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Multiorder Graph Convolutional Network With
Channel Attention for Hyperspectral
Change Detection
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Abstract—Hyperspectral change detection (CD) aims to obtain
the change information of objects in the multitemporal hyperspec-
tral images (HSIs). Recently, with the advantages in fully extracting
the image features of irregular areas, the graph convolutional net-
work (GCN) has attracted increasing attention for hyperspectral
CD. The existing GCN-based CD methods usually use a graph
structure constructed by superpixels to reduce the computational
cost, which ignores the multiorder difference information among
graph nodes and the local difference information within superpix-
els. To address these problems, this article proposes an efficient
multiorder GCN with a channel attention module (CAM) for hyper-
spectral CD. Specifically, the multiorder GCN module is designed
by repeatedly mixing the feature representations of neighborhoods.
The CAM is then proposed to enhance the difference features of
bitemporal HSIs. After that, the pixel-wise CD is accomplished by
a lightweight feature fusion module and a fully connected layer.
Experiments on three hyperspectral datasets illustrated the effec-
tiveness of the proposed algorithm.

Index Terms—Change detection (CD), graph convolutional
network (GCN), hyperspectral images (HSI).

1. INTRODUCTION

ITH the rapid development of remote sensing tech-
W niques, remote sensing images have been widely used in
Earth observation applications. Change detection (CD) is one of
the fundamental tasks for understanding remote sensing images,
which aims to obtain the change information of objects in the
multitemporal remote sensing images [ 1], [2]. With high spectral
resolution, hyperspectral image (HSI) can provide rich spectral
information for CD [3]. Abundant spectral information can com-
prehensively reflect the composition of different objects, which
can promote the detection of subtle changes of objects, thereby
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providing the probability of capturing fine changes of objects in
the multitemporal HSIs [4], [5], [6]. HSI CD achieves significant
application in reality scenarios, such as land cover mapping,
agriculture and forestry detection, and resource exploration [7],
(81, [9].

During the past decades, many traditional CD methods have
been proposed, which can be roughly divided into the following
four categories: image algebra; image transformation; image
classification; and other traditional methods. The image algebra-
based methods use the original information of the pixels to
detect changes, such as the most common change vector analysis
(CVA) [10]. The image transformation-based methods transform
original HSI to explore the change information. The widely
used methods include multivariate alteration detection (MAD)
[11], iteratively reweighted MAD [12], and slow feature analysis
[13]. The image classification-based methods distinguish the
differences between the classified images to detect changes
or directly utilize a classifier to detect changes [14]. Support
vector machine (SVM) classifier [15] is a baseline method for
CD. Many improved classifiers are also used in CD, including
the multiclassifier framework [16]. Except these classic CD
methods, researchers have introduced some basic techniques
to CD [17]. For example, the statistical hypothesis is utilized
to mine the change attributes [18], [19]. The distance metric is
introduced to detect the forest cover changes [20]. What is more,
the clustering and unmixing methods are also used in CD task
[21], [22], [23], [24], [25]. The aforementioned traditional CD
methods are generally simple, focusing on shallow features to
identify change information.

With the powerful ability of exploiting features, deep learning
architectures have attracted increasing attention in CD domain
[26], [27], [28]. Many HSI CD methods are proposed based
on convolution neural networks (CNNs). The primary deep
learning-based CD method is based on U-Net [29] and Siamese
network [30], which has the ability to capture the small change
object. Besides, based on 2-D CNN, Wang et al. [31] applied
the mixed-affinity matrix with subpixel representation to fuse
multisource information of pixel level and subpixel level. Lin
et al. [32] detected changes by bilinear CNNs (BCNNs), which
can sufficiently capture the relationship between multitemporal
images. Zhan et al. [33] accomplished CD task by a Siamese
network, which can extract the joint spatial-spectral features.
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Song et al. [34] designed a new Siamese network structure
with cross-temporal interaction symmetric attention module to
extract the joint spatial-spectral-temporal features. Based on
3-D CNN, an adjacent-level feature fusion network [35] has
been proposed to effectively extract and fuse deep features from
bi-temporal images. Mou et al. [36] applied CNN and RNN to
respectively learn the spectral—spatial features and the temporal
features in multitemporal images. To better utilize temporal
information, Wang et al. [37] used a CNN backbone to extract
high-level semantic information and combined it with a visual
transformer to extract change features. These CNN-based CD
methods perform each patch convolution with fixed size and
identical weights to extract spectral-spatial features [38], [39],
[40].

Currently, graph convolution networks (GCNs) have been
paid growing attention in the image processing field due to their
ability of extending patch convolution to irregular data structure
[41], [42], [43], [44], [45]. Compared to CNNs, GCNs can
flexibly aggregate the adjacent nodes in the graph and effectively
extract the spectral-spatial feature of irregular areas. In this
way, GCNs can preserve the complex structural properties of
the images and the dynamic boundaries of objects [46], [47].
Therefore, some researchers have made efforts to employ GCN
for HSI CD. The first successful work is the dual-branch dif-
ferential amplification graph convolutional network (D> AGCN)
[48]. Based on the benchmark dual-branch structure, the super-
pixel graph structure is constructed for each branch, the GCN
is employed to extract image features from each branch and
fuse the output features of two branches, and the differential
amplification module is embedded to highlight the difference
features between the graph nodes of two branches. However,
this CD method has some limitations, which are as follows:

1) it applies the adjacency matrix to store the edge relation-

ship between any two graph nodes and applies the GCN
to fuse the outputs of two branches, which leads to a
relatively high computational complexity due to the large
number of stored graph edges and GCN layers;

2) itutilizes the vanilla GCN to realize the immediate feature
aggregation in the neighborhood of graph nodes while ig-
noring sufficient feature aggregation of multiorder neigh-
borhood information of graph nodes, which may weaken
the performance of feature extraction;

3) it employs superpixel-wise CD to predict the probability
of changes superpixel by superpixel, which ignores the
local change difference within superpixels and weakens
the probability of detecting subtle changes of objects.

To addressing the aforementioned limitations, we design a
multiorder GCN with channel attention (MGCN) for HSI CD.
The overall architecture includes three aspects: graph construc-
tion and store, feature extraction, and CD. First, it takes the
advantage of superpixel segmentation to construct sparse graph
structures. In addition, it introduces the superpixel sparse graph
store technique to reduce the computational complexity by
omitting the edge relationship between nonadjacent superpixel
nodes out of the adjacency matrix. Then, inspired by [49], it con-
structs a dual-branch feature extraction framework composed
of multiorder GCN and channel attention modules (CAMs)
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to extract sufficient features of multitemporal HSIs for CD.
The multiorder GCN is designed by repeatedly aggregating the
feature representations of neighborhood through graph nodes at
different orders, which can learn a wider feature aggregation of
graph nodes. The CAM is embedded in the dual-branch feature
extraction framework to emphasize the difference features be-
tween two branches from channel dimension rather than graph
nodes perspective. Finally, we design a pixel-wise CD method
via feature fusion with association matrix and convolution layers
rather than superpixel-wise CD. The computational complexity
is further reduced by the lightweight feature fusion module via
convolution layers rather than GCN. An association matrix is
used to transform the superpixel level features of bitemporal
HSIs to pixel level features. The convolutional layers are used
to extract the correlation features of bitemporal HSIs, which
allows the pixel level feature differences within one superpixel.
The final CD result is obtained by predicting the probability
of changes pixel by pixel. By considering the local difference
information within one superpixel, the pixel-wise CD can extract
the local change difference within superpixels and detect subtle
changes of objects.

Our main contributions are summarized as follows.

1) A dual-branch feature extraction framework composed of
multiorder GCN and CAMs is proposed, which can learn
a wider feature aggregation for each branch and extract
difference features between two branches from channel
dimension.

2) The pixel-wise CD method is proposed via feature fusion
with association matrix and convolution layers, which can
extract the local change difference within superpixels and
detect subtle changes of objects.

3) An efficient HSI CD network architecture MGCN is de-
signed by utilizing the superpixel sparse graph store tech-
nique and the lightweight feature fusion module, which
can perform well with relatively low computational com-
plexity. The training time on RTX 3090 can be reduced
from about an hour in D?AGCN to one minute in MGCN.

The rest of this article is organized as follows. The related

work is analyzed in Section II. Details of the proposed method
are described in Section III. Experimental results and discussions
are presented in Section IV. Finally, Section V concludes this
article.

II. RELATED WORK

The GCN was initially proposed by Bruna et al. [50] to
handle data with irregular structures. This network extends the
convolution process of fixed patch kernel to the topological
graph structure. It utilizes the Laplace matrix to perform the
convolution process of the graph. Due to the high computational
complexity of Laplace matrix eigenvalue decomposition, this
network shows good performance in calculating small-scale
graphs and is usually not suitable for the large-scale graphs. To
reduce the computational complexity, many works have been
done, including small-scale graph construction, Polynomial ex-
pansion to approximate graph convolution, and Chebyshev poly-
nomial with iterative convolution kernel [51], [52]. Recently,
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Fig. 1.  Overall architecture of the proposed method.

many works have paid attention on representing the images
as graph structures to extract the consistent image features
with the topological structures in real scene [53], [54], [55].
Based on this, the GCN has been creatively applied to the
field of image processing to obtain the graph representation of
images.

In the HSI CD field, HSIs contain a large number of pixels.
Therefore, it is not appropriate to perform convolution on a graph
structure at pixel level. D2AGCN constructs the graph structures
at superpixel level by performing superpixel segmentation. As a
typical segmentation algorithm, simple linear iterative clustering
(SLIC) [56] is used to achieve the superpixel graph construction.
Through SLIC, some changed pixels may be segmented into
different superpixels, which will lead to the decrease of CD
accuracy. To alleviate the problem, the bitemporal HSIs are
cascaded along the channel dimension before the superpixel
segmentation process. Moreover, in order to extract sufficient
features, the superpixel graph structures of bitemporal HSIs are,
respectively, sent to dual-branch network, where each branch is
composed of two GCN layers. Behind each GCN layer, a dif-
ference amplification module is embedded into the dual-branch
network to highlight the difference features between the graph
nodes of two branches. In detail, for each node, the cosine sim-
ilarity (CS) between output feature matrices of two branches is
measured. Based on the CS measurement results, the difference
coefficient for graph nodes were designed via the exponential
function exp(a(1l — CS)) — 1. It introduces a parameter « to
control the difference coefficients to suppress the features of
unchanged nodes and highlight the features of changed nodes
in the dual-branch GCN network. Finally, the outputs of two
branches are cascaded and fused by a GCN layer at the superpixel
level. The superpixel-wise CD result is obtained based on the
learned feature of superpixel level by a fully connected layer and

Feature Extraction with Multi - Order GCN and CAM

Pixel - wise Change Detection

asoftmax nonlinear activation function. The final CD is obtained
via the upsampling of the superpixel-wise CD result, where the
predictions of pixels within superpixel remain the same.

The GCN in the HSI CD field is still in its infancy and many
problems remain to be further studied. First, although the su-
perpixel graph structure is used in D>AGCN, the computational
complexity of the whole architecture is still high. Second, the
feature extraction deserves more attention. D2AGCN introduces
vanilla GCN to realize the immediate aggregation of image fea-
tures in the neighborhood of graph nodes, which does not fully
extract the features of the graph. Finally, due to the loss of local
difference information within superpixels, the superpixel-wise
CD ignores the local change difference within superpixels and
weakens the probability of detecting subtle change of objects.
The aim of the MGCN is to fully explore the feature aggregation
of graph nodes and the local difference information within
superpixels for CD with reduced computational complexity.

[II. METHODOLOGY

The overall architecture of the proposed method is shown in
Fig. 1. We implement the CD task through the following three
main parts:

1) superpixel sparse graph construction and store;

2) feature extraction with multiorder GCN and CAMs;

3) pixel-wise CD.

The superpixel sparse graph is constructed for each tem-
poral HSI and the superpixel sparse graph store technique is
introduced to store the feature matrix and adjacency matrix.
Then, in order to extract sufficient superpixel level features, the
superpixel graph structures of bitemporal HSIs are, respectively,
sent to the dual-branch network, where each branch is composed
of two multiorder GCNs. Besides, we embed a CAM based
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on the Sigmoid function between two multiorder GCN layers
to adaptively emphasize the difference features between two
branches from channel dimension. Finally, by considering the
local difference information within superpixels, the superpixel
level features are fused and transformed to pixel level features
to obtain pixel-wise CD.

A. Superpixel Sparse Graph Construction and Store

The bitemporal HSIs are first cascaded and segmented into
a series of superpixels by SLIC. After that, the cascaded seg-
mentation results are splitted for bitemporal HSIs. And the
superpixel sparse graph structure for each single temporal HSI is
constructed based on the feature matrix and the sparse adjacency
matrix, which is stored in the coordinate format to reduce the
computational cost. Based on the segmentation results, an asso-
ciation matrix is calculated in order to restore the features from
superpixel level back to original pixel level during the following
pixel-wise change detection part.

We obtain a cascaded HSI cube X o4, with N = w x h pixels
and 2 x d spectral channels, where w, h, and d respectively
represent the image width, the image height, and the channel
dimension. The segmentation results can be defined as

Seg = {p1,pi, ..., PN} 0
Pi S {1727' : 7M}

where M is the total number of superpixels, {1,2,...,M}
represents the index of superpixels, the value of p; denotes the
index of superpixel the ith pixel belonging to.

With the segmentation results and the HSI cube, an association
matrix Q € RY*M [57] representing the relationship between
pixels and superpixels can be defined as follows:

1,
Qi,j = {0,

where @Q; ; denotes whether the ith pixel belongs to the jth
superpixel. In each column of the association matrix, value 1
will be assigned to pixels in the same superpixel.

For each single temporal HSI X 4, , the graph G with M nodes
has a feature matrix H € R > with d features per node and an
adjacency matrix A € RM*M A nonzero entry A; ; indicates
an edge between the ¢th and jth superpixel nodes. To make use
of the spectral information of bitemporal HSIs, the feature value
of a graph node is obtained by the mean spectral value of pixels
contained in a superpixel. The feature matrix H can be defined
as follows:

if pi =3
otherwise )

1 &
Hi= =) i 3)
K3 j:1
where H;(i = 1,..., M) denotes the ith row of H demonstrat-

ing the features of the ith graph node, K; is the number of pixels
contained in the ith superpixel, and x; ; is the jth pixel in the
1th superpixel.
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And then, the adjacency matrix A can be calculated by the
feature matrix as follows:

_lEs-A;

A= {exp o>, iftwonodes are adjacent ()

I

0, otherwise

where o is empirically set to 0.1 [44]. A nonzero entry A, ;
denotes the weight of the edge between two adjacent superpixel
nodes, and a zero entry A; ; indicates no edge between the ith
and jth superpixel nodes.

It can be noticed that, there are some zero entries in the
adjacency matrixes since some superpixels are not adjacent.
Therefore, we construct a sparse graph with the aforementioned
adjacency matrix and feature matrix. To further reduce the
computational complexity of the graph convolution process in
the following section, the sparse adjacency matrix is stored in the
coordinate format [58], recording the nonzero values and their
indexes in the matrix. For the case of sparse graph convolution,
applying the same store transformation for H'. Thus, a superpixel
sparse graph structure can be defined as

Gsparse (A7 H) = fcoo_matrix (G (A7 H)) 5

where feoo marix denotes the coo_matrix function in python,
which is employed to achieve the transformation of matrix store
format. Therefore, the superpixel sparse graph structure is stored
with nonzero values and their indexes in adjacency matrix and
feature matrix. With this superpixel sparse graph store technique,
zero entries in the adjacency matrix indicating no edge between
two superpixel nodes are omitted.

B. Feature Extraction With Multiorder GCN and CAMs

Based on the constructed superpixel sparse graph structures
of two branches G1(A1, H;) and G3(As, H), we perform
feature extraction with multiorder GCN and CAMs for bitem-
poral HSIs. On the one hand, the multiorder GCN is introduced
to aggregate the feature representations in the neighborhood of
graph nodes at multiple orders. On the other hand, a CAM is
designed for the dual-branch structure to automatically select
and emphasize the difference features.

1) Multiorder GCN Module: The feature aggregation in the
neighborhood of graph node is of vital importance for CD.
To improve the feature aggregation, we mix the feature rep-
resentations from the immediate (first-order) neighborhood of
graph node and from its further P-order neighborhood in the
GCN. Thus, a multiorder GCN module is designed to mix the
feature representations of neighborhoods at different orders. The
multiorder GCN module is composed of two multiorder graph
convolutional (GC) layers on each branch. The first multiorder
GC layer on each branch outputs the concatenation features of
mixing orders of the adjacency matrix, and the second multiorder
GC layer on each branch can further extract the features of
mixed adjacency orders. Thus, the multiorder GCN module
can fully capture the features in the neighborhoods of graph
node by aggregating the feature representations of multiple
adjacency orders. However, with more multiorder GC layers, the
information of the entire graph may be aggregated to each node,
the differentiation between nodes becomes less pronounced, and
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Fig. 2. Illustration of the CAM.

even the local information of the original nodes will be lost. This
oversmoothing effect in turn decreases the performance of CD
and even leads to worse performance compared to that with one
multiorder GC layer. Each multiorder GC layer is composed of
three vanilla GC layers, which is defined as

)
H{) =

" - -1
jero (A HGIWSY) ©

where P = {1,2,3} is a set of adjacency orders. Note that
setting P = {1} exactly recovers the original GC layer. ||()
and o(-) represent column-wise concatenation and activation
function ReLU, respectively. H Sj‘” € RMxdi-r and H él) €
RM>di(] =1,2; q = 1,2) denote the input and output for the
Ith multiorder GC layer on the gth branch, with H §0> = H, and
H go) =H,. Wg{;l) is the weight matrix for the jth vanilla GC
layer in the /th multiorder GC layer on the gth branchfi; denotes
the adjacency matriqu multiplied by itself j timesAq isasym-
metrically normalized adjacency matrix with self-connections
for the gth branch, which can be defined as

A, =D;? (A+I)D,”? 9

where (Dy); ; = > j(Aq); ;-

2) Channel Attention Module (CAM):: The multiorder fea-
tures are simply integrated by a concatenation operation for
each branch. To better extract the difference information from
multitemporal HSIs on different branches for CD, we embed a
CAM between two multiorder GC layers to automatically select
and emphasize the difference features between two branches.
The illustration of the proposed CAM is shown in Fig. 2.
The cosine similarity (CS) is used to measure the difference
between the output feature matrices of the first multiorder GC
layers on two branches. The output feature matrices are updated
by multiplying with different weight coefficient (Coe) via the
Sigmoid function and the CS results. The weights vary across
different feature channels. The updated feature matrices are fed
into the second multiorder GC layers for two branches.
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The cosine similarity and the weight coefficient can be ob-

tained by
(), (1))
T T,
Coe, = Sigmoid (1 - cs, (H{", H{"))
©)

where CS € R%, H gl) € RMxd1 depotes the output of the first
multiorder GC layer on the gth branch, and(-), denotes the ith

Cs; (Hi”, Hg“) ®)

feature channel of H ((11). Coe; denotes the weight coefficient

assigned for the ith feature channel of H ,(11).

Thus, the weight coefficient of the proposed CAM can be
automatically calculated. The difference features with smaller
similarities will be assigned larger weight coefficients. After
that, the output feature matrix of the first multiorder GC layer
on each branch is multiplied by the weight coefficient and input
into the second multiorder

GC layer. The updated output feature matrix combined with
channel attention can be expressed as

(1), = (1) o

C. Pixel-Wise CD

(10)

In this section, we describe how to perform pixel-wise change
detection via assigning different probability of changes for
pixels within each superpixel. The feature fusion module is
designed to do the feature interaction between multitemporal
images. Specifically, the obtained output feature matrices on two
branches are cascaded and transformed from superpixel level to
pixel level by the association matrix. Then, two convolution
layers are utilized to capture the correlation information of two
branches, which can allow local difference for the pixels within
each superpixel. Finally, pixel-wise CD is accomplished by a
fully connected layer and a softmax activation function, which
can learn the underlying information of the obtained features
to realize the judgment of the changed and unchanged areas.
Therefore, the pixel-wise CD consists of an association matrix,
two convolution layers, a fully connected layer, and a softmax
nonlinear activation function. The feature fusion module is
composed of an association matrix and two convolution layers.

The association matrix defined in Section III-A is used to
transform the feature matrices on two branches from superpixel
level to pixel level, the mathematical expression can be defined
as

Hconcal = Q & fconcat (H§2)7 H§2)) (11)

where ® denotes the matrix multiplication, and feoncar(+) de-
notes the concatenation operation for the outputs of the feature
extraction framework on two branches.

It can be noticed that all the pixels within a superpixel are
assigned a same feature value with the association matrix. Then,
these features of pixel level after two convolution layers will be
learned to produce local difference for pixels within superpixels.
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The output values of the softmax function are in the range of [0,
[1]] with the sum of 1, which can be, therefore, regarded as the
probability of the network to determine whether a pixel changes
or not. Since the CD task is essentially a binary classification
problem, the commonly used cross-entropy loss function is used
to train the network, which is defined as

L(V.Y) = - {veton (%) + - vios (1 71}

(12)
where 7' denote the number of training samples, and Y; and Yt
respectively, represents the truth label and the predict label of
the sample . L is used to measure the difference between Y;
and Y;, which should be reduced during the network training
process. Due to the use of training samples to train the network,
the proposed method is a supervised learning approach.

D. Computational Complexity

This section analyzes the computational complexity of the
proposed method MGCN. The key of the MGCN is that we use
two multiorder GC layers on each branch and two convolutional
layers to fuse the two branches based on superpixel sparse graph.
The adjacency matrixfiq is stored as a sparse matrix with V

)

nonzero entries. For (6), we multiplyAZ H gli Y fromri ght-to-left

without computingAfZ. Therefore, the computational complexity
of two multiorder GC layers on the gth branch is calculated
as O(ZZQ=13 x Vg x dj_1), where d;_; denotes the channel
dimension of the input features in the /th multiorder GC layers.
For case of comparison, we pay attention to the trends of the
computational complexity of feature fusion via two convolution
layers, which can be represented as O (N x ds), where N denotes
the pixel number and d. denotes the channel dimension of
the input features. We express the overall computational com-
plexity of MGCN as 0(23:1 S 3% Vyxdig + N x do).
In contrast, the key of D2AGCN is that there are two GC
layers on each branch and one GC layers to fuse the two
branches. The overall computational complexity of D2AGCN
is O(Y.2_ Yoy M? x dy_y + M? x dy), where M? denotes
the total entry of the adjacency matrix or the total number of
stored graph edge. Under the realistic assumptionsof V, < N <
M?, MGCN greatly reduces the computational complexity by
reducing the number of stored graph edges and replacing the
GCN with the convolutional layers in feature fusion stage. Take
the China dataset as an example, the pixel number N and the
graph node number M for each branch is 58 800 and 12 801,
respectively. With the superpixel sparse graph store technique,
the number of stored graph edges can be reduced from 12 801
x 12 801 to 12 827 for the first branch and to 13 949 for the
second branch.

IV. EXPERIMENTS
A. Datasets and Experiment Setup

In this work, three hyperspectral datasets [59], [60] are applied
to evaluate the performance of the proposed method.
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(a)

Fig.3. China dataset. (a) Image acquired on May 3, 2006. (b) Image acquired
on April 23, 2007. (c) Ground-truth image.

Fig. 4. USA dataset. (a) Image acquired on May 1, 2004. (b) Image acquired
on May 8, 2007. (c) Ground-truth image.

1) China dataset: The two HSIs were obtained on May 3,
2006 and April 23, 2007, near the city of Yancheng,
Jiangsu, China. They were obtained by the Earth
Observing-1 (EO-1) Hyperion hyperspectral sensor, cov-
ering an area of farmlands with the size of 420 x 140
pixels and 155 bands. The images are shown in Fig. 3.

2) USA dataset: The two HSIs were obtained on May 1, 2004
and May 8, 2007 in Hermiston city, OR, USA. They were
also obtained by the EO-1 Hyperion sensor, covering an
area of irrigated agriculture with the size of 307 x 241
pixels and 156 bands. The images are shown in Fig. 4.

3) Santa Barbara dataset: The two HSIs were obtained in
2013 and 2014, near Santa Barbara, CA, USA. They were
obtained by the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) sensor, making up of mountainous and
farmlands. With size of 984 x 740 pixels and 224 bands,
the ground-truth image contains 52 134 changed pixels,
80148 unchanged pixels, and the rest are undetermined
pixels. The images are shown in Fig. 5.

For the China and USA datasets, the ground-truth images con-
sist of the changed regions in white and the unchanged regions
in black, as shown in Figs. 3(c) and 4(c). For the Santa Barbara
dataset, the ground-truth image consists of the changed regions
in white, the unchanged regions in black, and the undetermined
regions in gray, as shown in Fig. 5(c).

In this work, the number of epochs is set to 1000 with the early
stopping strategy. The number of early stopping rounds is set to
100. We utilize the Adam optimizer with the learning rate of
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Fig.5. Santa Barbara dataset. (a) Image acquired in 2013. (b) Image acquired
in 2014. (c) Ground-truth image.

0.01 and weigh decay of 0.01 to optimize the proposed network.
According to experiments, the numbers of hidden layers for
three vanilla GC layers in the first multiorder GC layers on both
branches are set to 128, 128, and 32, respectively. The numbers
of hidden layers for the second multiorder GCN are set to 64,
64, and 8, respectively. We set the best segmentation scale for
the China, USA, and Santa Barbara datasets are 5, 4, and 250,
respectively. All the experiments are carried out by using 1%
samples for validation. What is more, all the experiments are
conducted on Python, Pytorch, and torch-sparse. The compari-
son experiments are conducted on NVIDIA GeForce RTX 3090.

B. Ablation Study

The multiorder GCN module, the CAM, and the feature fusion
module play significant roles in our network. In this section, the
effectiveness of these modules is demonstrated by ablation study.

1) Ablation Study on Different Modules: The basic archi-
tecture without these modules consists of two GC layers on
each branch, a fully connected layer and a softmax activation
function. The final CD is obtained via the upsampling of the
superpixel-wise CD result. Based on the basic architecture, we
apply different modules and fix the others to compare the CD
accuracy. The following four cases are compared:

1) the basic architecture without three proposed modules;

2) the GC layers in the basic architecture are replaced with
multiorder GC layers;

3) Based on the second architecture, the superpixel-wise CD is
replaced with the pixel-wise CD via feature fusion module;

4) the CAM is embedded in the third architecture, forming the
whole architecture with three proposed modules.

The results are provided via OA and Kappa, as shown in
Table I.

As shown in Table I, the designed multiorder GCN module
can improve the CD accuracy of the basic architecture on
three datasets. In detail, the OA and Kappa are improved by
0.29% and 0.63% for Santa Barbara dataset; and applying the
feature fusion can further improve the CD accuracy on three
datasets. The OA and Kappa are further improved by 6.92%
and 21.24% for USA dataset. By contrast of none-emphasizing
the multiorder difference features, the CAM increases Kappa
by 1.01% and 0.77% for China and USA datasets, respectively.
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TABLE I
RESULTS OF ABLATION STUDY ON DIFFERENT MODULES
Multi-order feature
Dataset GCN CAM fusion OA Kappa
- - - 0.9496 0.8835
China v - - 0.9512 0.8859
R - N 0.9620 0.9118
\ V 0.9662 0.9219
- - - 0.8788 0.6375
USA v - - 0.8806 0.6400
v - N 0.9498 0.8524
v \ 0.9511 0.8601
- - - 0.9771 0.9517
Santa v - - 0.9800 0.9580
Barbara v - N 0.9863 0.9712
v \ 0.9870 0.9728
TABLE II

RESULTS OF MULTIORDER GCN MODULE WITH DIFFERENT ADJACENCY
ORDERS (TIME UNIT: SECONDS)

Number of adjacency orders 1 2 3 4
OA 0.9527 0.9553 0.9662 0.9583
China Kappa 0.8899 0.8973 0.9219 0.9036
Training time 12.33 16.56 55.24 39.24
Testing time 0.02 0.03 0.09 0.04
OA 0.9495 0.9489 0.9511 0.9477
USA Kappa 0.8501 0.8475 0.8601 0.8458
Training time 23.39 39.37 48.40 50.01
Testing time 0.02 0.05 0.06 0.06
OA 0.9831 0.9822 0.9870 0.9846
Santa Kappa 0.9644 0.9626 0.9728 0.9677
Barbara Training time 37.65 43.44 67.74 77.93
Testing time 0.01 0.02 0.02 0.02

The experimental results demonstrate that the multiorder GCN,
the channel attention, and the feature fusion modules are indeed
helpful to learn information from multitemporal HSIs to improve
the performance of CD.

2) Scale the Multiorder GCN Module: We further conduct
experiments to analyze the performance of the multiorder GCN
module with different number of adjacency orders. The number
of adjacency orders ranges from one to four. When the number
of adjacency order is one, the network architecture utilizes the
vanilla GCN. The CAM module and pixel-wise CD are utilized
in the whole network architecture. The experimental results are
provided via OA and Kappa, as shown in Table II.

It can be seen that, when the number of adjacency orders is
set as three, OA and Kappa obtain the optimal values, while
the training time is about one minute. Take China dataset as an
example, compared with the vanilla GCN, the OA and Kappa of
three-order GCN are increased by 1.35% and 3.2%, respectively;
while the training time is increased by about 42 s. Therefore, the
detection performance and model complexity of the proposed
MGCN method is moderate and acceptable.

C. CD Results

To demonstrate the performance of the proposed MGCN
method, some recently proposed and commonly used methods
are compared with the proposed method, including BCG-Net
[6], HyperNet [61], BCNNs [32], SST-Former [62], CSANet
[34], and D*AGCN [48]. In detail, BCG-Net and HyperNet
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TABLE III
PERFORMANCE OF CD ON THREE DATASETS (TIME UNIT: SECONDS)

Dataset Metric BCG-Net HyperNet BCNNs SST-Former CSANet D?*AGCN MGCN
OA 0.9398 0.9126 0.9446 0.9623 0.9537 0.9418 0.9662
Kappa 0.8489 0.8026 0.8708 0.9134 0.8923 0.8597 0.9219
Precision 0.9440 0.9180 0.9447 0.9501 0.9539 0.9471 0.9570
China Recall 0.8424 0.9126 0.9446 0.9642 0.9538 0.9164 0.9652
F1 0.8903 0.9138 0.9446 0.9567 0.9538 0.9298 0.9609

Training time 159.92 16.71 60.6 114.27 572 3554.93 55.24

Testing time 290.37 0.71 2.52 5.69 7.6 9.91 0.09

OA 0.9410 0.9267 0.9295 0.9461 0.9346 0.9258 0.9511
Kappa 0.8339 0.7757 0.7940 0.8470 0.8096 0.7658 0.8601
Precision 0.8529 0.9260 0.9284 0.9470 0.9338 0.9277 0.9512
USA Recall 0.8924 0.9267 0.9295 0.9461 0.9346 0.9258 0.9511
Fl 0.8722 0.9240 0.9287 0.9465 0.9340 0.9216 0.9511

Training time 153.83 23.22 34 59.42 59.8 4591.41 48.40

Testing time 22891 0.72 1.75 7.06 4.97 2191 0.06
OA 0.9147 0.9228 0.9765 0.9775 0.9748 0.9796 0.9870
Kappa 0.8245 0.8390 0.9507 0.9527 0.9468 0.9570 0.9728
Santa Precision 0.9192 0.9234 0.9765 0.9676 0.9750 0.9798 0.9880
Barbara Recall 0.9147 0.9228 0.9765 0.9676 0.9748 0.9796 0.9849
F1 0.9153 0.9230 0.9765 0.9676 0.9747 0.9795 0.9864

Training time 201.85 251.53 77.9 114.04 94.8 1584 67.74

Testing time 529.33 17.54 5.52 78.67 9.17 69.59 0.02

Trainable Parameters(M) 0.05 0.37 0.36 2.49 40.42 0.14 0.1

Fig. 6.
(h) Ground-truth image.

Fig. 7.
Ground-truth image.

utilize pseudolabel to design an unsupervised network and a self-
supervised network for CD tasks, respectively. For BCG-Net and
HyperNet, the number of pseudolabel is set according to [6] and
[61]. For the rest supervised methods, we use 0.5% samples for
training. The performance of those methods is evaluated using
a series of metrics including OA, Kappa, Precision, Recall, F1,
training time, testing time, and Params. In order to alleviate the
influence of random factors, the experiments of the proposed
method are repeated five times. The value of each metric ranked
in third is taken as the final evaluation value. Table III shows the

Change maps of different methods on China dataset. (a) BCG-Net. (b) HyperNet. (c) BCNNs. (d) SST-Former. (e) CSANet. (f) D?AGCN. (g) MGCN.

Change maps of different methods on USA dataset. (a) BCG-Net. (b) HyperNet. (c) BCNNs. (d) SST-Former. (e) CSANet. (f) D2AGCN. (g) MGCN. (h)

results on three datasets, where the best value is in bold. And
the change maps are shown from Figs. 6-8.

1) Experiment Results of China Dataset: As shown in Fig. 6,
BCG-Net, HyperNet, and BCNNs miss some change regions in
the lower half of the image. And HyperNet mistakenly detects
the unchanged regions as changed regions in the upper and lower
corner of the image. BCNNs and SST-Former cannot effectively
capture the boundaries of the changed regions. CSANet mis-
takenly detects the unchanged regions as changed regions in
the middle part of the image. Compared to D2AGCN, MGCN
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Fig. 8.
MGCN. (h) Ground-truth image.

exhibits fewer missed and false detection areas. In detail, the
MGCN can preserve more precise details inside the changed
objects and obtain more accurate boundaries of the changed
objects. The reasons may be as follows. The multiorder GCN
and CAMs are introduced to extract sufficient difference fea-
tures in the neighborhood of superpixel graph nodes. And the
pixel-wise CD can alleviate the error accumulation by superpixel
segmentation and allow local difference within superpixels.

In addition, as shown in the Table III, the proposed MGCN
method obtains higher values of the first five metrics than all
the comparison methods. As for the two GCN-based methods,
compared with D2AGCN, the MGCN increases OA by 2.44%,
Kappa by 6.22%, Precision by 0.99%, Recall by 4.88%, and
F1 by 3.11%. Then, the proposed MGCN ranks second in
the training time. Compared with D?’AGCN, the training and
testing time of the MGCN is reduced by 3499.69 and 9.82 s,
respectively.

2) Experiment Results of USA Dataset: The changes of land
covers are complex. As shown in Fig. 7, HyperNet, BCNNs, and
D2AGCN miss some changed regions, such as the regions within
the circle and line shapes on the image. In addition, BCG-Net
mistakenly detects the unchanged regions as changed regions in
the upper half of the image. SST-Former and CSANet cannot
effectively capture the boundaries of changed regions and miss
the small changed regions. Compared to D2AGCN, MGCN can
preserve more precise details for the circle changed regions and
has less missed detection for the small changed regions.

In addition, as shown in Table III, the MGCN has better per-
formance of detecting complex changes than all the comparison
methods. Compared with SST-Former, the MGCN increases OA
by 0.5%, Kappa by 1.31%, Precision by 0.42%, Recall by 0.5%,
and F1 by 0.46%. Besides, the training time and testing time
of the MGCN are also superior to SST-Former. By contrast of
D?AGCN, the MGCN increases OA by 2.53%, Kappa by 9.43%,
Precision by 2.35%, Recall by 2.53%, and F1 by 2.95%, and the
MGCN reduces the training time and testing time of D2AGCN
from 4591.41 to 48.4 s and 21.91 to 0.06 s, respectively.

3) Experiment Results of Santa Barbara Dataset: The
change areas are relatively regular and scattered. As shown in
Fig. 8, BCG-Net and HyperNet mistakenly detect the unchanged
regions as changed regions, such as the regions in the lower
corner and the upper half of the image. BCNNs, SST-Former, and
CSANet mistakenly detect the unchanged regions as changed
regions, such as the circle region in the upper and lower corner
of the image. D’AGCN also mistakenly detects the unchanged
regions as changed regions, especially the boundary of the

Change maps of different methods on Santa Barbara dataset. (a) BCG-Net. (b) HyperNet. (c) BCNNs. (d) SST-Former. (e) CSANet. (f) D°’AGCN. (g)

unchanged regions. The CD map of the MGCN is most similar
to the ground-truth map.

As shown in the Table ITI, MGCN and D?AGCN are supe-
rior to the other methods. Compared to D?’AGCN, the MGCN
can improve OA by 0.74%, Kappa by 1.58%, Precision by
0.82%, Recall by 0.53%, and F1 by 0.69%. What is more, the
MGCN reduce the training time and testing time by 1516.26 and
69.57 s, respectively.

Therefore, the results generally show that the metrics of the
proposed MGCN, such as OA, Kappa, Precision, Recall, and
F1, are more advantageous. The training time and testing time
of the MGCN are also competitive. In addition, MGCN has
fewer issues related to missed and false detections. Besides, the
number of trainable parameters in the MGCN is about 0.1M,
which is fewer than most comparison methods.

D. Parameter Analysis

We conduct two tasks for experiments denoted by evaluation
of superpixel segmentation and evaluation of training samples.
The first task is to illustrate the influence of superpixel segmen-
tation on the MGCN. The second task is designed to evaluate
the influence of training samples on CD.

1) Evaluation of Superpixel Segmentation: This section il-
lustrates the influence of superpixel segmentation on the MGCN
with three datasets. The experiment analyzes the performance of
the MGCN with different superpixel segmentation scales. The
OA and Kappa values on three datasets are shown in Fig. 9.

For China and Santa Barbara datasets, the OA and Kappa
increases to the optimal value, and then, decreases when the
segmentation scale gradually increases. For USA dataset, the
OA and Kappa values generally decreases as the segmentation
scale increases, and the optimal values of segmentation scale are
setas 5, 4, and 250 for China, USA, and Santa Barbara datasets,
respectively.

2) Evaluation of Training Samples: This section evaluates
the influence of training samples on CD with three datasets.
The experiments compare the performance of BCNNs, SST-
Former, CSANet, D2ZAGCN, and MGCN with different number
of training samples. The training samples are set according to
the range [0.2%, 0.5%, 1.6%, 3.2%, 6.4%, and 12.8%]. The OA
and Kappa values of different methods with different training
samples on threes datasets are shown in Figs. 10 and 11.

The results show that the performance of most methods in-
creases as the number of training samples increases from 0.2%
to 12.8%. The MGCN is superior to the other four methods,
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especially when the number of training samples is lower than
1.6%, 3.2%, and 6.4% for China, USA, and Santa Barbara
datasets, respectively. Besides, the MGCN still obtains good
performance with limited number of training samples. In detail,
with 0.2% training samples, OA of the MGCN approximately
reaches 0.953, 0.945, and 0.965, for three datasets, respectively;
while Kappa of the MGCN approximately reaches 0.89, 0.84,
and 0.96 for three datasets, respectively.

V. CONCLUSION

In this article, we propose an MGCN method for hyperspectral
CD. By designing a dual-branch feature extraction framework

with multiorder GCN and CAMs, the MGCN method can extract
sufficient features of multitemporal HSIs and emphasize the
difference features between multitemporal HSIs. By introducing
a feature fusion module with association matrix and convolution
layers, the MGCN performs a pixel-wise CD to alleviate the
error accumulation by superpixel segmentation and allow local
difference within superpixels, and it adopts a superpixel sparse
graph store technique and a lightweight feature fusion module
via convolution layers rather than the GCN to improve the
computational efficiency.

However, this method can be affected by the superpixel
segmentation. To detect the complex changes of land covers,
we require a fine superpixel segmentation to construct graph
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structures for two temporal images. In order to obtain an appro-
priate superpixel graph structure, we will study how to constantly
update the graph structure during training process. In addition,
to fully utilize the rich spectral information of HSIs, we will
extend the proposed method from binary CD to multiclass CD.
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