. The results also demonstrate the superiority
of the multi-input channel U-Net model for landslide detection
(compared to traditional U-Net, the multi-input channel U-Net
landslide detection results have more TP, less FP, and FN).
Overall, this study constructs a multi-input channel U-Net
model that can effectively introduce SAR multisource remote
sensing data by adding multiple input channels. The attention
mechanism is introduced between the U-Net jump connections
to adjust the spatial weights of the feature maps, so that the model
can better deal with the complex background information and
focus on and learn the landslide features. While completing the
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multisource remote sensing data in the test area. (a) Optical (Sentinel-2A) image.
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U-Net network feature fusion, the deficiency of U-Net in corre-
sponding to the depth feature fusion with fixed spatial weights
and the semantic gap between the encoder and decoder feature
maps is solved, and the landslide and nonlandslide features can
be better distinguished. The multi-input channel U-Net model
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combined with SAR, optical, and terrain factor data achieves
better landslide detection.

IV. DISCUSSION
A. Model Performance Analysis

Gradient-weighted class activation mapping (Grad-CAM) is
a deep network visualization method based on gradient local-
ization, which helps explain the decision basis of the model and
identify important features by generating heat maps to visualize
the regions of interest of the model. Grad-CAM can help users
better understand and validate the behavior and performance of
the models [47], [48]. Before training the multi-input channel
U-Net model, a total of 16 inputs were constructed by abstracting
all types of data into 16 bands of images, and all types of data
were jointly input into the model for training. To enhance the
interpretability of the proposed method, the heat maps of each
input band image were generated separately using the Grad-
CAM algorithm. Then superimposed it on the corresponding
band image to display, visualized the region of interest of the
multi-input channel U-Net model on each band image, and
explained the decision basis of the model on each band image.
Fig. 15 shows the corresponding results.

In Fig. 15, the red region is the part that the model pays
more attention to. The darker color indicates that the model pays
more attention to this region, which is considered to contribute
more to the landslide pixel classification results. This indicates
that the features in this region play an important role in the land-
slide detection task. On the contrary, the blue region is the part
that the model pays less attention to. The lighter color indicates
that the model pays less attention to this region and considers that
the region contributes less to the landslide pixel classification
results. This indicates that the features in this region play a
minor role in the landslide detection task [49]. Based on the
observation of the heat map, it can be found that each band of
the image makes a certain contribution in landslide detection.

This study fuses SAR multisource remote sensing data for
landslide detection. Multisource remote sensing data contain dif-
ferent types of rich and diverse information due to the differences
in data sources, physical characteristics, resolution, and sensor
parameters. In particular, SAR can penetrate vegetation and
clouds to obtain subsurface information, which is valuable for
landslide identification because some landslides will be covered
under vegetation and clouds [50], [51], [52]. Meanwhile, SAR
has a strong ability to perceive changes in the surface and surface
structure, and landslides usually lead to changes in surface
morphology and destruction of surface structure [53]. These
phenomena can be captured in SAR images, thus contributing
to the identification and monitoring of landslides. This study
used SAR (Sentinel-1A) data with two polarization methods,
VH and VV. VH polarization emits electromagnetic waves in
the vertical direction and receives electromagnetic waves in
the horizontal direction. VV polarization is the transmission
and reception of electromagnetic waves in a vertical direction
[54]. The echo intensity of the same object varies under dif-
ferent polarization modes, thus increasing the information of
landslide targets. The common use of SAR data with different
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polarization methods can provide rich polarization information
from multiple perspectives. This polarization information can
be used to extract more details of surface features, enhance
landslide recognition ability, reduce false and missed detection
rates, and obtain better visual effects and evaluation indicators
[see Figs. 9 and 10]. From Fig. 15, the model’s attention to
landslide features is relatively rough in some bands of optical
images, while it is more detailed in SAR images [see Fig. 15(a),
(c), and (h)]. In Fig. 15(h), the model generates more erroneous
attention (Band4, Band8) in some bands of optical images,
while the attention on SAR images is more accurate and clearer.
Slope and aspect data provide terrain information, which can
supplement missing or difficult-to-observe terrain features in
optical images. Landslides are usually related to the steepness
and aspect of the terrain. Increasing slope and aspect data can
provide a more comprehensive and clear understanding of terrain
changes, thereby better helping deep learning models capture
the terrain features of landslide areas [see Fig. 15(e), (g), and
(h)]. Therefore, fusing SAR multisource remote sensing data
can provide rich and complementary information to help the
model perceive landslides from different perspectives, analyze
the surface situation more comprehensively, and capture more
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Visualization of TP, FP, and FN for landslide detection results. (a) U-Net results. (b) Specific area in a. (c) Multi-input channel U-Net results. (d) Specific

comprehensive and diversified landslide features, thus improv-
ing the performance of landslide detection.

In this study, we construct a multi-input channel U-Net model
for landslide detection by introducing the multi-input channel
and attention mechanism module, which realizes the effective
input and processing for multissource data. The model has strong
information processing and feature learning ability, and can learn
the information related to landslide features in different types of
data by means of adaptive weighting. The introduced attention
mechanism module (see Fig. 5) can solve the problem of spatial
weight fixation of traditional U-Net when corresponding to
deep feature fusion. It can effectively capture the important
landslide-related features in the input multisource data, auto-
matically learn and focus on the key areas (darker color area,
red area in Fig. 15), and enhance the learning ability of landslide
features. Ultimately, it improves the ability to accurately identify
and localize landslide areas [42], [55]. By fusing information
from different data sources, the multi-input channel U-Net can
obtain landslide feature information from multiple viewpoints
and data sources. This information is then processed effectively
to improve the accuracy and robustness of landslide detection,
thus enhancing the performance of landslide detection.
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Fig. 15. Heat maps of landslide detection by multi-input channel U-Net combined with SAR multisource remote sensing data.
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In addition, from the above Section III-B, the landslide de-
tection accuracy can be improved to a certain extent by opti-
mizing either the network structure or the dataset. It is worth
noting that the landslide detection results of traditional U-Net
combined with SAR multisource remote sensing data are better
than those of multi-input channel U-Net combined with optical
images in all four evaluation indexes. The multi-input channel
U-Net realizes the effective input of multisource remote sensing
data and focuses on landslide features by introducing multiple
input channels and adding the attention mechanism. The SAR
multisource remote sensing data can provide rich information
to help the model better understand and learn landslide features.
Therefore, it can be inferred that the effect of fusing multisource
data is better than the effect of changing the network structure
of the model in this research experiment. This suggests that the
proposed method of enriching data information by introducing
multisource data to improve model performance is feasible in
landslide detection.

B. Prospect

This study utilizes SAR multisource remote sensing data com-
bined with the multi-input channel U-Net model for landslide
detection and applies it to the Bailong River Basin. The multi-
input channel U-Net model can effectively input the SAR mul-
tisource remote sensing data and better learn the rich landslide
feature information provided by these data, and the detection
results proved its validity, but there still existed some errors and
omissions (see Figs. 9 and 10). This is because landslides are
geological phenomena with different spatial scales, and their
scale varies [56], [57]. The spatial resolution of the data used in
this study is limited, so some smaller landslides may be over-
looked, resulting in missed detection. Meanwhile, deep learning
methods are data-driven, which requires many training data [58],
[59], [60], and the number of landslide samples used for training
in this study is relatively small. Therefore, we will consider
using higher spatial resolution remote sensing data for landslide
detection in future work to improve the accuracy of landslide
detection. In addition, in future application scenarios, facing the
problem of insufficient data samples, how to effectively expand
data samples or accurately detect landslides based on current
samples is also a problem that needs to be considered in future
work.

V. CONCLUSION

A multi-input channel U-Net landslide detection method
fusing SAR multisource remote sensing data is proposed and
utilized for landslide detection. SAR multisource remote sensing
data can provide rich information. The multi-input channel
U-Net model can input the data effectively and process the most
valuable and noteworthy parts of the multisource data. Then
the landslide-related parts are associated with higher weights
to improve the model’s ability to perceive and recognize the
key features of landslides. This improves the model’s ability
to learn landslide features. Mutually independent training and
testing regions are selected to apply the multi-input channel
U-Net method fusing SAR multisource remote sensing data
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for landslide detection experiments, and compared with the
traditional U-Net with SAR multisource remote sensing data
and the traditional U-Net without regard to SAR multisource
remote sensing data for landslide detection methods. The pro-
posed multi-input channel U-Net landslide detection method
fusing SAR multisource remote sensing data can comprehen-
sively utilize the rich information provided by different types
of multisource remote sensing data, with a focus on learning
landslide features. As a result, better performance was achieved,
with higher landslide detection accuracy and lower false and
missed detection rates. The quantitative results show that each
evaluation index of the multi-input channel landslide detection
method fusing SAR multisource remote sensing data proposed
in this study is optimal, and the highest F1 value (66.18%)
is obtained, which verifies the effectiveness of the proposed
method. The proposed method can provide technical support
for landslide disaster assessment.
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