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Parallel Fusion Neural Network Considering Local
and Global Semantic Information for Citrus Tree
Canopy Segmentation

Haiqing He ", Fuyang Zhou

Abstract—Existing convolutional neural network (CNN) based
methods usually tend to ignore the contextual information for citrus
tree canopy segmentation. Although popular transformer models
are helpful in extracting global semantic information, they ignore
the edge details between citrus tree canopies and the background.
To address these issues, we propose a parallel fusion neural network
considering both local and global semantic information for citrus
tree canopy segmentation from 3-D data, which are derived by
unmanned aerial vehicle (UAV) mapping. In the feature extraction
stage, a parallel architecture, concatenated by EfficientNet-V2 and
CSwin transformer, is used to extract local and global informa-
tion of citrus trees. In the feature fusion stage, we design a co-
ordinate attention-based fusion module to retain the contextual
information and local edge details of citrus tree canopies. Addi-
tionally, to exaggerate the exclusivity between tree canopies and
complex backgrounds, 3-D data incorporating RGB imagery and
canopy height model derived by UAV photogrammetry are gen-
erated for citrus tree canopy segmentation. Experimental results
indicate that the proposed method performs considerably better
than methods based only on CNN or transformer models and is
superior to state-of-the-art methods (e.g., the highest mIoU score of
93.46%).

Index Terms—Citrus tree canopy, complex background, con-
textual information, self-attention mechanism, semantic segmen-
tation.
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1. INTRODUCTION

ITRUS tree positioning and counting are conducive to
C high-throughput phenotypic research and fine agricultural
management. The most important component of a citrus tree
is the canopy, which is usually considered an indicator for
evaluating growth vitality and characterizing the competitive
relationship between trees [1]. Therefore, obtaining canopy
information is crucial to determining the location, quantity, and
growth of citrus trees. Traditionally, manual surveys and field
measurements of citrus tree canopies are time-consuming and
labor-intensive, which are often unable to satisfy the requirement
of high-efficiency and high-accuracy acquisition of citrus tree
canopy information. In this study, to obtain citrus tree canopy
information efficiently and low costly, we concentrate on how to
extract citrus tree canopy information from ultrahigh-resolution
and low-cost unmanned aerial vehicle (UAV) photogrammetry-
derived data. In terms of image-based information extraction,
image segmentation is the crucial step for tree canopy extraction.

In recent years, given the great success of deep learning,
semantic segmentation methods based on deep learning have
attracted continuous and even increasing attention from re-
searchers [2], [3]. Compared with manually designed methods,
deep learning-based segmentation methods perform consider-
ably better in many applications [4], [5], [6]. The fully convolu-
tional network (FCN) [7], which consists of convolutional and
pooling layers arranged alternately, is the first end-to-end seman-
tic segmentation neural network. To alleviate the loss of local
details caused by pooling operations in FCNs, U-Net [8] was
proposed to retain the local details of the original input size of the
image by connecting low-level and high-level features through
skip connections’ operations. However, given the limited recep-
tive field of the convolutional kernel in FCN or U-Net, it cannot
extract rich the global contextual information of the image.
To address this problem, some improved deep networks were
proposed. Chen et al. [9], [10] presented DeepLab to increase the
receptive field of the convolutional kernel through dilated con-
volutions. In addition, other networks, such as DANet [11], the
bottleneck attention module [12], and the convolutional block
attention module [13], have been proposed to extract global
semantic information by introducing attention mechanisms. By
increasing the receptive field or introducing an attention mech-
anism, the problem of insufficient global semantic information
for image segmentation can be alleviated to varying degrees, but
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the global information obtained by these two methods is limited.
In contrast to the convolutional neural network (CNN) used
in the aforementioned deep networks, the transformer model
proposed by Google based on an attention mechanism can effec-
tively obtain global contextual information [14]. Derived deep
networks based on the transformer model have been proposed
for image applications. For example, the vision transformer
(ViT) [15] model was proposed for image processing, which
achieved excellent performance on large-scale datasets due to
the use of global contextual information. In addition, a model
specifically proposed for image segmentation, named segmenta-
tion transformer (SETR) [16], was applied to conduct semantic
segmentation tasks by introducing CNN as a decoder based on
ViT. Since then, many researchers have proposed a series of
improved algorithms based on the transformer model, such as
ResT [17], BEIT [18], Swin [19], and CSwin [20]. Given the
outstanding capabilities of local and global feature extraction
by using CNN and transformer, these semantic segmentation
models have been proven to perform well in object segmentation
[21], [22].

In addition, inspired by the powerful performance of land
cover semantic segmentation from remote sensing images [23],
[24], [25], a state-of-the-art deep network considering local and
global semantic information, namely, DeepLab V3+ [10], was
used for tree canopy segmentation in different scenarios [26].
Guirado et al. [27] and Braga et al. [28] used the mask R-CNN
instance segmentation model to segment tree canopies in tropical
forests and drylands. Except for the visible-spectrum images
used in the above methods, multiband images, including the
near-infrared band, were also used for tree canopy segmentation
in deep networks and achieved better performance compared
with using only the visible-light bands [29], [30]. Specifically,
related to this study, deep neural networks have been widely
studied for tree canopy segmentation. Different CNN-based
models, such as FCN, U-Net, SegNet, DeepLabV3+, DDCN,
SSD, R-CNN, and faster R-CNN, were applied to extract tree
canopies [31], [32], [33]. However, these deep networks have
difficulty satisfying the requirements of citrus tree canopy seg-
mentation under complex terrain and backgrounds, mainly due
to the following two reasons: First, tree canopy segmentation
relying solely on 2-D images is insufficient to characterize
the uniqueness of tree canopies; and second, most CNN-based
methods that do not consider global contextual information are
sensitive to local information around tree canopies. Therefore,
how to effectively integrate the advantages of CNN and trans-
former in extracting local and global contextual information
of tree canopies, and introduce extra information to improve
the applicability of deep networks, has become a crucial and
valuable issue for tree canopy segmentation.

According to the above-mentioned literature, CNNs can ef-
fectively extract local detailed information but lack global con-
textual information. By contrast, the transformer can effectively
extract global contextual information for each pixel but lacks
local detail information. Hence, the combination of CNN and
transformer through transfer learning can help improve the
performance of citrus tree canopy segmentation under complex
backgrounds. In addition, the height and geometric structure of
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citrus tree canopies, characterized by the canopy height model
(CHM), are valuable to eliminate the influence of terrain and
broaden the discriminative gap between citrus trees and sur-
rounding weeds. Therefore, in this study, a parallel fusion neural
network considering local and global semantic information is
proposed to cater to the requirements of citrus tree canopy seg-
mentation under complex backgrounds. This network consists
of two branches, including CNN and transformer channels. The
CNN branch mainly extracts local features between adjacent
pixels, whereas the transformer branch mainly extracts global
contextual information between pixels in the entire image. To
combine the advantages of the two branches effectively, we
design a coordinate attention-based fusion module (CAFM) to
retain the contextual information and local edge details of citrus
tree canopies. Considering the influence of terrain and weeds
fully, the CHM without topographic relief is input into the
proposed network along with the visible-spectrum image. That
is, the input data can be considered 3-D (i.e., 2-D true-color RGB
image and CHM).

The main contributions are given as follows.

1) A parallel deep network combining improved
EfficientNet-V2 and CSwin transformer was designed to
extract local and global semantic information, by which
the contextual information and local edge details of citrus
tree canopies can be effectively retained.

2) In the decoding phase of the proposed network, a fea-
ture fusion module was constructed to integrate local and
global semantic information extracted by EfficientNet-V2
and CSwin transformer, respectively. It is very useful for
reducing redundant information that is not valuable for
citrus tree canopy segmentation.

3) The 3-D data used in this study combines RGB imagery
and CHM derived by UAV photogrammetry, which can
exaggerate the exclusivity between tree canopies and com-
plex backgrounds (terrain variations and dense vegetation
especially).

4) By sharing the initial weights and parameters of state-
of-the-art deep networks through transfer learning, it is
possible to train the proposed network without requiring
a large amount of training sample data from scratch.

II. RELATED WORKS

This section mainly introduces the research progress of se-
mantic segmentation methods based on deep learning, including
CNN-based semantic segmentation methods, transformer-based
semantic segmentation methods, and CNN- and transformer-
coupled segmentation methods, as well as some related work on
semantic segmentation in tree canopy segmentation.

A. Semantic Segmentation Methods Based on Deep Learning

As the first end-to-end semantic segmentation fully convolu-
tional network, i.e., FCN [7], it promotes the application of deep
learning models in image segmentation. However, the pooling
operation in FCN destroys the spatial information of feature
maps (such as shape and texture), resulting in a lack of local
detailed information in FCN. To obtain high-level semantic
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representation while retaining the local detailed information
of objects, U-Net [8] improved the segmentation ability of
CNN in local details effectively by fusing high-resolution fea-
ture maps at different levels in the encoding phase with skip
connections. Given the limited receptive field of convolutional
kernels, CNN-based semantic segmentation models also lack
global contextual information. To obtain global contextual in-
formation, some researchers have proposed different multiscale
contextual information fusion methods. DeepLab was proposed
to increase the receptive field of convolutional kernels effec-
tively by extracting multiscale contextual information using an
atrous spatial pyramid pooling module with a dilated convolu-
tion operation [9], [10]. PSPNet was proposed to fuse global
contextual information with different receptive fields by using
the pyramid pooling module [34]. In addition, some researchers
have introduced attention mechanisms [14] to establish global
relationships. DANet [11] was designed to establish long-term
dependency relationships and obtain global contextual informa-
tion from different dimensions by a dual attention mechanism for
channel and spatial dimensions, and HRCNet [35] was designed
to obtain global information by a lightweight dual attention
module. The above-mentioned networks can all obtain global
information through multiscale information fusion and atten-
tion mechanisms, but their ability to extract global contextual
information remains limited.

Compared with CNN-based methods, the transformer meth-
ods based on self-attention mechanisms can effectively obtain
global contextual information, thus showing excellent perfor-
mance in the field of computer vision [3]. The aforementioned
transformer models (e.g., ViT [15] and SETR [16]) require a
series of patches for input, thus ignoring the local information
in each patch. To obtain local representations in the transformer
structure, many researchers have proposed improved algorithms
based on the transformer model. For example, Zhang and Yang
[17] designed a deep network, namely, ResT, to obtain the feature
maps of different levels and semantic representations by a patch
embedding layer. Liu et al. [19] designed a deep network named
Swin, which divides the input image into nonoverlapping small
images of size 4 x 4 and performs self-attention calculation
in each small image. Subsequently, based on Swin and local
enhanced position encoding (LePE), CSwin [20] was proposed
to obtain local information by performing self-attention calcula-
tions within the cross-shaped stripe window. Although the above
transformer-based methods can obtain the local information
of images, the transformer-based pure attention mechanism is
weaker than CNN in obtaining local detailed information. How
to obtain local and global information simultaneously by rea-
sonably fusing CNN and transformer has become an important
issue in semantic segmentation.

Therefore, to combine the advantages of CNN and trans-
former, some researchers have proposed different fusion meth-
ods. For example, Chen et al. [36] proposed TransUNet in
which skip connections are introduced to fuse shallow features
extracted by CNN, and global contextual information extracted
by transformer is combined to segment together. Zhang et al.
[37] used Swin transformer and CNN as the encoder and de-
coder, respectively, and adopted the spatial-asymmetric spatial
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pyramid pooling module based on deep separable convolu-
tion to obtain multiscale contextual information. In addition to
the aforementioned serial fusion methods, the parallel fusion
methods can also be used to fuse the CNN and transformer.
Zhang et al. [38] proposed a parallel network architecture named
TransFuse in which the BiFusion module is used to fuse the
multilevel features, including global contextual information and
local detail information, which are extracted by CNN and trans-
former, respectively. Subsequently, Gao et al. [39] proposed
an improved TransFuse called STransFuse, which combines
ResNet and Swin transformer in a parallel structure and fuses
global and local information through an adaptive fusion module,
achieving good performance on the Vaihingen and Potsdam
remote sensing datasets. Although the aforementioned CNN and
transformer fusion methods can achieve good performance in
medical images and public datasets, they are not suitable for land
cover segmentation in complex backgrounds. The main reason is
that these methods are easily influenced by ground objects with
similar textures, thus leading to poor segmentation accuracy.

B. Tree Canopy Segmentation Based on Deep Learning

Closely related to this study, many other studies have also
been conducted on tree canopy semantic segmentation based on
deep learning from remote sensing imagery. Typically, Morales
et al. [26] used the DeepLabV3+ network to segment palm
tree canopies from UAV high-resolution imagery, achieving an
accuracy of 98.14% on the test set. Braga et al. [28] used the
mask R-CNN network to detect and delineate tree canopies in
tropical forests, obtaining good tree crown segmentation results
in high-resolution satellite imagery. Guirado et al. [27] fused
mask R-CNN with object-based image analysis to segment the
scattered vegetation in the arid ecosystem, demonstrating a 25%
higher accuracy compared with a single model. These methods
can achieve high segmentation accuracy in specific environ-
ments but do not consider using multisource data to further
improve the accuracy of tree canopy segmentation. Li et al.
[29] input multiband imagery into networks, such as SegNet
and U-Net, to extract the semantic information of large-area
sunflower lodging and achieved an accuracy of 88.23%. Hao
et al. [30] input six bands of UAV remotely sensed imagery into
the mask R-CNN network to segment tree canopies and inferred
that additional bands could remarkably improve the performance
of tree canopy segmentation.

In addition, different semantic models based on CNNs have
been applied to evaluate the performance of tree canopy seg-
mentation. Fromm et al. [31] compared three CNN networks,
i.e., SSD, R-CNN, and faster R-CNN, to segment seedlings in
large areas of coniferous forests automatically. Martins et al.
[32] used five CNN networks, i.e., FCN, U-Net, SegNet, DDCN,
and DeepLabV3+-, to evaluate the performance of tree canopy
segmentation in urban environments from true-color aerial RGB
imagery, achieving an average accuracy of 91.25%. However,
these CNN-based methods perform tree canopy segmentation
under simple background conditions, such as flat terrain, without
considering factors, such as terrain fluctuations, spectral similar-
ity of weeds, and complex spatial information. These methods
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Fig. 1. Architecture of the improved EfficientNet-V2.

are mainly based on 2-D image segmentation without consid-
ering 3-D information, such as the height of ground objects,
which may easily lead to misclassification of tree canopy pixels.
Thus, the performance of tree canopy segmentation is affected by
local information and global contextual information; the former
is strongly related to tree canopy delineation, and the latter
is crucial to separate tree canopies from image backgrounds.
However, the current tree canopy segmentation methods are
all based on CNNs, and studies on the fusion of CNN and
transformer for tree canopy segmentation are few. Therefore,
it is of great significance to explore a multisource data-based
semantic segmentation method to satisfy the requirements of
citrus tree canopy segmentation in the case of terrain undulations
and complex backgrounds by extracting both local and global
information.

III. METHODS

This section introduces a lightweight CNN model (i.e., Effi-
cientNetV?2 [40]) and the latest transformer model (i.e., CSwin
[20]). On the basis of the advantages of these models, a fusion
neural network of CNN and transformer is proposed. Finally,
the loss function used in this study is introduced in detail.

A. Transfer Learning Based on EfficientNet-V2 and CSwin
Transformer

Inspired by the progress of EfficientNet-V2 and CSwin trans-
former in local and global semantic information extraction [20],
[40], this study introduces the two networks for citrus tree
segmentation through transfer learning.

Noticeably, as illustrated in the block “Improved module” in
Fig. 1, the structure of EfficientNet-V2 is improved by merging
the first two MBConv stages in the EfficientNet-V2-S scale
into one MBConv stage and merging the last four MBConv
stages in the EfficientNet-V2-M and EfficientNet-V2-L scales
into two MBConv stages so that it enables the output fea-
tures of the last four stages of the network to be fused with
CSwin transformer. The overall architecture of the improved
EfficientNet-V2, which consists of five stages based on the fused
MBConv and MBConv modules, is illustrated in Fig. 1. The
outputs of each stage are g X %,% X %, % X %, 1% X %’
and 3% X ?% By adjusting the number of MBConv and fused
MBConv modules in each stage (xNi), three different scale sizes

EfficientNet-V2-Small improved module

of EfficientNet-V2 can be formed, namely, EfficientNet-V2-S,
EfficientNet-V2-M, and EfficientNet-V2-L. Through the hier-
archical architecture of the improved EfficientNet-V2, multi-
scale semantic information can be obtained and well adapted
to downstream segmentation tasks. Therefore, the local fea-
tures extracted by the improved EfficientNet-V2 can supplement
the insufficient local information extracted in the transformer
model.

In this study, CSwin transformer is used to capture global
semantic information. In contrast to the CNN network, in the
CSwin transformer, the input patches with size of H x W x 3
are downsampled into size % X % and transformed into the
channel dimension of C by an overlapped convolutional token
embedding layer (7 x 7 convolutional layer with stride 4). To
obtain multiscale global semantic information, a hierarchical
representation is designed. CSwin transformer consists of four
stages in which the dimensions of the output feature maps are
BxWxC, ExWxa0, £ x¥ x40, and £ x ¥ x
8C'. By adjusting the number of CSwin transformer modules in
each stage (xNi), four different scale sizes of CSwin transformer
can be formed, namely, CSwin-Tiny, CSwin-Small, CSwin-
Base, and CSwin-Large. The structure of CSwin transformer
is similar to that of ResNet [41], which extracts different scale
information of images through a hierarchical representation
to adapt to pixel-level semantic segmentation tasks and uses
residual connections to avoid gradient vanishing. In addition, an
attention mechanism named cross-shaped window self-attention
was designed in the CSwin transformer module to calculate
self-attention in the horizontal and vertical stripes of the cross-
shaped window parallelly. Compared with the commonly used
full attention mechanisms, this design can effectively reduce
the computational cost of the network. In addition, LePE was
introduced in the CSwin transformer module to enhance local
information further. Hence, the powerful performance of CSwin
transformer in extracting global context information can be
well applied to global information extraction in the semantic
segmentation task of this study.

B. Fusion Neural Network Considering Local and Global
Semantic Information

Based on the advantages of EfficientNet-V2 and CSwin trans-
former, in this study, a parallel fusion neural network considering
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local and global semantic information for citrus tree canopy — EIVEZE3/E4
segmentation is proposed, and its architecture is shown in Fig. 2.
The architecture of the proposed fusion neural network con-
sists of four parts:
1) local semantic information extraction using improved T C o conv 11 ] (€ { Conv 1 X1 J{ Softmax
EfficientNet-V2; = T T
2) global semantic information extraction using CSwin trans- (o) ETI/ET2
Conv 1 X1 ET3/ET4
former;
3) CAFM’ @ Element-wise sum

4) decoder module.

First, the improved EfficientNet-V2 can generate five features
EO, E1, E2, E3, and E4, with resolutions of £, 1, £, -, and 55 of
the input resolution, respectively. CSwin transformer parallelly
generates four features 7'1, 72, 73, and 74, with resolutions of L
%, 75 and 55 of the input resolution, respectively. Second, the
proposed CAFM fusion module is explored to fuse the features
of E1 and T'1, E2 and T2, E3 and T3, and E4 and T4 to obtain
feature maps with local and global contextual information. Here,
the CAFM fusion module is a feature reconstruction module
based on the coordinate attention mechanism (briefly called CA)
[42], which not only retains the extracted local and global infor-
mation as much as possible but also preserves object positional
information in the feature information. Subsequently, the fused
features ET1, ET2, ET3, and ET4, which are obtained by the
proposed CAFM, are input into the FPNHead decoder module
to generate four types of feature maps with the same size and
channel number by multiscale feature fusion. The four types of
feature maps are concatenated into a 1024-channel feature map,
which is then input into the CA module to extract the object’s
positional information further. Finally, the output features of the
CA module are input into the convolutional and upsampling

= ‘:‘(-2\," Concatenate
T1/T2/T3/T4 b

Element-wise multiply =~ - -+ Residual Connection

Fig. 3. Architecture of the proposed CAFM.

layers, and upsampled to the original input image size to obtain
a complete semantic segmentation result.

C. CA-Based Fusion Module

To achieve the purpose of combining local and global seman-
tic information, we design a feature fusion module (i.e., CAFM)
based on coordinate attention (CA) mechanism [42], as shown
in Fig. 3. This module adaptively fuses semantic information
between features of different scales by using self-attention mech-
anisms. The 2-D pooling operation in the conventional attention
mechanism can easily lead to the loss of spatial information
and high computational costs. In contrast, the CA mechanism
utilizes two lightweight 1-D pooling operations to aggregate
horizontal and vertical spatial perception, which enables the CA
to accurately locate citrus trees. Therefore, to effectively locate
and distinguish the boundaries between citrus trees and back-
grounds (such as shrubs and weeds), the CA was introduced into
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the feature fusion module (CAFM) to capture spatial position
information.

First, the features (i.e., E1, E2, E3, E4, T1, T2, T3, and T4
called ET) obtained by EfficientNet-V2 and CSwin transformer
are input to a 1 x 1 convolutional transformation function F} to
yield a specific number of channels. Second, each feature map,
suchas yg, yr, and ygr, is extracted with the object’s positional
information through a CA [42]. The generation of yg, yr, and
yeT can be mathematically expressed as

_ [ CA(F(Xy)), i€ (E,T)
y"{Fl([Xz,Xj]), i€E,jeT

where CA(-) denotes the coordination attention operation, Fy
denotes the convolutional transformation function, X denotes
the variable for an input feature, and [-, -] denotes the concate-
nation operation along the spatial dimension. Third, the feature
maps calculated by CA are concatenated through concatenation
operations along the spatial dimension, and the information
interaction between the improved EfficientNet-V2 and CSwin
transformer is achieved through a 1 x 1 convolutional operation.
In addition, to accelerate the training convergence of CAFM, one
residual connection operation is used at the beginning of the two
branches of features E and 7. Fourth, the SoftMax function is
used to calculate the weight of each pixel in the feature map.
Then, a split operation split(-) is explored to separate the weight
map into two feature maps y’; and y/-, which are more capable
of characterizing objects of interest

Y, yr = split(0(F1([ye, yr]))) 2)

where ¢ is a nonlinear activation function (i.e., SoftMax in this
study). Finally, the two feature maps v/ and y/- are concatenated
and input into a CA module to extract the object positional infor-
mation in the fused feature map X’ of the CNN and transformer.
The mathematical module can be expressed as

X' = CA(sum(Fy(Xg) .y, F1(X7) sy, yer))  (3)

where . denotes the dot multiplication, and sum(-) is the ele-
mentwise sum operation.

As shown in Fig. 4, several typical feature maps from E2, 72,
and ET2 obtained by CNN, transformer, and CAFM, respec-
tively, are selected to demonstrate the effectiveness of CAFM.
Compared with the feature maps obtained by CNN, it can be
seen that CNN usually has higher weight on edge details, which
enables citrus canopy boundaries to be more discriminative.
However, CNN-based methods are limited by their receptive
field and usually tend to ignore contextual information, making
it difficult to distinguish shrubs with similar spatial information
to citrus tree canopies. Different from CNN, the transformer has
the ability of long-distance dependencies and can extract global
semantic information, which is helpful to accurately distinguish
tree canopies from backgrounds. However, as shown in the third
column of Fig. 4, due to the lack of local details, the feature
maps obtained by the transformer focus more on backgrounds
with higher weight rather than citrus tree canopies, resulting in
the transformer being unable to accurately extract local details,
such as citrus tree canopy boundaries. To make full use of the
advantages of CNN and transformer, CAFM is proposed to
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‘arce

- O - €
(d)

Comparison of feature maps and segmentation results obtained by

Fig. 4.
CNN, transformer, and CAFM. The first to fourth columns of (a) and (c) are UAV
images, feature maps obtained by CNN, transformer, and CAFM, respectively.
The first to fourth columns of (b) and (d) represent the ground truth, segmentation
results obtained by CNN, transformer, and CAFM, respectively.

characterize and segment citrus tree canopies. In contrast, as
shown in the fourth column of Fig. 4, the proposed network
considering local and global semantic information performs sig-
nificantly better than CNN and transformer, as it can exaggerate
the exclusivity between canopies and backgrounds.

The main loss function Losscr is used to supervise the training
from the improved EfficientNet-V2 and CSwin transformer to
CA. In addition, in the proposed fusion neural network, an
auxiliary loss Loss,ux is used to supervise branches (for gener-
ating one of the fused feature E73) to improve the convergence
performance during error backpropagation.

D. Loss Function

The loss function is used to calculate the error between the pre-
dicted value and the ground-truth value during network training,
which is crucial for optimizing model parameters. Generally, the
cross-entropy (CE) function is the commonly used loss function
in the field of semantic segmentation. Given the varying sizes
of tree canopies, the area of the tree canopy relative to the
background area is relatively small, resulting in an imbalance
between foreground and background in the samples. Therefore,
in this study, to alleviate the problem of network bias toward
the background nonvariable classes, the dice coefficient loss
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function [43] is introduced to orient attention toward the citrus
tree instead of the background. Meanwhile, to obtain the loss of
each pixel in the input image R¥*W | the loss of H x W pixels
is summed and averaged.

Specifically, the total loss function Loss o used in this study
is a mixed loss function of the binary CE function and dice
coefficient loss function, and the expressions of the two loss
functions are given in (4) and (5). The mixed loss function (i.e.,
Lossota) consists of a primary loss function (i.e., Lossct) and an
auxiliary loss function (Loss,ux ), expressed as (6). Losscr is used
to supervise the optimization process of the entire network in the
encoding and decoding phases, whereas Loss,, is used to super-
vise the learning of features £73 and enhance the characteristics
of the fused features. The two loss functions Lossct and Loss,ux
can be calculated by (7). Noticeably, to optimize the proposed
module from different loss calculation perspectives in different
training samples, a factor « is given to adjust the contribution of
Lossct and Loss,yy, and «is set to 0.5 determined by achieving
the best performance of this study based on multiple tries. The
loss functions LosSota1, LOSscT, and Loss,,x are mathematically
expressed as

HxW N

1
BCELoss = — i 108 (Jin 4
N~ 2 L Yinloglia) @)
23" yids
DiceLoss = 1— i=l RIP
HxW ( S+ Wy,
&)
Lossiotal = Losscr+LosSaux (6)

Losscr(Lossax) = @ X BCELoss + (1 — «) x DiceLoss (7)

where y; represents the ith pixel in the ground-truth values, ¥;
represents the predicted value corresponding to y;, n represents
the nth class, N is the number of classes, and y; ,, represents a
symbolic function that equals 1 if the ith pixel belongs to the nth
class and O otherwise. §; ,, represents the probability that the ith
pixel is predicted as the nth class.

E. Evaluation Metric

This study uses four evaluation metrics, including overall
accuracy (OA), precision, recall, F1 score, and intersection
over union (IoU), to evaluate the performance of tree crown
segmentation. The formulas for calculating these metrics are as
follows:

TP + TN
OA:TP—&—FNiFP—&—TN ®
Precision = % )
Recall = % (10)

2 x Precision x Recall
Fl= premon i ol (D
oV = 5 TP (12
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where TP represents the number of correctly predicted canopy
pixels, FP represents the number of incorrectly predicted pixels
that are classified as canopy while they belong to the background,
TN represents the number of correctly predicted background
pixels, and FN represents the number of incorrectly predicted
pixels that belong to the canopy while they are classified as
background.

IV. EXPERIMENTS

A. Study Area

To verify the effectiveness of the proposed method for seg-
menting citrus trees in complex backgrounds, the study area
(located in Xinfeng County, Jiangxi Province, China) with large
terrain variations and surrounding dense vegetation was specif-
ically selected. Given the acidic soil conditions and the typical
subtropical monsoon humid climate with abundant rainfall and
sufficient sunlight, the study area is suitable for planting citrus
trees, such as navel orange trees. To compare and analyze the
applicability of the proposed method under different terrain and
canopy background conditions, we extract four subareas of the
study area in Fig. 5; the areas are described in detail as follows.

1) The terrain of Plots 1 and 2 is highly undulating, with an
altitude of 135—-177 m, and no adhesion occurs between
the citrus tree canopies. Several subregions of Plots 1 and
2 include shrubs and weeds, and their visible spectra are
similar to those of citrus trees. In contrast to Plot 1, shrubs
or weeds in Plot 2 have a considerable gap that exists
between shrubs or weeds and citrus tree canopies, and the
canopy spacing is relatively large.

2) The terrain of Plot 3 is relatively flat, but the canopies are
highly adhesive; moreover, many shrubs and weeds have
spectra similar to those of citrus tree canopies.

3) Plot 4 combines the characteristics of Plot 1, Plot 2, and
Plot 3, with highly undulating, dense shrubs and weeds,
and adhesive tree canopies. The four subareas planted only
one type of fruit tree (i.e., citrus tree), and citrus trees of
different heights and sizes were widely distributed in Plots
1 and 4 because of different growth periods caused by
replanting.

B. Data Processing

In this study, high-resolution overlapping images were col-
lected by a small quadcopter UAV (DJI Phantom 4 RTK, DJI,
Shenzhen, China) for aerial triangulation to generate a digital
orthophoto model (DOM) and digital surface model (DSM) of
the study area. The UAV image acquisitions were performed
from October 9-12, 2022 under good weather conditions, such
as sunny and winds of <10 m/s. The flight speed was 5 m/s,
and the relative flight altitude of the UAV was approximately
80 m, which led to capturing UAV remote sensing images with
a spatial resolution of approximately 3 cm/pix. The overlap of
aerial stereo images was set to 80% to ensure sufficient overlaps
in the case of large terrain fluctuations in the study area. A total
of 856, 794, 672, and 812 images were captured for Plot 1, Plot
2, Plot 3, and Plot 4, respectively, with a frame size of 5472 x
3648 pixels.
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subgraphs located to the right of (b), (c), (d), and (e) are DOM, DSMs, 3-D point clouds with RGB textures, and 3-D point clouds rendered by height, respectively.

We used photogrammetric software called Agisoft Photo-
scan [44] to perform aerial triangulation for generating high-
resolution DOM and DSM with a spatial resolution of 4 cm/pix.
In addition, pixel-level dense point clouds were generated to
characterize the geometric morphology of the citrus tree canopy
surface. Generally, a certain distance between citrus trees is
observed in the planting area, and in most cases, each citrus tree
is surrounded by an open space, which is lower in height than
the citrus tree. In terms of the principle of the cloth simulation
filter [45], this algorithm is particularly suitable to separate the
ground point cloud from the dense point cloud. Then, digital
terrain models (DTMs) of Plot 1, Plot 2, Plot 3, and Plot 4 were
generated by the Kriging interpolation algorithm. Subsequently,
the CHMs of Plot 1, Plot 2, Plot 3, and Plot 4 can be obtained by
subtracting the corresponding DTM from the DSM. As shown in
Fig. 6, from a visual perspective, the geometric morphology of
citrus tree canopies can be well characterized by CHMs without
being affected by terrain fluctuations.

C. Training and Validation

In the proposed network, given the use of several pretrained
network modules through transfer learning, weight parameters
can be shared without requiring a large amount of training sam-
ple data from scratch. In the training of the proposed network,
we manually delineated samples from UAV photogrammetry-
derived data using ArcGIS 10.8 software, requiring each sample

 — e — e —
(2
N N )
4 261m 261m
4 [] []
. . 238
033 56 Q033 66m 238m S0 33 _66m 238m

(b)

Fig.6. DOM, DSM, DTM, and CHM of Plot 1, Plot 2, Plot 3, and Plot 4. The
first to fourth columns represent the DOM, DSM, DTM, and CHM respectively.

to contain at least one citrus tree. Through data augmentation
methods, such as rotation, flip, and affine transformation, the
number of these samples has been increased by four times, gen-
erating a total of 25 000 samples with a patch size of 256 x256.
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TABLE I
TRAINING PLATFORM AND SETTINGS

Platform Training Settings
CPU Intel (R) 15-12600kf@3.7GHz Optimizer AdamW
GPU NVIDIA GeForce RTX 3060-12G LR Policy Poly
Memory 16GB Loss Functions BCE/Dice
DL Framework Pytorch V1.12.0 Initial learning rate 0.0001
Compiler PyCharm 2022.1.4 Betas (0.9, 0.999)
Program Python V3.7.15 Weight decay 0.001
Parallel computing CUDAVI1.3 Batch size 8
DL Accelerator cuDNN V&8.2.0 Epoch 60
0.21 0.21 0.21 0.21 0.21 0.21 0.21
0.18 = Train Loss 0.18 =Train Loss 0.18 = Train Loss 0.18: = Train Loss 0.18- = Train Loss 0.18- = Train Loss 0.18 =Train Loss
= Validation Loss' = Validation Loss = Validation Loss = Validation Loss = Validation Loss = Validation Loss = Validation Loss
0.15 0.15 0.15 0.15 0.15 0.15
20.12 20.12 20.12 20.12 20.12 20.12
8 8 8 8 8 8
—0.09 —0.091 —0.09 ~0.09 = 0.09{ —0.09
0.06 . 0.06 0.06 0.06 0.06 0.06
0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.00{ 0.00 0.00 0.00 0.00 0.00{ 0.00
6 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 6 10 20 30 40 50 60 6 10 20 30 40 50 60 6 10 20 30 40 50 60 0 10 20 30 40 50 60
epochs epochs epochs epochs epochs epochs epochs
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0.18- = Train Loss 0.18 =Train Loss 0.18 = Train Loss 0.18 = Train Loss 0.18 = Train Loss 0.18 = Train Loss 0.18 = Train Loss
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Fig. 7.
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Fine-tuning results of FCN, BiseNet-V2, U-Net, PSPNet, DANet, FPN, EfficientNet-V2-S, HRCNet_W48, DeepLab-V3, ResT-Tiny, Swin-Tiny, BeiT-

Base, and CSwin-Tiny. (a) FCN. (b) BiseNet-V2. (c) U-Net. (d) PSPNet. (e) DANet. (f) FPN. (g) EfficientNet-V2-S. (h) HRCNet. (i) DeepLab-V3. (j) ResT-Tiny.

(k) BeiT-Base. (1) Swin-Tiny. (m) CSwin-Tiny. (n) Proposed.

One-fifth of these samples are test datasets, and the remaining
samples are training and validation sets.

The proposed network was trained in a deep learning frame-
work named PyTorch based on the Python compiler. AdamW
and cuDNN were used to optimize and accelerate model train-
ing, respectively. In addition, a learning rate decay strategy,
mathematically expressed in (8), was conducted to accelerate
the convergence of network training. The training platform and
settings are detailed in Table I, in which Betas are the two
momentum parameters in the AdamW algorithm

power
> (13)

where learn_rate represents the learning rate, init_learn_rate
represents the initial learning rate, iter represents the number
of iterations, and max_iter represents the maximum number of
iterations. In this study, the power is set to 0.9.

iter

learn_rate = init_learn_rate x (1 — ——
max_1iter

D. Comparative Analysis of Popular Modules

In this section, to prove the effectiveness of the modules in the
popular deep networks (e.g., CNN, EfficientNet-V2, and CSwin
Transformer) for citrus tree canopy segmentation, classic CNN
models (including FCN [7], U-Net [8], FPN [46], PSPNet [34],
DeepLab-V3 [9], BiseNet-V2 [47], DANet [11], and HRCNet
[35]) and transformer models (including SwinT [19], CSwinT

[20], Beit [18], and ResT [17]) were selected to evaluate the
performance of citrus tree canopy segmentation. Among them,
DANet, PSPNet, and DeepLab-V3 all use ResNet-50 [41] as the
backbone. In addition, to restore the original image resolution, a
decoder called FPNHead was introduced into the networks (e.g.,
EfficientNet-V2, FPN, SwinT, CSwinT, and ResT) for further
evaluation of feature extraction. In addition, these networks
performed a fine-tuning operation using the training samples
to satisfy the application of citrus tree segmentation. The fine-
tuning results are shown in Fig. 7. Whether trained or validated,
the objective loss function of the proposed network can quickly
converge and stabilize at a lower value. Therefore, the proposed
network is more suitable for citrus tree canopy segmentation
compared with the most popular deep networks, such as FCN,
BiseNet-V2, and PSPNet.

The experimental results are given in Table II. By comparison,
for this metric (i.e., mloU), FCN and BiseNet-V2 using multi-
ple convolutional layers have the lowest scores, with 86.41%
and 86.95%, respectively. U-Net uses skip connections to fuse
low-level high-resolution feature maps, with an accuracy 2.29%
higher than that of FCN. The accuracy of FPN, PSPNet, and
DeepLab-V3 using multiscale feature fusion was considerably
improved in comparison with FCN, with a maximum accuracy
improvement of 3.84%. Although the use of the attention mech-
anism in DANet and HRCNet_W48 can improve the accuracy
of citrus tree canopy segmentation, its effectiveness remains
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TABLE II
COMPARISON OF SEGMENTATION PERFORMANCE BETWEEN CNN AND TRANSFORMER ON THE CANOPY DATASET

Method OA mloU Para(M) FLOPs(G)
FCN [7] 0.9508 0.8723 0.8641 15.90 160.97
BiseNet-V2 [47] 0.9607 0.8768 0.8695 3.62 25.75
U-Net [8] 0.9693 0.8982 0.8870 13.40 248.23
PSPNet [34] 0.9691 0.9078 0.8973 72.46 347.40
DANet [11] 0.9694 0.9084 0.8981 70.94 405.02
FPN [46] 0.9696 0.9096 0.8991 53.71 105.11
EfficientNet-V2-S [40] 0.9690 0.9102 0.9005 26.76 222.62
HRCNet W48 [35] 0.9702 0.9111 0.9008 62.71 187.38
DeepLab-V3 [9] 0.9712 0.9125 0.9025 65.50 347.04
ResT-Tiny [17] 0.9677 0.9041 0.8935 18.50 211.02
Swin-Tiny [19] 0.9680 0.9047 0.8941 36.80 243.52
BeiT-Base [18] 0.9685 0.9066 0.8960 102.99 42493
CSwin-Tiny [20] 0.9708 0.9136 0.9033 30.31 240.75
The bold entities indicate the maximum value.
TABLE III TABLE IV
COMPARISON OF DIFFERENT SIZES OF NETWORK BACKBONE STRUCTURES COMPARISON OF ABLATION STUDIES
CNN Transformer OA Fi mloU
EfficientNet-V2-S _ CSwin-Tiny  0.9735 09498 _ 0.9346 Method ~ CAFM  CA  Loss,, 04 FL mloU
EfficientNet-V2-M CSwin-Tiny 0.9739  0.9506  0.9355 v v 0.9684 0.9069 0.8973
EfficientNet-V2-L CSwin-Tiny 0.9746  0.9519 0.9372 v v 0.9695 0.9138 0.9036
EfficientNet-V2-L CSwin-Base  0.9730  0.9511  0.9364 v v v 0.9710 0.9237 0.9116
EfficientNet-V2-L CSwin-Large  0.9726  0.9494  0.9350

The bold entities indicate the maximum value.

slightly lower than the DeepLab-V3 network. EfficientNet-V2-S
using the FPNHead decoder also achieved a score of 90.05%,
which is 0.20% lower than the highest score of DeepLab-V3
in the CNN-based models. Therefore, multiscale fusion and at-
tention mechanisms can remarkably improve citrus tree canopy
segmentation performance. In addition, transformer models with
multiscale feature fusion and attention mechanisms, such as
ResT-Tiny, Beit-Base, and Swin-Tiny, perform well in terms
of mIoU but slightly lower than CNN-based models. This can
be attributed to the transformer model’s inherent limitation in
capturing fine-grained local information of the canopy, which
affects its ability to accurately delineate canopy boundaries.
Among the popular transformer networks, CSwin-Tiny has the
highest mIoU score, indicating that the LePE in the CSwin trans-
former module efficiently enhances the ability of CSwin-Tiny
to extract local features.

Given the addition of global attention mechanisms, the above-
analyzed networks, such as DANet with the multiscale feature
fusion module, can perform better in terms of mloU, but they also
have higher computational complexity than networks without
mechanism modules. Compared with CNN-based networks with
full attention mechanisms, transformer modules based on local
attention mechanisms (such as the cross-shaped attention mech-
anism used in CSwin transformer) can considerably reduce the
number of network parameters and computational complexity.
Although the computational complexity of CSwin transformer
is not minimal compared with other networks, such as ResT-
Tiny, its segmentation accuracy is considerably higher in terms
of metrics, such as OA, F1, and mloU, than other networks
except for DeepLab-V3. In addition, Table II presents that the

The bold entities indicate the maximum value.

CNN network for local semantic information extraction, namely,
EfficientNet-V2-S based on the FPNHead decoder, is the lightest
weight network in addition to FCN, U-Net, and BiseNet-V2;
nevertheless, its accuracy is much higher than FCN, U-Net, and
BiseNet-V2. Therefore, the modules from networks, such as
EfficientNet-V2 and CSwin, enable effective segmentation of
citrus tree canopies.

In addition, we evaluated the performance of different
sizes of network backbone structures, such as EfficientNet-
V2 and CSwin. Three sizes of CNN-based modules, namely,
EfficientNet-V2-S, EfficientNet-V2-M, and EfficientNet-V2-L,
and four sizes of transformer-based modules, namely, CSwin-
Tiny, CSwin-Small, CSwin-Base, and CSwin-Large, were de-
signed to perform citrus tree canopy segmentation. The exper-
imental results are shown in Table III. As the EfficientNet-V2
deepens, the number of module parameters increases sharply,
and the performance improves slightly but not remarkably.
Notably, deeper CSwin transformer networks demonstrate a
reduction in tree crown segmentation performance. Therefore,
the above comparative analysis suggests that the proposed net-
work combining EfficientNet-V2-S as the CNN branch and
CSwin-Tiny as the transformer branch is a tradeoff between
network parameters and segmentation accuracy.

E. Ablation and Studies

To verify the effectiveness of CAFM, CA, and Lossy;x on
model performance, we conducted ablation studies with the
same 2-D data. The comparisons of ablation studies are given
in Table IV. As shown in the table, the proposed network
with CAFM, CA, and Loss,,x outperforms other configurations
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TABLE V
COMPARISON OF SEGMENTATION PERFORMANCE OF 2-D RGB IMAGERY OR
3-D DATA USED

Data Method OA Fi mloU
FCN 0.9508  0.8723 0.8641

U-Net 0.9693  0.8982 0.8870
EfficientNet-V2-S ~ 0.9690  0.9102 0.9005

2D HRCNet W48 0.9702  0.9111 0.9008
DeepLab-V3 09712  0.9125 0.9025
CSwin-Tiny 0.9708  0.9136 0.9033

Proposed 0.9710  0.9237 0.9116

FCN 0.9537  0.9046 0.8816

U-Net 0.9591  0.9241 0.9106
EfficientNet-V2-S ~ 0.9632  0.9341 0.9159

3D HRCNet W48 0.9668  0.9409 0.9243
DeepLab-V3 0.9685  0.9394 0.9225
CSwin-Tiny 0.9711  0.9407 0.9231

Proposed 0.9735  0.9498 0.9346

The bold entities indicate the maximum value.

TABLE VI
COMPARISON BETWEEN 2-D AND 3-D FOR PLOTS 1-4

Plot # Data OA Precision Recall Fi mloU
Plot 1 2D 0.9639 0.9217 0.9394  0.9305 0.9112
3D 0.9694 0.9361 0.9456  0.9408  0.9239
Plot 2 2D 0.9792 0.9101 0.9142  0.9122  0.9088
3D 0.9827 0.9095 0.9305  0.9199  0.9162
Plot 3 2D 0.9674 0.9568 0.9605  0.9586  0.9341
3D 0.9737 0.9660 0.9672  0.9666  0.9465
Plot 4 2D 0.9480 0.8249 0.8698  0.8467  0.8554
3D 0.9643 0.9009 0.9303  0.9153  0.8996

across all metrics, suggesting that the feature fusion model, at-
tention mechanism, and auxiliary loss function can help improve
the performance of citrus tree canopy segmentation. Individu-
ally removing CAFM, CA, and Loss,x resulted in decreases
of 1.43%, 0.80%, and 0.31% in the mloU accuracy of the
model, suggesting the substantial contribution of CAFM in
improving model performance, followed by CA and Loss,yx.
The improvement can be explained as follows: On the one
hand, CAFM can effectively reduce the loss of information
in the process of CNN and transformer feature fusion while
considering local and global semantic information for citrus tree
canopy segmentation; on the other hand, the superposition of
CA enhances the proposed model’s perception of the canopy
boundary, thereby improving the overall accuracy of citrus tree
canopy segmentation. Meanwhile, in the model decoding stage,
the CA module can further extract the position information of
citrus tree canopies during the restoration of the original image
resolution, thus helping alleviate the loss of spatial information.
In addition, the use of Loss,x is conducive to learning more
effective semantic representation in the training stage.

FE. Comparison of 2-D and 3-D Data for Citrus Tree Canopy
Segmentation

To overcome the influence of terrain relief and complex
backgrounds (e.g., low weeds), in this study, additional data,
such as CHM, were selected to characterize the 3-D geometric
structure of citrus tree canopies. To verify the effectiveness of
performance improvement because of the CHM used, in this
section, we investigate the effect of 3-D data on citrus tree canopy
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segmentation and conduct experiments in three plots with vary-
ing terrains and complex backgrounds. The experimental results
are given in Table V.

As shown in Table V, whether 2-D or 3-D data are used,
the proposed network can considerably perform better for citrus
tree canopy segmentation than when only CNN or transformer
isused. In terms of metrics, such as mloU, the proposed network
is 4.75% and 2.46% higher in 2-D data than FCN and U-Net,
respectively. In addition, the proposed 3-D network is at least
0.25%,2.61%, and 2.30% higher than the 2-D data used in terms
of OA, F1, and mloU, respectively. The comparison results indi-
cate that adding CHM can effectively improve the performance
of citrus tree canopy segmentation, as all the compared networks
based on 3-D data showed better statistical results than those
based on 2-D data.

To verify further the performance of citrus tree canopy seg-
mentation using 3-D data under complex backgrounds, such as
terrain relief, surrounding shrubs, or weeds, we provided a more
detailed comparison in Plot 1, Plot 2, Plot 3, and Plot 4. The
segmentation results of citrus tree crowns in various regions
are shown in Fig. 8, and the experimental results are shown in
Table VI. In terms of the mloU of Plot 1, compared with 2-D
data, using 3-D data reduced the impact of terrain fluctuations,
resulting in an average increase of 1.27%. In contrast to Plot
1, although Plot 2 is also an area with considerable terrain
fluctuations, remarkable interclass differences are observed in
surface coverage and a considerable distance between citrus
tree canopies, resulting in the addition of citrus tree canopy
height information having minimal effect on the improvement
of citrus tree canopy segmentation performance, with mloU
only increasing by 0.74%. For Plot 3, using 3-D data can
remarkably improve the accuracy (1.24% higher mIoU) of citrus
tree canopy segmentation in local areas containing low shrubs
and weeds, which are similar in visible-light spectrum and
texture to citrus tree canopies. Especially for Plot 4, due to
the presence of large terrain undulations, dense shrubs and
weeds, and adhesive tree crowns, it is very difficult to distinguish
between the tree canopy and the background. The mloU using
2-D datais only 85.54%, but the mloU using 3-D data is 89.96%,
which is 4.42% higher than that using 2-D data. The above
quantitative analysis reveals that, in artificial forest areas with
large terrain fluctuations, complex canopy backgrounds, and
severe canopy adhesion, adding CHM to 2-D RGB imagery
can effectively improve the performance of citrus tree canopy
segmentation.

For an intuitive comparison, a visualization evaluation was
also conducted to evaluate the performance of citrus tree canopy
segmentation. Several representative segmented patches were
selected in Fig. 9. As shown in Fig. 9(a) and (b), the bound-
aries between cohesive citrus tree canopies can be clearly de-
lineated by using 3-D data. In addition, Fig. 9(c)—(g) shows
that the proposed network based on 2-D RGB imagery cannot
accurately distinguish shrubs or weeds, and misclassifications
and omissions are observed. By contrast, the proposed net-
work with CHM can help accurately delineate the boundaries
of citrus tree canopies and is less likely to miss segmented
patches.
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Fig. 8. Segmentation results obtained by the proposed method. (1) (2), (3),
and (4) are the ground truth and prediction for Plot 1, Plot 2, Plot 3, and Plot 4,
respectively. (a), (c), (e), and (g) are the ground truth; (b), (d), (f), and (h) are the
predictions of the proposed method. The blue box represents the position of the
comparison image for Experiment F, and the green box represents the position
of the comparison image for Experiment G.

G. Comparison With Other State-of-the-Art Networks

To verify the overall effectiveness of the proposed parallel
fusion neural network further, state-of-the-art networks, such as
SETR_PUP [16], TransUNet [36], TransFuse [38], and CCTNet
[48], were selected to perform citrus tree canopy segmentation,
and the statistical experimental results are given in Table VIIL.
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Input i images Ground truth 2D

Fig. 9.
representative examples selected in Plots 1-4 to display the visualization effect.
Note that the significantly contrasting areas are marked with red circles.

Visualization evaluation using 2-D and 3-D data. (a)-(g) are seven

The proposed network with the highest mIoU score performs
better than the four state-of-the-art networks fusing CNN and
transformer modules. SETR_PUP uses an attention mechanism
in the encoder to extract image features and employs convolution
for decoding. However, compared with CNNSs, it has limitations
in capturing local feature information. TransUNet uses a serial
structure to fuse CNN and transformer, which cannot effectively
retain local and global contextual information extracted by CNN
and transformer modules, respectively, and, therefore, cannot
accurately detect the edges of citrus tree canopies. Although
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Input images

Ground truth SETR TransUNet TransFuse CCTNet Proposed
Fig. 10.  Visualization comparison of the state-of-the-art networks and the proposed network.
TABLE VII
COMPARISON WITH STATE-OF-THE-ART METHODS

Method OA Fi mloU Para(M) FLOPs(G)
SETR_PUP [16] 0.9386 0.8842 0.8561 86.07 192.39
TransUNet [36] 0.9701 0.9404 0.9236 37.39 112.22
TransFuse [38] 0.9690 0.9384 0.9211 70.34 191.46
CCTNet [48] 0.9706 0.9309 0.9171 62.95 178.92
Proposed 0.9735 0.9498 0.9346 50.25 193.16

The bold entities indicate the maximum value.

TransUNet can alleviate the problem of insufficient spatial in-
formation during decoding to some extent by using skip con-
nections, this serial architecture could damage the respective
characteristics of the CNN and transformer. In contrast to the
structure of TransUNet, TransFuse and CCTNet apply a parallel
structure to fuse CNN and transformer modules and design cor-
responding fusion modules for features in each branch. Although
the feature fusion module can combine the advantages of CNN
and transformer modules, it cannot effectively retain the posi-
tion information of each canopy, resulting in inaccurate canopy
boundary delineation. Compared with the four state-of-the-art
networks, the proposed network not only inherits the advantages
of CNN and transformer modules but also extracts the position
information, thereby accurately identifying citrus tree canopies.

In addition, several patches were selected to exhibit the visual
segmentation results in Fig. 10. The proposed network can
perform much better than the state-of-the-art networks because

citrus tree canopies can be accurately identified, and boundaries
can be accurately delineated.

V. CONCLUSION

In this study, we proposed a parallel fusion neural network
considering local and global semantic information for citrus tree
canopy segmentation from UAV photogrammetry-derived 3-D
data. The proposed network, coupling CNN and transformer
(i.e., EfficientNet-V2 and CSwin), can address the problem
in which traditional semantic segmentation methods cannot
effectively retain local boundary details and global contextual
information of citrus tree canopies. Specifically, amodule named
CAFM was explored to fuse features obtained by CNN and trans-
former modules, and a CA mechanism was utilized to extract the
position information of citrus tree canopies and further optimize
their boundaries. In addition, to solve the problem of insufficient
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2-D data to characterize the geometric structure of citrus tree
canopies in complex terrain and backgrounds, the CHM of citrus
tree canopies was added to the proposed network to improve
the feature extraction performance by adding input dimensions.
Transfer learning based on EfficientNet-V2 and CSwin also
provided the opportunity to improve the performance of citrus
tree canopy segmentation remarkably without the requirement
of training from scratch. Compared with the state-of-the-art
networks, the proposed method considerably performs better
than networks based only on CNN or transformer models, and
shows the best citrus tree canopy segmentation results (e.g., the
highest mIoU score of 93.46%) in terms of several metrics.

Although we have made remarkable improvements by using
3-D data combining 2-D true-color RGB imagery and CHM in
this study, further performance improvements are still needed
to eliminate the effect of shrubs that are highly similar to citrus
trees. In future research, we will attempt to collect multispectral
data from UAVs to filter noncitrus trees by increasing the gap
between citrus and noncitrus trees based on vegetation spectral
differences.
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