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Abstract—Road information plays an increasingly important
role in applications, such as map updating, urban planning, and
intelligent supervision. However, roads in remote sensing images
may be shaded by trees and buildings or interfered with by farm-
land. These intrinsic image features can cause road extraction
results to suffer from breakage and misidentification problems.
To address these problems, this article improves on D-LinkNet
and proposes a dual codec structure network, namely RUW-Net.
Specifically, we use ReSidual U-blocks instead of ordinary residual
blocks to extract more global contextual information during the
encoding stage. Moreover, we propose a decoder-encoder combi-
nation (DEC) module to build a dual codec structure. The DEC
module links the decoder of the first U-block and the encoder of
the following U-block to narrow the semantic gap in the encoding
and decoding process. The RUW-Net model can extract more
multiscale contextual features and effectively use them to enhance
the semantic information of road entities. Therefore, the RUW-Net
model can obtain more accurate extraction results. We conducted
a series of experiments on public datasets, such as DeepGlobe,
including comparative, robustness, and ablation experiments. The
results show that the proposed model alleviates the road extraction
breakage and misidentification problems. Compared with other
representative methods, the RUW-Net performs better in terms of
completeness and accuracy of road extraction results; overall, its
extraction results are also the best. The RUW-Net model provides
a new idea for road extraction from remote sensing images.

Index Terms—Multiscale feature, remote sensing (RS) image,
road extraction, semantic segmentation.

I. INTRODUCTION

ROAD information is basic but not negligible, as it has
essential value in theoretical research and practical ap-

plications. Remote sensing (RS) images are usually acquired at
a distance by artificial earth satellites, aerial aircraft, etc. Such
images can be collected over large spatial areas with relatively
inexpensive and objective coverage methods. And refined ex-
traction of roads from RS images can provide decision-making
data for urban intelligent traffic management, rescue and disaster
relief, and joint monitoring of heaven and earth intelligence [1].
In recent years, with the rapid development of RS technology
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and high-resolution processing technology, the resolution of
RS images has reached the submeter level. Researchers can
easily access high-resolution RS data, which means a more
comprehensive and richer source of data for road extraction.

In order to extract accurate roads from RS images, a large
number of scholars have conducted extensive and in-depth
research. They have accumulated many valuable ideas and
road segmentation methods [2], [3], [4]. These methods can
be broadly divided into traditional methods and deep-learning-
based methods. Roads in RS images have features such as
geometric texture, radiation, topological, and context features
[5]. Traditional road area extraction [6], [7], [8] generally uses
methods based on segmentation or classification, and after the
preliminary extraction of roads, mathematical morphological
methods are often used for postprocessing. While these tradi-
tional methods are simple and effective for road extraction, they
often require some postprocessing operations and high labor
costs.

Deep-learning-based road extraction methods can effectively
reduce labor costs and advance the automation of extraction.
Most of the deep-learning-based road segmentation methods
are based on deep convolutional neural networks (DCNNs). In
recent years, the rapid development of DCNNs has provided
technical support for road segmentation. In particular, FCN and
U-Net [9] have played a landmark role. After that, end-to-end
semantic segmentation models based on encoder-decoder struc-
tures have gained popularity among researchers. Liu et al. [10]
developed a D-Resunet that combines residual learning and
U-Net. The network outperforms U-Net but suffers from the
problem of missed extraction. Zhou et al. [11] designed the
D-LinkNet, based on LinkNet [12]. The model uses dilated
convolution [13] and incorporates multiscale features, making
it possible to deal with the narrow, connected, and large-span
characteristics of roads to some extent. However, the model suf-
fers from false recognition and missing extraction. The authors
in [14], [15], and [16] introduced transformer into the vision task
by cutting 2D RS images into 1D image patches, and achieved
some improvement on segmentation effect. Similarly, Liu et al.
[17] used the Swin transformer multiscale encoder in order
to efficiently extract long-distance information and designed a
bottleneck module to capture more complete road structures.
However, such models tend to rely too much on pretrained
models, and the detailing of segmentation results is lacking.

Despite the great strides made in deep learning road extrac-
tion, there are still some challenges in extracting reliable and
accurate results from RS images. Compared to other images,
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Fig. 1. Roads may be shaded by trees and buildings or interfered with by
farmland.

RS images have a huge map area and contain a complex feature
environment. One of the common problems is that road entities
in RS images can be obscured by trees and buildings, causing
breaks in the extraction (see the image on the left in Fig. 1 for
an example). Another challenge is the similarity between roads
and other features such as farmland, which can interfere with the
extraction of roads and lead to misclassification (see the image
on the right in Fig. 1 for an example). The prediction results of
images in Fig. 1 are all obtained from the replicated D-LinkNet
[11] model. Given the above-mentioned challenges, inspired by
the ReSidual U-block [18] (RSU) and the recoding structure
[19], this article improves on the D-LinkNet and proposes
the RUW-Net with a dual codec structure for RS image road
extraction. The basic ideas behind RUW-Net are: 1) to extract
more global and multiscale contextual information to highlight
road entity features in the encoding stage; 2) to construct a
dual codec structure to narrow the semantic gap and predict the
intermediate segmentation map after the first set of codecs to
add details to the final extracted results; and 3) to design feature
transfer modules for both sets of codecs to make fuller use of
the extracted features. The main contributions of this article are
summarized as follows.

1) First, we reconstructed the encoder of D-LinkNet by using
RSU. By embedding miniature U-shaped structures, the
rebuilt encoder can extract more global contextual fea-
tures and multiscaled features to enhance the semantic
information of the road.

2) Based on (1), we proposed a dual codec network named
RUW-Net. Moreover, we designed the decoder-encoder
combination (DEC) module to optimize the network’s
exploitation and delivery of semantic features. The DEC
module connects the decoder of the first U-block to the

encoder of the following U-block to narrow the semantic
gap between the encoding and decoding processes. The
RUW-Net model can more fully utilize the image charac-
teristics and thus improve the completeness and accuracy
of the road extraction results.

3) We have carried out extensive experiments to compare
the RUW-Net model and other representative methods on
publicly available datasets. The results demonstrate that
our model has better performance and robustness. The
RUW-Net model can obtain more complete and accurate
road extraction results. More importantly, we provided a
novel idea for RS road extraction.

The rest of this article is organized as follows. Section II dis-
cusses related work. Section III provides a detailed description
of the methods and models in this article. Section IV contains the
specific details of the experiment and the analysis of the results.
Section V concludes the research and discusses future work.

II. RELATED WORKS

This section presents the relevant work in this article. They
will be briefly described in terms of semantic-segmentation-
based RS road extraction, contextual information for semantic
segmentation, and residual structure, respectively.

A. Semantic-Segmentation-Based RS Road Extraction

One of the mainstream methods for road extraction from RS
images is the semantic segmentation method. Yang et al. [20]
developed a spatially enhanced and densely connected U-Net
named SDUNet to improve road extraction by aggregating
multilevel features and global priori information. Similarly, Hu
et al. [21] used nested dense convolutional blocks to narrow
the semantic gap for road extraction; Dai et al. [22] combined
prior knowledge and variable convolution to learn the long-range
dependencies of roads. Li et al. [23] designed a DC-Net model
to extract rural roads using multiscale features by combining
dilated convolution and ASPP structures [24]. The authors in
[25], [26], and [27] used the topological features of the road
to perform road extraction. Lu et al. [25] divided road extrac-
tion into three subtasks, road surface segmentation, centerline
extraction, and edge detection. They explored the symbiotic
relationship of the three tasks and used perceptual learning
to capture the topological relationships over long distances to
improve the integrity of the roads. However, the training samples
of the proposed framework require three types of road samples,
namely road surface, road centerline, and road edge, resulting
in a restricted application scenario. Due to the complex content
of RS images, the labor cost of producing high-precision road
extraction datasets is high and there is a lack of high-precision
datasets. Therefore, the authors in [28] and [29] used weak
supervision to perform road segmentation. Similarly, Li et al.
[30] designed a framework that can learn under noisy labels.
In addition to this, to refine the extraction of roads, the work
in [19], [31], and [32] explored road extraction algorithms in
terms of the number of encoders. Jha et al. [31] proposed a new
architecture called DoubleU-Net, a combination of two U-Net
architectures with another U-Net added at the bottom. Wu et al.
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[19] proposed a model for recoding structures with two encoders,
NC-Net. Wang et al. [32] proposed a dual decoder U-shaped
structure, named DDU-Net, for small-sized roads for extraction,
and they improved the extraction mainly by adding a generic
attention mechanism. Similar approaches that utilize attention
mechanisms for road extraction can also be found in [33].
Gao et al. [33] improve road extraction model by constructing
dual attention blocks within the expanded convolutional layers.
Unlike them, our entry point for improvement is to build a
dual decoder structure by using the DEC module for feature
fusion and transfer to make fuller use of the contextual features
extracted by the model.

B. Contextual Information for Semantic Segmentation

Contextual features of images can enhance the semantic infor-
mation of target classes and facilitate the extraction of roads from
complex RS images. Zhou et al. [34] explored the pixel-to-pixel
and pixel-to-object relationships in airborne image segmentation
to learn contextual information. Yuan et al. [35] proposed a con-
textual representation method for semantic segmentation. They
characterized the representation of corresponding object classes
of pixels by calculating the relationship between each pixel and
each region. The algorithm contributes some improvement to the
segmentation effect on various benchmarks. The first two extract
contextual features through relationships between image com-
ponents. To solve the problem of contextual weakening of the
overall image context modeling on the semantic level, Jin et al.
[36] enhanced the pixel representation by aggregating image
level and semantic level contextual information, respectively.
Wu et al. [37] introduced a context-guided block to learn the
joint features of local features and surrounding context. Further-
more, they designed a CGNET to capture contextual information
at each stage, reducing the number of parameters and saving
memory usage. Xu et al. [38] used the contextual relationship
between roads and buildings to extract reliable road results. Lu
et al. [39] found that capturing long-range correlations can help
improve the accuracy of road recognition. Hence, they designed
a Global Awareness Network to capture spatial context depen-
dencies and interchannel dependencies. The model can establish
relationships between spatial context and channels, similar to
the use of GANs as [40]. He et al. [41] suggested an asymmetric
encoding-decoding structure. They proposed MAE to randomly
mask patches of the input image and reconstruct the pixels of
the masked part. They got good results in image reconstruction
with the help of contextual information. Nevertheless, MAE
reconstructed the pixels of nonsemantic entities. Yang et al.
[42] propose two novel modules to capture road background
information in the images. By allowing different stages of the
decoder to provide foreground context information to enhance
the inference capability for occluded areas.

C. Residual Structure

The residual structure was first proposed by [43] and can be
a good solution to the degeneration problem of deep neural
networks. Moreover, the performance of residual networks is

not significantly affected by removing individual neural net-
work layers. Therefore, combining residual structure for road
extraction is also a feasible means. Eerapu et al. [44] suggested
a dense refinement residual network, DRR-Net. The model can
alleviate the category imbalance problem by obtaining iterative
reuse of collective knowledge at different scales through dense
residual connections and connectivity of DRR module problems.
Liu et al. [45] developed an end-to-end residual attention local
sensing network - RALC. It combined residual connectivity and
attention mechanisms to design the residual attention module.
Due to the positive impact of multiple feature information on
road extraction, two encoders were used in the network to
improve the feature extraction capability. Wu et al. [46] utilized
the residual unit of ResNet, coordinate convolution, and global
information enhancement module to improve the integrity and
accuracy of the extracted results.

III. METHODOLOGY

In this section, we introduce the overall RUW-Net structure
and its principle first. Then we describe the RSU and the DEC
module of our RUW-Net. Finally, we illustrate the feature fusion
process and loss function of RUW-Net.

A. RUW-Net Principle and Network Structure

As mentioned earlier, road entities in RS images may be af-
fected by surface features such as trees, buildings, and farmland,
making their semantics obscure. Unfortunately, weak semantics
will lead to broken extraction results and false recognition.
Therefore, we designed a new network model, RUW-Net. The
model can utilize the contextual information of RS images to
enhance the semantic information and achieve the objective of
improving road extraction results. Fig. 2 illustrates the overall
architecture of the RUW-Net model. The dual codec structure
of the model means that the RUW-Net has two sets of encoders
and decoders. The front codec is on the left, and the rear codec
is on the right, making the model an overall W-shape. And the
DEC module is designed to link the two sets of codecs. The
decoder and encoder of the model are both five layers, En_1
to En_5 compose the front encoder, De_1 to De_5 compose
the front decoder; ReE_1 to ReE_5 constitute the rear encoder,
ReD_1 to ReD_5 constitute the rear decoder. Each sublayer of
the front encoder consists of an RSU (RSU will be introduced
in Section III-B) and a max-pooling downsample operation.
The front encoder and the front decoder form the first U block
through the dilated convolution at the bottom (where n equals
4) and the skip connection at each stage. The front decoder is
connected to the rear encoder through the DEC module (DEC
will be introduced in detail in Section III-C). The structure and
connection way of the second U block’s rear encoder and rear
decoder are basically the same as those of the first one. The
difference is that the rear encoder will combine with the output
of the DEC module during downsampling, and the rear decoder
will combine with the output of the DEC module for the final
road segmentation

We develop the RUW-Net by improving the D-LinkNet. Un-
like D-LinkNet, the encoder of RUW-Net is mainly constructed
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Fig. 2. Network structure of the RUW-Net.

by RSU of different depths. The reason for choosing the RSU
to build the encoder is that it is significant to maintain the high
resolution to extract features from the narrow and thin roads
in the complex RS images. Using RSU to build the encoder,
compared to the simple downsampling operation in the original
D-LinkNet encoder, compensates for the impact of partial fea-
ture loss due to resolution degradation by embedding a U-shaped
structure. The front encoder of the RUW-Net can be divided into
five stages. The En_1, En_2, and En_3 correspond to RSU blocks
with depths of 7, 6, and 5. The En_4 and En_5 are both four layers
structure, and the rear encoder is similar. At the same time,
considering the narrow nature, connectivity, complexity, and
long span of roads, retaining more detailed feature information
is necessary. Therefore, we use dilated convolution to expand the
receptive field of the model in En_4 and En_5. However, per-
forming multiple dilation convolutions on an input feature map
with pristine resolution (especially in the early stages) requires
too much computational and memory resources. Theoretically,
it is beneficial to use dilation convolution in other modules.
But in this article, we believe that the cost of applying dilation
convolution is too high and the benefits are low. Therefore,
considering the limited model size and computer resources, we
only use multiple dilation convolutions with different dilation
rates in modules En_4 and En_5. With the improved encoder,

the RUW-Net can extract features at different scales directly
from the RSU at different depths. Thus, the model can obtain
more comprehensive contextual features, which is beneficial for
enhancing semantics.

The recoding structure presented in the literature [19] re-
stores the 16×16×512 feature map from the second encoder
(H×W×C with an input image size of 512×512×3) directly
to the original image size for image prediction. Although this
operation reduces some of the network parameters, the final
segmentation result will be affected. Because the feature map
of the last layer is too small for complex RS images, the features
extracted in the recoding stage cannot be fully utilized if only
the “reshape” operation is performed directly. Therefore, after
the feature map has been downsampled by the second encoder,
we add the rear decoder part to form a dual codec structure. And
the DEC module is designed to fully fuse the contextual features
obtained during model training to maximize the use of the
extracted semantic information. The ultimate aim is to improve
the segmentation effect. The decoder structure of RUW-Net
remains substantially the same as that of D-LinkNet to reduce
the number of parameters and complexity of the model. Because
the D-LinkNet decoder is more computationally efficient and
lighter. The upsampling layers of the decoder are shown in the
bottom left of Fig. 2 and consist of three layers. The input
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Fig. 3. Structure of RSU at different depths.

feature map of the first layer is the fused feature map of the
encoder part by jump connection and De_n, which changes the
number of channels by a single 1×1 convolution operation.
Then, using transposed convolutional layers with stride factor
equals 2. This operation increased the image size to twice
the size of the input feature map while keeping the number
of channels unchanged. After the transposed convolution, the
number of channels is again adjusted using 1×1 convolution.
Where m denotes the number of channels of the input feature
map and n denotes that of the output feature map. The decoder
restores the final resolution of the feature map to 1024×1024
size by upsampling layers. The DEC module is connected to
each sublayer of the front decoder to extract the intermediate
features of the number of categories. The rear decoder combines
the fused intermediate features extracted from the DEC module
when performing image segmentation prediction. The dashed
rectangular area in Fig. 2 is the DEC module.

B. ReSidual U-Block

The structure of RSU at different depths (RSU-n) is shown
in Fig. 3. The parameter n represents the block depth. The
deeper the depth, the more pooling operations and the larger the
range of the receptive domain. Therefore, richer local and global
contextual information can be extracted. The RSU is a miniature
U-shaped structure that can also be divided into encoding and
decoding sections. Specifically, the RSU consists of the down-
sampling layer (Downsample Conv + BN + RELU), the dilated
convolution layer (Conv + BN + RELU Dilation = n), and the
upsampling layer (Upsample Conv + BN + RELU), where the
upsampling and downsampling layers transversally pass feature
information through a skip connection. The upsampling layers
of RSU consist of three parts, namely convolution operation,
Batch Normalization operation, and RELU operation. Among
them, the convolution operation is transposed convolution with
a kernel size of 3×3 and a stride of 2, which expands the
feature map size inside the RSU without changing the channel
number. The input and output of the Batch Normalization layer

are four-dimensional tensor. The Batch Normalization operation
is designed to speed up the training process and improve the
performance of the model by suppressing the internal covariate
bias problem during the training process by normalizing each
channel of the input tensor. The RELU layer is a nonlinear
activation function that enhances the nonlinear representation
of the mode. The input and output shapes of the RELU layer
are the same as those of the convolutional and BN layers.
The encoding part of the RSU has an additional feature map
of the size of the input compared to the decoding part. This
feature map is subjected to an addition operation with the entire
downsampled processed features of RSU to retain more global
information. The RSU collects multiscale contextual features
from a progressively downsampled feature map. It encodes the
multiscale feature map into a high-resolution feature map by
progressive upsampling, concatenation, and convolution. This
process mitigates the loss of detail due to direct upsampling at
large scales. Fig. 4 shows the comparison of the structure of the
RSU and the ordinary residual block.

Both the ordinary residual block and the RSU can be seen
as consisting of three parts. First, an input convolution layer,
which converts the input feature map x (H×W×C) into an
intermediate feature map. It is an ordinary convolutional layer
for local feature extraction, such as 3×3 convolution. Second,
the intermediate feature map, which is used as the input for
further extracting features. Finally, a residual concatenation
operation that fuses multiscale features through an Addition
operation. The difference between the ordinary residual block
and the RSU lies in the way of further feature extraction in
(2), which makes the features fused in (3) different too. The
ordinary residual block is Fout = F2(F1(x)) + x While RSU
extracts more multiscale contextual features by replacing the
plain single-stream convolution with a U-shaped structure. It
can be expressed as: Fout = U(F1(x)) + x.

The process of obtaining U (F1 (x)) is shown in Fig. 4, and
the RSU-5 is used here as an example for illustration. First,
the input feature map x(C×H×W) undergoes a 3×3 ordinary
convolution to get the input F1 (x) of RSU-5. Then, adjust the
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Fig. 4. Comparison Diagram of the Res-block and the ResU-block. (a) Res-block. (b) ResU-block.

channel by 3×3 convolution, Batch Normalization, and RELU
operations. This is followed by three consecutive identical op-
erations, each consisting of downsampling, convolution, Batch
Normalization, and RELU. In the central region, a single dilation
convolution with a rate of 2 is used to expand the receptive field
without consuming a large amount of memory and resources.
The upsampling part contains transposed convolution, Batch
Normalization, and RELU operations to expand the size of the
feature map and finally obtain U (F1 (x)). Finally, U (F1 (x))
will be added to F1 (x) element by element.

C. Decoder-Encoder Combination

Fig. 5 is the structure of the DEC module. The DEC is mainly
designed for the front decoder and the rear encoder to transfer
features and fuse multiscale contextual features. Combined with
Fig. 2, we add the operation of category number segmentation
prediction to the feature map at the end of each sublayer of
the front decoder. The purpose is to generate an intermediate
binary prediction feature map. That means the input to the DEC
module is the feature maps of the different sublayers of the
front decoder, and the module outputs the intermediate class
binary predictions of the corresponding sublayers by means of
a convolution operation. As each sublayer processes a feature
map of varying sizes, we can obtain the multiscale category
segmentation feature map. The red curved arrows in Fig. 5
represent categorical feature transmission and the yellow arrows
represent multiscale categorical feature fusion. The calculations
in the DEC module come mainly from convolution and con-
catenation operations, so the module is lightweight and easy to
use. The DEC module feeds the top two feature maps in Fig. 5
into the first sublayer of the rear encoder, while the remaining
feature maps at the bottom of Fig. 5 are fed into the other
sublayers of the rear encoder.

These category feature maps will be passed in two paths. Path
(I) is an information fusion with the regular feature map in the
rear encoder region. That will be carried through a concatenation
operation after a downsampling operation. Then the rear encoder

Fig. 5. Structure of the DEC module.

continues to filter the features through a series of RSUs. Path
(II) is a contextual fusion of segmentation prediction maps at
different scales. The fusion results from II are fed into the end
region of the rear encoder (the region of the rear decoder pointed
to by a yellow arrow in Fig. 2) to assist in the final category
prediction.

D. Feature Fusion and Loss Functions

The overall multiscale feature fusion process of the RUW-Net
model is shown in Fig. 6. This process can be divided into three
parts: (a), (b), and (c). (a): Fusion of shallow and high-level
contextual features by skip connections between the front and
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Fig. 6. Schematic diagram of feature fusion process.

rear sets of encoders and decoders. (b): With the help of path
(I) of the DEC module, the front decoder can carry out efficient
information transfer with the rear encoder. The front decoder
passes the intermediate category prediction features to the rear
encoder as additional input information. The rear encoder fuses
the received features with its output features. Those features have
been filtered to preserve global contextual information, which
can effectively prevent information loss. (c): With the help of
path (II) of the DEC module, the intermediate multiscale feature
fusion results are saved and fed to the rear decoder. The rear
decoder is responsible for coordinating the multiscale local and
global contextual features extracted by the RUW-Net. During
the fusion process, the RUW-Net is able to make fuller use of
the contextual features and enhance the semantic information,
thus optimizing the image segmentation results.

Pf = S (Pn) , n = 1, 2, 3, 4, 5, 6 (1)

Pl = Concat[Pf ,RE (x)], n = 1, 2, 3, 4, 5, 6. (2)

Let P be the output feature from the front decoder. Pn

corresponds to the feature branches generated by each sublayer
of the front decoder. And the generated category segmentation
features can be represented by Pf . These category features
will then be fused with the features from the rear encoder. Pl

represents the features to be fed to the rear decoder after fusion,
and x represents the features input at different stages of the rear
encoder. RE(x) denotes the output feature from the rear encoder.
S represents the sigmoid function.

L =

U∑

u=1

wu
classl

u
class + wfuselfuse (3)

l = 1− 2×∑N
i=1 |Pi ∩ Ti|∑N

i=1 |Pi ∪ Ti|
+

N∑

i=1

Lbce(Pi, Ti). (4)

The model uses the overall loss function shown in (3), which
consists of two components. The u denotes the current image
segmentation category and U denotes the total number of seg-
mentation categories. The luclass represents the loss function
for generating intermediate category predictions in the DEC
module. The lfuse denotes the loss for the network to fuse the
output binary predictions in the rear decoder. The wu

class and
wfuse are the weights corresponding to the loss functions. The
luclass and lfuse both take the form shown in (4), containing a
binary cross-entropy loss function and a dice loss function. Ti

represents the true label value of a pixel, Pi means the predicted
value, and N is the total number of pixels. Road extraction can
be seen as a binary classification task. The pixel values for
roads are set to 1. Others are classified as backgrounds, and
the pixel values are set to 0. Through the loss function, all pixel
values activated in the predicted segmentation image but not
in the true segmentation label image are cleared to zero. For
the active pixels, it mainly punishes the prediction with low
confidence. And the prediction with high confidence will get a
lower loss function. The learning ability of the model is trained
iteratively by minimizing the loss function.

IV. EXPERIMENTS AND ANALYSIS

In this section, we first describe the dataset and the evaluation
metrics. Then, we present details of the experiments conducted
and the analysis of the results. The experiments include com-
parative experiments, model complexity analysis, robustness
experiments, and ablation experiments.

A. Datasets

We used three datasets in the experiment, namely DeepGlobe,
CHN6-CUG [47], and Massachusetts.

DeepGlobe Road Dataset: This dataset contains 6226 pairs
of labeled 1024×1024 size RGB satellite RS images. The
resolution of image is 0.5 m/pixel. The images are collected
by Digital Globe’s satellites. However, the dataset labels are not
perfect, particularly in rural areas, due to the cost of annotating
segmentation masks and unlabeled trails within farmland. The
images cover Thailand, India, and Indonesia. And the image
scenes contain a variety of environments including urban, rural,
wilderness, seaside, and tropical rainforest.

CHN6-CUG Road Dataset: Produced and shared by the China
University of Geosciences, Wuhan, China. CHN6-CUG dataset
contains 4511 images of 512×512 size. It covers six Chinese
cities, including Beijing Chaoyang District, Shanghai Yangpu
District, Wuhan City Centre, Shenzhen Nanshan District, Hong
Kong Shatin, and Macau. Of these images, 3608 pictures are
used for model training and 903 for testing and result evaluation,
with a resolution of 0.5 m/pixel.

Massachusetts Road Dataset: It consists of 1171 RGB aerial
images of Massachusetts. Each picture is 1500×1500 size, with
1108 images as the training set, 14 images as the validation set,
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and 49 images as the test set. The dataset covers urban, suburban,
and rural areas.

B. Evaluation Indicators

In order to objectively evaluate the effectiveness of the model,
Precision, Recall,F1 scores, and mIoU are used as specific eval-
uation indicators. The formulas for five evaluation indicators are
shown in (5)–(9). The TP (True Positive) represents pixels that
are predicted to be roads and are real roads, FP (False Positive)
represents pixels that are predicted to be roads but are not roads.
The FN (False Negative) represents pixels that are predicted to
be nonroads but are real roads. And k + 1 denotes the total num-
ber of target categories including background. The rij denotes
the number of pixels predicting category i as category j. The rji

denotes the number of pixels predicting category j as category i.
And the rii denotes the number of accurately predicted pixels.

Precision =
TP

TP + FN
(5)

Recall =
TP

TP + FP
(6)

F1 = 2× Precision × Recall
Precision + Recall

(7)

IoU =
TP

TP + FP + FN
(8)

mIoU =

∑k
i=0

rii
∑k

j=0 rij+
∑k

j=0 rji−rii

k + 1
. (9)

C. Experimental Results and Analysis

All experiments were conducted on Windows 10, using Py-
Torch 1.7 framework, two Intel(R) Xeon(R) Silver 4310 CPU,
and an NVIDIA GeForce RTX 3090 GPU. We used Deep-
Globe, CHN6-CUG, and Massachusetts datasets to train and
evaluate the proposed RUW-Net model. The input DeepGlobe,
CHN6-CUG dataset images are of default size, i.e., 1024×1024
and 512×512. For the Massachusetts dataset, the images were
resized to 1024×1024. The learning rate was originally set 2e-4,
and reduced to half while observing the training loss decreasing
slowly for 4 times. The batch size during training phase was
fixed as 8. We used 0.5 as our prediction threshold to generate
binary outputs. Adam optimizer is used to train our network and
its hyperparameters are set to default (betas= (0.9, 0.999), eps=
1e-8). We used validation dataset to train the network. Bilinear
interpolation is used in resizing processes. To illustrate the
effectiveness and generalization of the RUW-Net model, we per-
formed comparative experiments, model complexity analysis,
robustness experiments, and ablation experiments, respectively.

1) Comparative Experiments: To validate the effectiveness
of the RUW-Net model, we trained the model on the DeepGlobe
dataset first and compared the results with those of the other
eight representative models. The comparison models include the
LinkNet [12], U-Net [9], DoubleU-Net [31], NC-Net [19], D-
LinkNet [11], TransUNet [14], DD-LinkNet, and U2-Net [18].
The DD-LinkNet is the first version of the improved D-LinkNet,

which contains the dual codec structure and the DEC module (the
same below). The specific accuracy of each type of evaluation
metric is shown in Table I. The bolded values are the overall
optimal results, and the underlined values in the table are the
second best results.

Quantitative analysis: From the indicators in Table I, it can be
found that among the nine models, the RUW-Net model achieves
the best overall performance, while the U2-Net is the second
best. The RUW-Net model outperforms the U2-Net by 7.0%,
2.7%, 1.7%, and 2.2% in Precision, mIoU, IoU, and F1 scores,
respectively. The Recall is the second best at 3.4% lower than
that of the U2-Net. One aspect contributing to this is the trade-off
relationship between Precision and Recall metrics. RUW-Net
shows a significant improvement in Precision compared to U2-
Net, which to some extent limits its performance in the Recall
metric. Another factor is related to the network architecture of
RUW-Net and U2-Net. The encoder and decoder of U2-Net are
constructed using RSU, while the decoder part of RUW-Net,
considering model complexity, does not use RSU but employs
simpler and lighter upsampling layers. In comparison to the
decoder part of U2-Net, the capable of handling the features
capability of RUW-Net decoder is slightly inferior, resulting in
a second best performance in the Recall metric. In addition, the
DD-LinkNet model outperforms the other six models, including
the D-LinkNet. The performance of DD-LinkNet in the four
metrics validates the effectiveness of the dual codec structure
proposed in this article. Due to the implementation of RSU to
construct the encoding module, we can train the RUW-Net model
from scratch without relying on pretrained models such as the
Resnet series in D-LinkNet. Although these pretrained models
can speed up fine-tuning and model training to some extent, the
pretrained models of Resnet and other series are not specifically
trained on RS images. In other words, they cannot perfectly meet
the requirements of semantic segmentation in specific RS image
scenarios.

Qualitative analysis: Fig. 7 shows the visualization results
of nine models, including RUW-Net and DD-LinkNet, on the
DeepGlobe dataset. As can be seen from the ellipse-boxed area
in Fig. 7, the original D-LinkNet has missing or broken content
for the road extraction of RS images. The RUW-Net is better than
the other eight models including the original D-LinkNet after the
improvement of this article. Compared to other models, the road
extraction results obtained by the RUW-Net are better in integrity
and accuracy for both simple and complex RS images. From the
experimental results, we can see that the RUW-Net, in the model
training stage, makes up for some of the multiscale features
lost in simple downsampling due to resolution degradation. Our
model can extract more global contextual features by replacing
ordinary residual blocks with RSUs. At the same time, the
RUW-Net fuses the extracted multiscale contextual features with
the help of the DEC module, making fuller use of local and
global semantic information. Thus, the segmentation effect of
road entities in RS images is improved.

2) Model Complexity Analysis: To illustrate the validity of
the model structure proposed in this article, a model complexity
analysis was conducted for nine models. The specific parameters
are detailed in Table II. The bolded values are the overall optimal
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Fig. 7. Visualization of the results of different models on the DeepGlobe dataset.
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TABLE I
PERFORMANCE OF MODELS ON THE DEEPGLOBE

TABLE II
PARAMETERS OF MODEL COMPLEXITY

results, and the underlined values in the table are the second best
results.

From Table II, we can see that the RUW-Net model has a
lot more computation and parameters compared to D-LinkNet,
which is mainly due to the following two reasons. The first is the
improvement of the encoder part of D-LinkNet, we use the RSU
instead of the normal residual block for the feature extraction of
the model in the downsampling stage. RSU is essentially a sim-
ple and lightweight U-shaped structure, which can effectively
help the model to extract the multiscale contextual features,
so we apply it in the RUW-Net model to improve the feature
optimization ability. Although RSUs are relatively lightweight,
applying multiple RSUs will inevitably increase the amount of
model computation and number of parameters.

The second is the extension of the D-LinkNet model to the
W-type. Why do we complicate the model? Because roads
usually have a small percentage of pixels in complex RS images,
mostly appearing as elongated strips, and the texture structure is
easily affected by similar features in the neighborhood. These
reasons make it difficult to extract good results by the conven-
tional U-shaped structure [9], [11], [12]. Therefore, we take a
new perspective and try to use two U-shaped structures to form
a W-shape to enhance the model to extract more long-range
relationships and more robust features. This process inevitably
increases the complexity of the model. In our future work, we

will streamline the model, reduce its complexity, and improve
the practicality and ease of use while ensuring its accuracy.

The RUW-Net model has an increased complexity compared
with D-LinkNet, but it achieves the highest F1 scores with
medium FLOPs and Params metrics among all models. In other
words, the effective improvement of the RUW-Net model on the
road extraction results is mainly due to the useful dual codec
structure and the DEC module designed in this article, rather
than by simply expanding the number of model parameters.

3) Robustness Experiments: We designed an experiment to
verify the robustness of our model against the interference of
other surface features when extracting roads. The random mask
is applied to the road entities in the test set to simulate the
interference of trees, buildings, farmland, and other features in
RS images. The number of occlusions is set to 10, the occluded
area is set to a size of 20×20. The pixel value of the occluded
area is set to the average pixel value of the original image,
and the image has a 1024×1024 size. We masked the training
data in the same way as the test images during the training of
the RUW-Net model.

Table III shows the experimental results of the robustness
of the three models, the D-LinkNet, the DD-LinkNet, and the
RUW-Net on the DeepGlobe dataset. The bolded values are the
overall optimal results, and the underlined values in the table
are the second best results. From the results, it is easy to see that
the robustness of both the DD-LinkNet, and the RUW-Net is
better than that of the D-LinkNet. The average decrease in each
metric is 2.5% for the D-LinkNet, and 1.6% for the DD-LinkNet
with the DEC module added. The RUW-Net, which rebuilds the
encoder on the basis of DD-LinkNet, saw the smallest decrease
of only 1.0%. That means the extraction effect of the RUW-Net is
still good. To further illustrate the robustness of the model in this
article, the results are visualized in Fig. 8. It can be seen from the
rectangular box marking part that the RUW-Net performs best
and shows strong resistance to interference. From the observed
results, we can conclude that both the DEC module proposed
in this article and the dual codec structure built on top of it are
conducive to improving the road extraction results of RS images.

4) Ablation Experiments: To further validate the effective-
ness and generalization of the RUW-Net model with a dual
codec structure and the DEC module proposed in this article,
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TABLE III
MODEL ROBUSTNESS COMPARISON ON THE DEEPGLOBE

TABLE IV
PERFORMANCE OF MODELS ON DIFFERENT DATASETS

we extended the datasets and designed the ablation experiments
on the DeepGlobe, CHN6-CUG, and Massachusetts datasets,
respectively. Three sets of experiments were set up for each
dataset, corresponding to the D-LinkNet, the DD-LinkNet, and
the RUW-Net. The models were all trained for 100 epochs and
evaluated on the same test set for each evaluation metric.

Quantitative analysis: The specific accuracy is detailed in
Table IV. The bolded values are the overall optimal results, and
the underlined values in the table are the second best results.
As can be seen from the table, the DD-LinkNet with the DEC
module has a 1.0%, 4.0%, 3.5%, 3.2%, and 2.8% improvement
in mIoU, IoU, Recall, F1 scores, and Precision, respectively,
compared to the D-LinkNet in the DeepGlobe dataset. The
RUW-Net has the DEC module and the rebuilt encoder using
RSU. Compared with the DD-LinkNet which only added the
DEC module, it shows significant improvements in each metric.
Specifically, The RUW-Net has an average enhancement of
3.8%. In the CHN6-CUG dataset, the RUW-Net outperforms
the DD-LinkNet in mIoU, IoU, and the Recall but is lower in
Precision. The reason may be that the labels of CHN6-CUG are
relatively coarse-grained and there is a constraint relationship
between Precision and Recall. The DD-LinkNet performs bet-
ter in Recall, IoU, Precision and F1 scores compared to the

D-LinkNet. The average improvement is 3.3%. In the Mas-
sachusetts dataset, the DD-LinkNet model improved on average
by 1.8% in Precision, Recall, IoU, and F1 scores compared to
D-LinkNet. The RUW-Net improved on average by 2.9% in
all metrics compared to DD-LinkNet. The specific accuracy
of the models on the three different datasets shows that the
RUW-Net achieves the best overall and the DD-LinkNet is the
second best.

Qualitative analysis: To more intuitively illustrate the effec-
tiveness of the RUW-Net on the RS road extraction, we selected
two images from each dataset for results comparison. Fig. 9
shows the visualization results of the ablation experiment. From
the area circled by the ellipse in the figure, we know that the
RUW-Net model performs better overall than DD-LinkNet and
D-LinkNet in all three datasets. It can extract more complete road
shapes and more accurate extraction results. Through the abla-
tion experiments of RUW-Net, DD-LinkNet, and D-LinkNet, we
can conclude that both the RUW-Net dual codec structure and
DEC module are beneficial to the refined extraction of RS roads.

All the above-mentioned experimental results demonstrate the
effectiveness and generalization of the RUW-Net model with
the dual codec structure proposed in this article. The RUW-Net
model can extract rich local and global contextual features in the
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Fig. 8. Visualization of model robustness on the DeepGlobe.

encoding stage. The DEC module of the RUW-Net facilitates the
feature selection process between the front decoder and the rear
encoder. The dual codec structure formed by the model extracts
more multiscale contextual features. After feature transfer by the
DEC module, the multiscale features are fused with the features
obtained from downsampling in the rear encoder region. The
semantic information of road entities is enhanced in the rear
decoder using the global contextual features, thus improving
the road extraction results of RS images.

V. DISCUSSION

Extracting roads from RS images to produce high-quality
road networks is actually a challenging task. Factors including

occlusion of objects, texture interference, as well as the narrow
and elongated nature of the roads themselves, often result in
challenges such as fragmented extraction and missing content
when extracting roads from RS images. Although classic models
such as U-Net, LinkNet, and D-LinkNet are lightweight and
capable of quickly extracting roads, they often learn primarily
local features, resulting in good extraction of local details.
However, due to the lack of global information, particularly
global contextual information, these models struggle to meet the
standards required for road extraction in practical applications.
Recently, many researchers have been exploring improvements
to DCNN models by focusing on the network architecture.
For example, as mentioned earlier, models such as NC-Net
and DoubleU-Net have been developed to enhance the model’s
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Fig. 9. Visualization of the results of models on different datasets.

perception of contextual information by increasing the number
of encoders or decoders.

Similar to their work, this article also focuses on the overall
network architecture by increasing the number of encoders and
decoders. However, what sets our work apart is that we further
adjust the network architecture. In our approach, we embed a
mini-U-shaped structure within the encoder section, allowing for
the repeated utilization of U-shaped structures to extract more
global contextual features. In addition, we effectively utilize
features by incorporating DEC modules within the W-shaped
network structure. In Section IV, we conducted experiments and
analysis to evaluate the effectiveness, model complexity, robust-
ness, and generalization of our proposed model. Based on these
quantitative and qualitative experimental results, it is evident
that our model performs well in high-resolution road extraction
from RS imagery, outperforming the other comparative models
presented in this article. We believe that our model is valuable
in terms of utilizing contextual information to efficiently carry
out the extraction of road networks.

Certainly, our proposed model has its limitations. Enhancing
the feature representation capability of a model through a nested
stacked U-shaped structure inevitably increases the complexity
of the model, leading to higher computational resource re-
quirements. How to simplify the model while maintaining its

performance will be a focus of our future work. In practice,
algorithms often perform worse than their theoretical counter-
parts due to various factors that are overlooked in theoretical
analysis, such as noise. The robustness of the model will be
higher if it can incorporate stable statistical features and not only
rely on data-driven extraction of learned features. If data-driven
algorithms can be combined with heuristic algorithms, then
statistical features can be utilized as well as learned features,
and the cost of data labeling can be reduced at the same time.
We believe that such methods will further improve the robustness
and usefulness of RS road extraction.

VI. CONCLUSION

This article improves the D-LinkNet model and proposes
a RUW-Net semantic segmentation model with a dual codec
structure for road extraction from RS images. The model allevi-
ates the problem that road entities are easily disturbed by other
surface features, resulting in inconspicuous semantic informa-
tion and further leading to broken and misidentified extracted
roads. With the help of our designed dual codec structure and
the DEC module, the RUW-Net model can capture and fuse
more multiscale contextual features. These features can enhance
the semantic information during the model training stage and
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improve the road extraction result. A series of experiments on the
three datasets show that our RUW-Net is feasible and effective.
Compared with other representative methods, the RUW-Net
model has more complete extraction results and higher accuracy.
The RUW-Net also provides a new idea for RS image road
extraction. However, the model in this article also increases the
computational overhead, and the next step is to consider how to
streamline the network structure under the premise of accuracy.
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