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Abstract—Landslide inventory mapping (LIM) is an important
prerequisite for disaster emergency rescue and landslide sensitivity
analysis. It has been proven that convolutional neural networks
have better performance for LIM than traditional machine learn-
ing methods such as support vector machines, and random forests.
However, the accuracy of existing methods based only on optical
images is low due to the complex landslide background. Moreover,
the multiscale features of landslides are not considered in convo-
lutional neural network methods. Therefore, this study proposes
multifeatured independent component analysis UNet3+ for land-
slide inventory mapping based on optical images, which combines
co-feature, independent component analysis (ICA), and UNet3+.
First, normalized difference vegetation index (NDVI) and gray level
co-occurrence matrix (GLCM) are extracted from remote sensing
images acquired pre- and postearthquake event and then processed
by change vector analysis. Then, ICA is implemented for NDVI,
GLCM, and three elevation factors. Finally, the three principal
components and the postevent images are fed into UNet3+ to
generate LIM by multiscale features and deep supervision. Finally,
we validate the proposed method by using the coseismic landslide
of Jiuzhaigou earthquake as an experiment. The results show that
the performance of recall, F1-score and mIoU are 0.13, 0.22, and
0.11 higher than those of the postevent-only images, respectively,
indicating that the proposed method can effectively solve the prob-
lems of landslide identification in terms of multiscale features and
complex background.

Index Terms—Deep learning, independent component analysis,
landslide inventory mapping, remote sensing, UNet3+.

I. INTRODUCTION

EARTHQUAKES, typhoons, and heavy rainfall events usu-
ally cause numerous geological hazards, such as land-

slides and debris flows [1], [2], [3]. Landslides are one of
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these catastrophic chain hazards, often causing road blockages,
lake damming, infrastructure damage, and serious casualties.
Landslides are occurring with increasing frequency as extreme
weather events increase around the world [4], [5], [6]. Compre-
hensive and reliable landslide inventory mapping (LIM) trig-
gered by these extreme events are a prerequisite for emergency
rescue and disaster mitigation [7].

Big remote sensing data including optical satellite images [8],
airborne light detection and ranging (LiDAR) [9], and synthetic
aperture radar (SAR) images [10] makes LIM more applicable
and reliable than ever before [11]. Landslides triggered by events
are highly destructive to the surface coverage, especially in
vegetated areas [12]. We can identify landslide scars from remote
sensing images by morphology and texture rather than field in-
vestigations, which is much effective, especially for large-scale
landslide investigations [7].

On the other hand, deep learning methods, such as con-
volutional neural networks (CNNs) have been verified to be
more applicable and effective in LIM compared to traditional
pixel-based methods [13], [14], [15], and the object-oriented
approaches [16], [17], [18], [19]. And the visual interpretation
of remote sensing images of the landslide as the most accurate
method turns into the essential reference label in deep learning
LIM [20], [21].

Deep learning architectures based on CNNs have changed
the means to extracting information from images. In recent
years, this method has also been used for LIM. Ghorbanzadeh
et al. [22] first compared the application of different machine
learning methods such as support vector machines, and random
forests (RF), and CNN in landslide detection and proved that
CNN was superior to traditional machine learning methods.
Because of the lack of landslide samples, Meena et al. [23]
proposed to use of K-fold cross-validation to improve the
sample utilization rate and improve the accuracy of landslide
inventory mapping. Ji et al. [24] established an open database
in Bijie, China. After validation, the CNN model based on
the digital elevation model (DEM) attention mechanism has
the best accuracy. Yi and Zhang [25] designed a data aug-
mentation strategy of automatic generation of training sam-
ples to alleviate the problem of insufficient training samples.
And a cascading end-to-end deep learning network LandsNet
was constructed to learn various characteristics of landslides.
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Shi et al. [26] used change detection and CNN to catalog land-
slides and further extracted landslide elements. Deep learning
is just at the beginning stage to be used for landslide inventory
mapping.

Currently, more semantic segmentation algorithms are used
to map landslide inventory. Qi et al [27] and Liu et al [28] used
ResU-Net and modified U-Net for landslide extraction, respec-
tively. Zhang et al. [8] used the deep learning module in ENVI
software for landslide cataloging and discussed the accuracy
of different parameters. However, the information provided by
optical images is limited, and features related to landslides can
improve the accuracy of landslide mapping. Nava et al. [29]
modified an Attention U-Net and used it to evaluate two and
three Sentinel-1 satellite images to map landslides even under
thick cloud coverage conditions.

In addition, researchers have explored the potential of nor-
malized difference vegetation index (NDVI), DEM and other
factors combined with CNN in various landslide detection tasks
[30], [31]. Gao et al. [32] used fully convolutional densenet
(FC-DenseNet) for LIM and explored the importance of different
features for LIM. By enhancing the samples with background,
Soares et al. [33] used RapidEye satellite images, NDVI and
DEM to create the dataset. They found that the NDVI layer was
beneficial to the balance of the model, and the morphological
post-processing operation improved effectively the segmenta-
tion accuracy. Yang et al. [34] proposed a model to reduce the
false extraction of background objects. Considering the complex
background and the diversity of remote sensing images, Chen
et al. [35] recently proposed squeeze-and-excitation network
for feature fusion to improve the shortcomings of traditional
UNet. They achieved good results using Sentinel-2 images for
landslide extraction. The environment of a disaster area plays a
leading role in the landslide formation process, so environment
induced attributes including DEM, slope, and distance to the
river are used as supplements to provide additional informa-
tion for landslide extraction model and further improve the
accuracy of landslide extraction. Combining the topographic
factor and spectral information to train the data set helps to
compare the landslide with other similar features, as demon-
strated by Ghorbanzadeh et al [36]. Wang et al. [37] proved
that principal component analysis multifeature and ensemble
strategy can improve the accuracy of coseismic landslide ex-
traction. The previous studies showed that the multi-feature
could assist CNN to better perform in the landslide inventory
mapping.

The optimization of network structure and training data
can improve the extraction accuracy of landslide to a certain
extent. The inclusion of assisted information can also bring
noise, so it is critical to suppress the nonrelated information and
increase the landslides related information. In other words, it is
worth exploring to enhance the heterogeneity between classes
while improving intra-class homogeneity. Simultaneously, it
is difficult to achieve accurate landslide mapping on a large
area only relying on shallow or deep features. In this study, the
multifeatured independent component analysis and UNet3+
(MICUNet3+) method is proposed for landslide inventory
mapping, where UNet3+ was used to perform LIM through

Fig. 1. Background of the study area. Yellow represents landslides. The yellow
and blue polygons represent the training and testing areas in this study. The
red dashed line represents the inferred seismogenic fault. The solid red lines
represent active faults. TZF, MJF, and HYF represent the Tazang fault, Minjiang
fault, and Huya fault, respectively.

independent component analysis (ICA) combined with optical
image derived features, topography, and other factors. The main
contributions of the proposed MICUNet3+ are as follows.

1) A total of 13 cofactors, which are topographic features
(elevation, slope, and gradient), NDVI, and nine gray level
co-occurrence matrix (GLCM) features derived from the
optical images, were used to assist UNet3+ in LIM. It
reduces the influence of complex backgrounds of optical
images.

2) ICA was used to analyze 13 cofactors, which can improve
the intraclass homogeneity and enhance the interclass
heterogeneity, to reduce the impact of noise caused by
multifeatures.

3) A deep supervised UNet3+ with multiscale feature skip
connections was used to adjust to the multiscale charac-
teristics of landslides. Meanwhile, the deep supervision
processing also helps to reduce the impact of a complicated
background.

The objective of this study is to perform rapid and accurate
postevent LIM using optical image. Derived from optical images
and topographic features were used to assist postevent image to
improve the accuracy of LIM. To suppress the adverse effect of
noise on the feature factors, ICA was used to enhance the dis-
crimination between landslides and nonlandslides. UNet3+was
used to consider the characteristics of multiscale landslides and
complex backgrounds. For validation, landslides identification
after the 2017 Jiuzhaigou earthquake in China was tested with
MICUNet3+ and satellite images. In this study, the effectiveness
of the proposed method was verified by comparing it with
different feature processing methods.

II. STUDY AREA

The study area is located in Jiuzhaigou County, Sichuan
Province, China (see Fig. 1). The elevation is less than 2000 m
a.s.l. in the north and more than 4800 m a.s.l. in the south,
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Fig. 2. Flow chart of MICUNet3+ used in this study.

including high alpines and valleys. Numerous faults, such as the
NS-trending reverse thrusting Minjiang fault (MJF), the NWW-
directed strike-slip Tazang fault (TZF), and some secondary
faults are developed in this region. Rainfall in Jiuzhaigou is less
than 600 mm annually low but concentrated, and July to August
are typical rainy seasons.

On August 8, 2017, an MW6.5 (Ms7.0) earthquake occurred
in Jiuzhaigou County with a focal depth of 20 km. The epicenter
was centered near the MJF fault, TZF fault, and Huya fault
(HYF) (see Fig. 1), according to the China Earthquake Admin-
istration. The inferred seismogenic fault is NW trending, based
on a field investigation of surface deformation by Li et al. [38].
Xu et al. [2] identified coseismic landslides (see black polygons
in Fig. 1) by visual interpretation based on GeoEye-1 satellite
images, of which the maximum area was 236338.3 m2, the
minimum area was 7.8 m2, and the average area was 1993.4 m2.
This study refers to the research results of Xu et al. [2], and the
landslide interpretation is accurate, which ensures the reliability
of the results of this study.

The training area is divided into the train set and validation
set to feed into the UNet3+ network, where we crop through
a sliding window and randomly assign it as the train set and
validation set with a ratio of 8:2. It is to enrich the background
of the samples to train the model and to outperform the prediction
in the test area.

III. METHODOLOGY

The flow of the MICUNet3+ method for LIM is shown in
Fig. 2. First, NDVI and GLCM including Mean, Variance, Stan-
dard, Homogeneity, Contrast, Dissimilarity, Entropy, Angular
Second Moment, and Correlation, were derived from pre- and
postevent optical images. And change vector analysis of NDVI
and GLCM pre- and postevent was performed to obtain the
difference of NDVI (NDVI-diff) and the difference in GLCM
(GLCM-diff). Then ICA and random forest importance (RFI)

TABLE I
OVERVIEW OF RAW DATA AND DERIVED FEATURES

were performed separately on 13 cofeatures, including topo-
graphic features (elevation, slope, and aspect), NDVI-diff, and
nine GLCM-diff. The postevent images and labels were fed
into the Unet3+ network separately along with the first three
principal components of ICA and the three features selected by
RFI, respectively. Finally, the trained model was used to generate
the LIM of the test area.

A. Multifeature Change Vector Analysis

In this study, optical images and DEM are selected as raw data.
Cloud-free images of Landsat-8 (pre-event) acquired on June 1,
2014 and Sentinel-2 (postevent) acquired on September 7, 2017
were collected with similar seasonal characteristics (see Fig. 3
).

The red, green, blue, and near-infrared (NIR) bands of
Landsat-8 and Sentinel-2 images are used to derive NDVI and
texture features (see Table I). The training and the test areas are
determined according to the range of the extreme earthquake
area (see Fig. 3) generated by Xu et al. [2]. For the purpose
of detecting changes and ensuring spatial consistency of the
analysis, we unified Landsat-8, Sentinel-2, and DEM into the
WGS 1984 coordinate system and sampled them uniformly at a
resolution of 15 m.

GLCM provides the gray direction, interval, and amplitude
of the change of image, rather than different texture properties.
Therefore, we use statistical attributes to describe texture fea-
tures quantitatively. Nine commonly used statistical attributes
of texture features are adopted for results validation, including
mean, variance, standard, homogeneity, contrast, dissimilarity,
entropy, angular second moment, and correlation.

B. Features Extraction Based on ICA and RFI

ICA converts a set of mixed signals into independent com-
ponents [39]. The components are orthogonal and independent
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Fig. 3. Pre- and postevent remote sensing images over Jiuzhaigou earthquake. (a) Pre-event remote sensing image acquired on June 1, 2014. (b) Postevent remote
sensing image acquired on September 7, 2017. The red dotted line indicates the extreme earthquake area.

Fig. 4. Structure of UNet3+ for LIM, where Enc_1 to Enc_5 represent
encoder, and Dec_1 to Dec_4 represent decoder.

of each other. The data are converted into independent parts
(decorrelation) that can be used to detect and separate hidden
noises, reduce dimensionality, and extract the main information
in the image.

We represent the vector x as a linear combination of basis
function A. As shown in (1), N represents the total number of
image pixels,Ai is the column vector of the basis function matrix

A of i, and yi is an element of the coefficient vector y

x =

N−1∑
i=o

Aiyi . (1)

The main purpose of ICA is to find a matrix of coefficients
A, which makes the component coefficients y obtained after x
transformation as independent as possible. The basic idea is to
maximize the joint entropy of stochastic gradient ascent. The
change of A during the iteration is as (2), where T denotes the
transpose of the matrix

ΔA =
(
I +

(
1− 2/

(
1 + e−y

))
yT

)
A. (2)

Before ICA training, x tends to its mean value and is mul-
tiplied by a white noise matrix. As shown in (3), where A0 =

[(x−mx)(x−mx)
T ]

−1/2

x = A0 (x−mx) . (3)

Therefore, the whole transformation process can be consid-
ered as the product of the whitening matrix A0 and the ICA
training matrix, i.e., WI = WW0. Finally, the ICA matrix is
orthogonalized to obtain

A = AI

(
AT

I AI

)−1/2
. (4)

When the ICA transformation matrix is used as the basis
for image projection, the basis function must be orthogonal.
The rows of A are definitely orthogonal to each other. And the
number of basis functions is the same as the number of elements
in each basis function.
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Random forest importance (RFI) is to calculate the influ-
ence of unselected data on the current decision tree in each
decision tree of the random forest [40], namely out-of-pocket
error (errOOB1). The errOOB2 is calculated for adding noise
interference to out-of-bag (OOB) data. The larger the difference,
the more important the feature is to the model [41].

OOB data refers to the data that is not selected in the training
set. Each time about 1/3 of the samples is not selected, which is
used to test the classification or regression effect of the current
decision tree. In this study, we chose 1000 trees to calculate their
importance.

C. UNet3+ for LIM

The framework of UNet3+ is shown in Fig. 4. As for LIM,
full-scale skip connections and deep supervisions, derived from
Unet3+ [42], are chosen to consider the multiscale character-
istics and complex background of landslides. Encoder feature
maps are concatenated with the same size, which is obtained by
pool and bilinear up-sampling. With each decoder activated, the
loss function reversely adjusts the weights of the network. In
this study, the loss function coefficient of Dec_1 is 1, and the
rest is 0.4.

Full-scale skip connections are used as an example for Dec_3,
where Enc_1 and Enc_2 are downsampled by 4 times and 2
times, respectively, to unify the size of the feature maps. This was
followed by 3×3 convolution with 64 channels. The feature map
of the same scale encoder Enc_3 is directly operated with 3×3
convolution and 64 channels. Enc_4 and Enc_5 are upsampled
2 times and 4 times, respectively, also to ensure the uniformity
of the feature map size, and the upsampling is done by bilinear
interpolation.

The final feature map is generated by fusing the features of
each decoding layer into a 3×3 convolutional layer, followed by
a bilinear upsampling in order to return the feature map resolu-
tion to the input image. The segmentation results obtained after
upsampling are multiplied with the results of the classification
module. The result after multiplication is processed by sigmoid
and the result obtained is the deeply supervised output.

Convolutional neural networks extract features of targets by
layer-by-layer abstraction. The shallow network feature map
has high resolution, rich spatial information, and weak semantic
representation ability, which is suitable for dealing with small
targets and highlighting landslide boundaries. The deep-layer
network feature map has low resolution, weak geometric infor-
mation representation, and strong semantic information repre-
sentation, which is fit for dealing with large targets and locating
the location of landslides. The image processing technique
combining multiscale information can obtain deep semantic
information and shallow geometric information, which can be
applied to complex landslide mapping.

Due to the imbalance between landslide and nonlandslide (see
Fig. 5), we choose focal loss (FL) [43] as the loss function of
the network, based on the cross entropy (CE) as

CE (q, y) =

{− log (q) y = 1
− log (1− q) y = 0

(5)

Fig. 5. Landslide and nonlandslide pixel statistics in the training and test areas.

where y is the predicted value of pixel, 0 represents nonland-
slide, and 1 represents landslide. q ∈ [0, 1] is the probability of
landslide predicted by this pixel, which is inversely proportional
to the loss value shown as

FL (qt) = −α(1− qt)γ log (qt) . (6)

Let CE (q, y) = CE(qy), the weight contribution of land-
slide and nonlandslide samples to total loss is controlled by
setting the value of α. A relatively small value of α is taken to
reduce the weight of nonlandslide samples. (1− qt)γ is called
the focusing parameter, and γ ≥ 0. By adjusting γ, the model
focuses more on the difficult sample training. After experiments,
α and γ are set as 0.3 and 1.5 in this study.

D. Quantitative Evaluation Index

We take recall, F1-score, and mIoU as evaluation model
accuracy, which is derived from the confusion matrix. The four
parameters of the confusion matrix are true positive (TP), true
negative (TN), false positive (FP), and false negative (FN). In
this study, TP refers to landslide output as landslide, TN refers
to nonlandslide output as non-landslide, FP refers to nonland-
slide output as landslide, and FN refers to landslide output as
nonlandslide.

F1-score and recall are used to describe the classification
quality comprehensively. mIoU represents the average value of
the sum of each class, which is usually used to evaluate the
model’s ability in semantic segmentation

Recall =
TP

TP + FN
(7)

F1− score =
2× TP

2× TP + FP + FN
(8)

mIoU =
1

q + 1

q∑
i = 0

TP
TP + FP + FN

(9)

importance =
1

ntree

ntree∑
i = 1

(OOB2−OOB1) . (10)

IV. RESULTS

A. Multifeatured Change Vector Analysis

As shown in Fig. 6(a), (b), and (c), we obtained the elevation,
slope, and aspect from the DEM. In addition, we obtained NDVI
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Fig. 6. Multifeature processing results. (a)–(c) Represent elevation, slope, and aspect obtained from DEM. (d)–(l) Represent the mean, standard, variance,
homogeneity, contrast, dissimilarity, entropy, second moment, and correlation for GLCM processed by CVA, respectively. (m) Represents NDVI was processed
with CVA.

and GLCM from pre- and postevent images, respectively. And
the change values NDVI-diff [see Fig. 6(m)] and GLCM-diff
[see Fig. 6(d)–(l)] were obtained by change vector analysis
(CVA), where NDVI-diff indicates vegetation, a small value
of change means a decrease in vegetation and a large value
means an increase in vegetation. As can be seen in Fig. 6(m),
most of the vegetation reduction areas overlap with the land-
slides, which is consistent with our interpretation on the optical
images.

On the other hand, GLCM is used to describe the uniformity
of the image grayscale distribution and the coarseness of the
texture. From the variation values of different parameters of
GLCM, it can be found that mean [see Fig. 6(d)], standard [see
Fig. 6(e)], dissimilarity [see Fig. 6(i)], entropy [see Fig. 6(j)],
and correlation [see Fig. 6(h)] are positively correlated with the
degree of variation. Homogeneity [see Fig. 6(k)] is negatively
correlated with the degree of variation. The rest of the values
showed weak performance. Because the surface material was
carried away by the debris to form a more regular form compared
with the background features, the scars after the landslide show
a simple and smooth image texture.

B. Feature Extraction Based on ICA and RFI

We extracted all features from landslides and nonlandslides,
where nonlandslides were randomly generated with the equal
number of landslides. Thirteen cofeatures (see Table I) were
extracted for landslide points and nonlandslide points for feature
processing and interpretation analysis.

This study used the RF package implemented by Scikit-learn
in the Python programming environment for feature selection.
The RFI ranking of the 13 features was shown in Fig. 7, where
the three most important features were selected, i.e., the dissim-
ilarity of GLCM (0.42), Elevation (0.21), and NDVI (0.053).
Fig. 8(a), (b), and (c) shows dissimilarity, elevation, and NDVI,
respectively. Fig. 8(d) is their false color map. Red, green, and
blue channels are normalized NDVI, elevation, and dissimilarity,
respectively. Landslides cause the loss of surface vegetation,
resulting in strong changes in NDVI over a range of elevation. It
can be seen that the selection characteristics of RFI are consistent
with the occurrence of landslides. Visually, the dissimilarity also
fits well with the label of landslide, and there are significant
differences between landslides and nonlandslides.



CHEN et al.: LANDSLIDE INVENTORY MAPPING BASED ON INDEPENDENT COMPONENT ANALYSIS AND UNet3+ 2219

Fig. 7. Random forest importance of 13 features.

Fig. 8. Dissimilarity of GLCM-diff, elevation, NDVI-diff and false color
image, respectively. (a), (b), and (c) are dissimilarity of GLCM, elevation, and
NDVI, respectively. (d) Is false color image with normalized dissimilarity of
GLCM, elevation, and NDVI.

ICA selects independent component 1 (IC1), independent
component 2 (IC2), and independent component 3 (IC3) as
co-features. Fig. 9 reveals that IC1 is very sensitive to change
information, including seasonal noise, such as snow changes.
IC2 fits well with landslides, and seasonal changes are isolated
with low noise. IC3 has the most information, even some related
to terrain. As can be seen in Fig. 9(d), the most prominent colors
in the variation are very similar to landslides.

Fig. 9. Three independent components and false color map. (a) (b), and (c)
are IC1, IC2, and IC3, respectively. (d) Is false color map of normalized IC1,
IC2, and IC3.

TABLE II
QUANTITATIVE EVALUATION OF THREE METHODS

C. Quantitative Evaluation

The proposed MICUNet3+ has advantages in postevent im-
age landslide recognition. The comparison of the indicators in
Table II shows that all the indicators of the postevent image
combination RFI and ICA are better than the postevent image
recognition.

The accuracy of the postevent image assisted by ICA feature
processing is the highest, with recall and F1-score distribution
0.13 and 0.22 higher than that of the postevent image only.
The segmentation accuracy mIoU is also improved by 0.1164.
Among the two feature processing methods of RFI and ICA,
ICA has the best performance, i.e., the recall, F1 scores, and
mIoU of ICA are 0.0066, 0.0866, and 0.0491 higher than those
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Fig. 10. Comparison of (a) reference, (b) UNet3+, (c) UNet3+ with RFI, (d) new proposed MICUNet3+ prediction results on test area of Jiuzhaigou earthquake
driven landslides. The white boxes represent missed and incorrect tests.

of RFI. ICA is over 0.05 higher in overall evaluation and 0.03
higher in segmentation accuracy.

D. Qualitative Evaluation

Fig. 10 shows the prediction results of different methods,
where Fig. 10(a)–(d) shows the reference and the results based
on the UNet3+ network. Fig. 10(a) is the reference based
on the visual interpretation, and Fig. 10(b) is the recognition
results from the postevent image, which are only applicable
to postevent images that are obvious. The segmentation results
are not desirable due to the similarity of the landslide to other
ground objects, resulting in more FPs in Fig. 10(b). Fig. 10(c)
and (d) is the results of RFI- and ICA-assisted postevent images.
The postevent images overlaid with the dissimilarity of GLCM,
DEM, and NDVI selected by RFI can reduce FP, but generate
more TN due to noise, as shown in Fig. 10(c). As shown in
Table II, ICA is the most accurate one among the two feature
processing methods. It can be seen from Fig. 10(d) that most of
the predictions are consistent, although there is a small amount
of TN in the prediction maps.

Overall, the cofeature selected by RFI improved the accuracy
of landslide extraction and greatly reduced misclassification, but
the noise introduced led to an increase in true negative. And
ICA can largely solve this problem by improving the interclass
heterogeneity and intraclass consistency.

Fig. 11 reveals the details of landslide mapping results assisted
by RFI and ICA, where we can see that feature processing can
assist the landslide mapping effectively, and different processing
methods can get different landslide prediction results. Specif-
ically, RFI has obvious misidentification phenomenon due to
insufficient suppression of noise. Meanwhile, ICA can get best

Fig. 11. Comparison of different feature processing methods. (a) and (b) are
pre- and postevent image, respectively. (c) and (e) are false color maps of RFI
and ICA, respectively. (d) and (f) are the prediction of UNet3+ with post+RFI
and proposed MICUNet3+ methods.

segmentation results with no missing points and a small amount
of misclassification.

V. DISCUSSION

The accuracy of landslide mapping can be improved by optical
image derived information and topographic factors [32], [34],
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Fig. 12. Landslide and nonlandslide pixel statistics in three cofactors selected by RFI and three top principal components of ICA. (a)–(f) Represents the statistical
number of landslide and non-landslide points, where (a) represents GLCM dissimilarity, (b) represents NDVI, (c) represents elevation, and (d)–(f) represent IC1.

[36]. In this study, a method is proposed for landslide inventory
mapping using UNet3+ after ICA processing of multifactor
assisted postevent images. Some issues still need to be discussed.
There are some issues that still need to be discussed.

A. Multifeature Processing

Feature processing is to focus the classified features on several
key features and to improve the intraclass homogeneity and inter-
class heterogeneity. In this study, we compared ICA and RFI in
feature processing.

ICA is used to separate information by transforming the
input space into maximally independent bases. Here, ICA can
effectively suppress the multifeature noise, and retain the main
change information, which is beneficial to landslide mapping
driven by the events such as earthquake (see Table II).

ICA is different from feature selection, which is based on
information entropy or Gini coefficient to select important fea-
tures. RFI is a typical feature selection method. In this study, we
compared the results of ICA and RFI and found that the former
was more effective. The dissimilarity of GLCM, evelation, and
NDVI selected by RFI could reflect the change information, but
it is difficult to suppress the noise, which was reflected as the
serious misclassification in the prediction maps of RFI-assisted
postevent images [see Fig. 10(c)]. ICA reduces the noise in
the original factor and increases the intraclass consistency and
interclass heterogeneity. This is demonstrated by the statistical
results, where we counted the three cofactors selected by RFI
and the three top principal components of ICA using 2000
nonlandslides random points and 2000 landslides, respectively.
Fig. 12(a), (b), and (c) is dissimilarity of GLCM, NDVI, and

elevation, respectively, and Fig. 12(d), (e), and (f) shows the top
three principal components, respectively.

Based on the abovementioned discussion, we find that ICA
can improve the intraclass homogeneity and enhance the inter-
class heterogeneity during the multifeature processing. There-
fore, multifeature processed by ICA can effectively assist land-
slide mapping with postevent image.

B. Compared With Previous Work

The current research on deep learning in LIM focuses on both
methods and data. Several scholars have studied the applicability
of advanced deep learning modules to LIM. For example, resid-
ual modules, attention mechanisms, and transformer methods.
Some other scholars have mainly studied the contribution of
data to the accuracy improvement of deep learning LIM. For
example, data preprocessing, data augmentation, cofactor, and
data postprocessing.

The multifeatured processing of landslide samples by this
study method MICUNet3+ is more significant in improving
accuracy than network structure optimization. It is undeniable
that network optimization needs to be more targeted according
to the characteristics of the target.

C. Limitations and Future Work

There are some limitations to this study. The medium res-
olution optical images were used in this study, resulting in a
low-resolution LIM. Second, in the data processing, we use only
optical images, and no SAR or LiDAR images, which have the
advantage of not being affected by clouds. In the model, we
did not consider the influence of different backbone networks.
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Currently, the network training takes a long time, so a more
effective method needs to be found.

In the next study, we need to experiment with high-resolution
data to extract more accurate weather landslides. We will con-
sider extending this method to SAR and Lidar applications.

VI. CONCLUSION

In this article, we proposed a multifeatured MICUNet3+
method for coseismic landslide inventory mapping by com-
bining ICA and UNet3+. We took Jiuzhaigou coseismic land-
slides as research region, where visually interpreted landslides
were taken as samples to train, validation, and test our model.
First, pre-earthquake Landsat-8 and postearthquake Sentinel-
2 optical images with similar seasonal features and SRTM
DEM were acquired. Then, optical images were preprocessed
to derive features in terms of NDVI and 9 GLCM and DEM
was preprocessed to derive features of slope and aspect. Next,
NDVI and GLCM were processed by change vector analy-
ses to obtain NDVI-diff and GLCM-diff, which were per-
formed by ICA. We input IC1, IC2 and IC3 assisted im-
ages into UNet3+ for LIM. Results showed that our proposed
MICUNet3+ performed well with complex background and
multiscale features of landslides, as ICA can improve the intr-
aclass homogeneity and interclass nonhomogeneity, which can
provide a guideline for landslide identification under complex
conditions.

However, due to the low image resolution, it is hardly to iden-
tify landslides with very small area. And the optical images are
vulnerable to clouds to extract postearthquake landslides, which
will affect the performance of our method. High resolution
optical and SAR images will be further explored in subsequent
studies to generate more accurate coseismic landslide inventory
maps.
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