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An Integrated Framework of Two-Stream Deep
Learning Models Optimal Information Fusion
for Fruits Disease Recognition

Unber Zahra"”, Muhammad Attique Khan

Mehrez Marzougui

Abstract—Diseases impact the rates of production of many agri-
cultural goods. These diseases require detection, which is difficult
to do manually. Therefore, the creation of some automated illness
detection systems is urgently required. Deep learning showed sig-
nificant success in the area of precision agriculture for the recog-
nition of plant disease. Compared with the traditional techniques,
the deep learning architecture automatically extracts deep features
from the deeper layer. In this work, we proposed a new automated
method for classifying apple and grapefruit leaf disease recogni-
tion utilizing two-stream deep learning architecture. The proposed
framework entails several steps. The first phase is picture con-
trast enhancement, which combines the information from DnCNN
and top-bottom hat filtering to create a better image. Then, the
augmentation process uses horizontal and vertical flips to increase
the dataset’s original size. The Inception-ResNet-V2 deep learning
model is then adjusted and trained using deep transfer learning
on the expanded dataset. After being extracted from the training
model, the best features are chosen using two techniques—an
entropy-based strategy and tree growth optimization. Finally, a
new effective method combines the chosen features, and machine
learning classifiers are used to complete the classification. On the
augmented dataset, the proposed framework correctly classified
apple and leaf diseases with the accuracy rates of 99.4% and 99.9 %,
respectively.

Index Terms—Apple disease, contrast enhancement, deep
learning (DL), denoising network, entropy, feature fusion, grape
disease, tree growth algorithm.
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I. INTRODUCTION

GRICULTURE is a sector that is essential to meeting

people’s necessities and boosting a nation’s economy [1].
All plants and fruits are subject to diseases that adversely affect
production rates and quality [2]. Early care and fruit health
monitoring are preferable to implement appropriate remedial
action and avoid long-term financial damage. Early indicators
of disease include some light spots or discolorations on the plant
leaves [3]. Since it is now simple to survey large fields and au-
tomatic methods have been developed to detect fruit diseases in
their early stages, the need for the manual involvement of human
abilities is decreasing [4]. These automatic methods have sub-
stantially facilitated the procedure of diagnosing diseases. Using
any sizable image dataset, various image processing methods
and computer vision have been used to identify and categorize
diseases in fruits [5]. Recently, diseases have increased in plants
that affect them physically [6]. Therefore, identifying, treating,
and managing diseases have become essential. The diseases are
manually diagnosed by looking at the symptoms they cause.
Any dataset, including damaged plant leaves, may be processed
using automated methods, and after certain transformations and
tweaks, the disease can be reliably diagnosed [7].

In the literature, classic automated methods do better with
smaller dataset sizes. The classic approaches involve prepro-
cessing images to improve contrast and remove noise, manually
extracting features, such as color, shape, and texture, reducing
features using principal component analysis, and utilizing ma-
chine learning classifiers [8], [9]. Deep learning (DL) models
have recently significantly succeeded in computer vision, es-
pecially for agriculture and medical imaging. The DL models
can capture the insight important information of each image
that is later helpful in the accurate classification [10]. Several
DL architectures have been introduced in the literature for the
classification of plant leaf disease recognition, such as DFNeT
[11], DLMC-Net [12], Custom CNN [9], and a few more [13].
Pretrained CNN models have been utilized to extract useful
features in current agricultural research [14], [15], [16], [17].
However, feature fusion and selection approaches are used to
achieve high precision in terms of time and accuracy [18]. Com-
pared with an individual feature vector, feature fusion performs
better since it combines the key information and improves the
overall system performance in accuracy [19]. The disadvantage
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of feature fusion is that it combines redundant and irrelevant
data, which can be dealt with using feature selection or optimiza-
tion processes. By using this method, unnecessary information
can be removed while keeping the crucial elements [20].

Feature optimization is an important and hot research topic
nowadays due to its direct influence on classification results [21],
[22]. As previously stated, feature selection techniques eliminate
unnecessary and irrelevant features significantly affecting the
system’s overall performance [23]. As a result, feature selection
techniques reduce training and computing time, increase sys-
tem prediction performance, remove duplicate information that
takes up most prediction time, and considerably improve data
classification [24], [25].

Zhu et al. [26] presented a method for grape disease recog-
nition. A Wiener filtering method with a wavelet transform
is used to denoise the photos. To increase the accuracy, mor-
phological and segmentation methods have been applied. A
method to identify plant diseases presented by Sladojevic et al.
[27] comprises image preprocessing and augmentation. The
next step is calculating features from the input images and
distinguishing between the 13 distinct plant diseases through
the Caffe DL model. This model obtains an accuracy of 96.3%,
which was improved by the recent methods. Jhuria et al. [28]
demonstrated a method for detecting fruit diseases. The imaging
dataset is first preprocessed, which involves resizing each image
to a size of 200x250 pixels. Next, morphological and texture
features are employed independently for feature extraction, with
morphological features providing finer results than texture fea-
tures. Finally, classification is performed and obtained with 90%
accuracy.

A. Major Problems

Other techniques were also presented, and they produced
noteworthy accuracy. However, they struggle with challenges,
such as the precise texture of various diseases, slight color
changes among diseases, and redundant characteristics [29].
Other difficulties include the following.

1) Disease categorization for multiple fruits is difficult due
to the similarity of fruit leaves texture, infected spots, and
patches.

2) The majority of existing works have used handcrafted
feature extractors to achieve classification, which limits
performance and restricts results.

3) Irrelevant and redundant features mislead the classifica-
tion problem and also lengthen computational time.

B. Major Contributions

This research developed a DL and optimal feature selection
system to identify apple and grape leaf diseases. Rust, scab,
black rot, and healthy class are the illnesses that affect apple
leaves. Black rot, black measles, leaf blight, and a healthy class
are all symptoms of grapefruit disease. The suggested frame-
work’s results are calculated utilizing a variety of classifiers and
performance evaluation metrics. The following are the article’s
main contributions.
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1) Developed a hybrid contrast enhancement technique to
enhance an image’s local information. Data augmentation
is also carried out to expand the original dataset.

2) Inception-Resnet-V2 pretrained deep model is fine-tuned
and trained on augmented contrast-enhanced images in-
stead of original imaging through deep transfer learning.
This process extracted useful features for the classifica-
tion.

3) For the best feature selection, an entropy-controlled tree
growth optimization approach was proposed. Second, time
characteristics are chosen using entropy.

4) Proposed an intelligent fusion technique to combine the
best-selected features. This technique improved the accu-
racy of the proposed framework.

The rest of this article is organized as follows. Section II
discusses a few current investigations on the classification of
plant and fruit diseases. The proposed methodology for detecting
fruit leaf disease using DL is presented in Section III. Results
and comparisons with currently used methods are reported in
Section IV. Finally, Section V concludes this article.

II. RELATED WORK

The diseases in plants are the reason for serious danger to
plant development and agricultural productivity; it might result
in food scarcity [30]. Therefore, researchers have conducted
numerous investigations to identify plant diseases [15], [31],
[32]. These methods are based on DL and conventional tech-
niques [33]. For example, according to Chakraborty et al. [34],
asystem combining ML and DIP principles can identify diseases
from contaminated apple leaves. The initial step in the disease
recognition process is preprocessing using tools, such as the
Otsu thresholding method and histogram equalization. Then,
multiclass SVM distinguishes the original leaf image from the
diseased kind with 96% accuracy via the image segmentation
region of the affected section.

Rehman et al. [33] presented a parallel architecture for the
real-time diagnosis and categorization of apple leaf disease.
First, a hybrid contrast stretching technique to boost an image’s
visual impact is suggested, and then the MASK RCNN is set up
to find the infected areas. For training the pretrained CNN model,
the improved photos are used for feature extraction. A selection
technique based on Kapur’s entropy with the MSVM approach
is developed to pick strong features for the final classification.
The Plant Village dataset is used for the experimental procedure,
and the ensemble subspace discriminant classifier achieves an
improved accuracy of 96.6%. A DL-based automated detection
system is proposed for examining and categorizing diseases
affecting apple leaves by Alsayed et al. [35]. Various pretrained
models, including InceptionV3, MobileNetV2, VGG16, and
ResNet-V2, are considered using transfer learning. According
to an analysis of several variables, including learning rate and
optimizer, ResNet-V2 with the Adam optimizer is produced.

Di and Li [36] offered a new DL-based model for detect-
ing four prevalent apple leaf diseases. This proposed work’s
major improvements include feature reuse in conjunction with
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the DenseNet network, resizing and reorganizing parameters,
using different convolution kernels for dimensionality reduction,
and increasing network depth without increasing computational
complexity. The mAP and average IoU values for this model
are 99.99% and 90.88%, respectively. Yu et al. [37] developed
the MSOResNet apple leaf disease identification model based
on a residual network called ResNet50. The model’s identi-
fication accuracy, speed, and parameter count are improved
by decomposing the convolution kernel, updating the identity
mapping technique, reducing the number of residual modules,
and replacing the BN layer. This model achieved average ac-
curacy, recall, and F1-score for identifying apple leaf diseases,
which are 0.957, 0.958, and 0.957, respectively. Ji et al. [38]
presented a combined CNN architecture based on an integrated
strategy to separate healthy leaves from leaves with prevalent
grape illnesses from the Plant Village dataset. The proposed
UnitedModel can extract complementary discriminative features
since it combines different CNNs—the UnitedModel averages
99.17% accuracy for validation and 98.57% accuracy for testing.
Using the data acquired privately, Liu et al. [39] created a novel
identification method for diagnosing grape leaf diseases based
on enhanced CNN. In this network, the inception structure uses
a dense connection technique to promote reuse and strengthen
feature propagation. Based on CNN, a new model was built
and trained. It demonstrated 97.22% of accuracy, outperforming
GoogleNet and ResNet-34. Atila et al. [40] developed the
EfficientNet DL architecture to classify plant leaf diseases.
This model’s effectiveness was evaluated compared with other
DL models trained on the Plant Village dataset. B4 and B5
models of this architecture had gained accuracy of 99.97%
and 99.91%, the highest among all other models. Pixia and
Xiangdong [41] presented a technique for identifying cucumber
diseases using image processing. In the first stage, preprocessing
is applied for smoothing. When a region of interest is extracted
from an image dataset, the operation of the corrosion lesion
is used (segmentation stage). Conclusively, the rate of disease
detection is 96%. A hybrid classification approach was used in
the study to identify apple diseases. The maximum accuracy
of this method’s SVM classifier was 95.94% [42]. This study
[43] used a DCNN model with metaheuristic architecture to
recognize and classify tomato diseases with 85.9% classification
accuracy. Using the dataset, GLDD consisted of a total of 4449
original images. Lu et al. [14] presented a detailed review
of DL techniques for plant disease classification, especially
CNN. They discussed the importance of DL and compared
performance with traditional machine learning techniques. Pal
and Kumar [13] presented a CNN-based classification task.
They employed the GrabCut approach for disease segmentation
and the VGGN pretrained CNN model for the classification
task. Faisal et al. [11] presented a dense fusion framework
for plant leaf disease classification. They fine-tuned MobileNet
and NasNet Mobile architectures for the feature extraction later
employed for the classification task. Sharma et al. [12] pre-
sented a deeper lightweight model for the multiclass classifi-
cation of plant leaf diseases. Abd Algani et al. [44] described
a DL and optimization algorithm-based classification task
framework.
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Summary: The experiments previously mentioned concen-
trated on the traditional and DL characteristics before catego-
rizing them with SVM and CNN classifiers. The preprocessing
and augmentation stage, which is crucial when the training data
are insufficient, was overlooked in these investigations. In a few
research, hybrid strategies have also been offered to increase
accuracy. In addition, the optimization process—which is crucial
when redundant and irrelevant features are discovered—is not
carried out. A novel approach is suggested that uses DL and
feature selection to address these issues.

III. PROPOSED METHODOLOGY

The proposed framework is presented in this section. Fig. 1
shows the proposed framework that includes several steps, such
as contrast enhancement, augmentation, feature extraction, op-
timization, and fusion. In the first step, contrast enhancement
is applied, and then data augmentation is performed using the
horizontal and vertical flip. After this, the Inception-ResNet-V2
deep neural network model is fine-tuned and trained on the
augmented dataset using deep transfer learning. Next, entropy-
based selection and tree growth optimization are used for best
feature selection, which is finally fused using an efficient fusion
approach. Finally, the final fused vector is passed to the neural
network classifier for the final classification. A brief description
of each step is given in the following text.

A. Data Acquisition and Preprocessing

In this section, the procedure for the acquisition and prepro-
cessing of data is described. The collected data are subsequently
put through various contrast enhancement and data augmenta-
tion methods to enhance image contrast and balance the classes.
The following sections discuss the steps of data collection and
preprocessing in depth.

1) DataAcquisition: The Plant Village dataset obtained from
Kaggle is used in this work [45]. The dataset contains RGB
images in jpg format with dimensions 256 x 256 x3. This
dataset consists of many classes of plant diseases from which we
are working on two fruit plant diseases: apples and grapes. The
selected dataset contains eight classes of six diseases, including
apple (scab, rust, and multiple diseases) and grapes (leaf blight,
black rot, and black measles). Sample images from the dataset
are illustrated in Fig. 2.
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Fig. 2. Sample images of all classes from the selected dataset.
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Fig. 3. Hybrid approach for contrast enhancement.

B. Contrast Enhancement

Contrast enhancement enhances the visual characteristics to
eliminate noisy elements, such as contrast borders and edge
details. It is altering an image to make it more suited for specific
use. For example, it makes some image features more prominent
or makes certain image positions less ambiguous. It enhances the
image’s clarity and visual effects and makes the original image
easier for computers to process. Finally, it alters the image’s pixel
intensity to transform it into a better suitable human or machine
analysis format. In this work, we proposed a hybrid approach
consisting of DnCNN, a CNN method, and the top—bottom
process, as illustrated in Fig. 3.

C. DnCNN Model

DnCNN: In the last ten years, the denoiser prior has been
extensively used in the renowned plug-and-play framework for
the restoration issues of images. The main concept behind this
strategy is to add an implicit denoiser prior term to the variational
model and then use the splitting technique to decouple this
term into a denoising subproblem that commercial denoisers
can tackle. More specifically, the following is the simple form
of the restoration model using the denoiser prior:

min 3 || Di—j |3+ 6 () M)
where D is the linear degradation operator and d(-) is the implicit
denoiser prior, which depicts a lesser value for a sharper and
more natural image. By introducing a new variable, the splitting
technique will first transform it into an equivalent two-variable
problem by introducing a new variable k

1 o o .
ming || Di—j || 3+ 40 (k) + 5 1 k—il> @

4]
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where o will increase as the iteration goes up, then the solution
can be approached by iterating the following two steps:

. 1 o O e
i =arg; ming | Di—j |3+ S 1K " O

1
E**t! = argy min 3+ 76 (k)
g .
o k=i, @

For k*+1, where the y (-) the implicit prior shows the image’s
good property, such as sharpness, the solution k can be explained
as the denoised result of the given i*+1 [46).

Top—Bottom Hat Filtering: The top—bottom hat filtering ap-
proach is used to enhance the contrast concerning the lesion
area’s maximum and minimum intensity values. It is performed
on the blue channel w?(a,b), which is extracted from the
original image w® (a, b). The blue channel w?(a, b) is defined
as follows:

wB

Z? =W
where ¢ is an index for red, green, and blue channels having
values 1, 2, and 3, then the top—bottom hat filtering technique
performs to enhance the lesion contrast. The top-hat filter works
for foreground objects, while the bottom-hat filter works for
background objects. The definition of top—bottom hat filters is
given as follows:

Wrop (a7 b) = wB (a7 b) - wB (a'v b) oSE (6)
whor (a,b) = w? (a,b) - SE — w? (a,b) @)

wB (a,b) =

(&)

where wiop(a, b) defines as a top-hat filtering image, w? (a, b) is
the selected blue channel, wyo (@, b) is a bottom-hat image, the
opening operation is denoted by o, ® operator denotes the closing
operation, and SE represents the structuring element. The SE is
selected as mean value of the given image instead of picking a
random value. The structuring element is placed at the possible
location and compared with neighboring pixels in the input
image. The areas that fit adjacent pixels are checked with the
structuring element. For top—bottom filtering, SE is initialized
as nine, which indicates the window size across the input image
is 9 x 9. Then, relate both images wiop(a, b) = w? and wpe(a, b)
as follows:

Wre (a,b) = wiep (a,b) — w? (a,b) 8)
wr (a,b) = wge (a,b) — w? (a,b) 9)

where wee(a, b) describes the relationship between the top-hat
image and the original image and wr(a, b) defines the final top—
bottom filtering image [47]. A few sample images are shown in
Fig. 4 after applying this approach.

D. Image Augmentation

In the selected dataset, the number of images in each class is
imbalanced, leading to biases and incorrect results for classifi-
cation. That is why it is crucial to perform image augmentation
[48]. We balanced those imbalanced classes using techniques,
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Fig. 4. Original and contrast-enhanced image examples.

TABLE I
NUMBER OF IMAGES BEFORE AND AFTER AUGMENTATION

Dataset Class Label Images | Images
before after
Augme | Augment
ntation | ation
grapes Grape  Black | 2360 4720
rot
Grape  Esca_ 2766 5532
(Black Measles)
Grape  healthy | 846 5076
Grape Leaf blig | 2152 4304
ht (Isariopsis_Le
af Spot)
Seperated | Healthy 516 4560
dsApple - -
multiple diseases | 91 4350
RUST 622 4158
Scab 592 5000
Total 9945 37700

Bold denotes the best accuracy.

such as vertical and horizontal flips. The number of images
before and after the augmentation step is shown in Table I. Also,
the visual facts are shown in Fig. 5.

E. Convolutional Neural Network

A powerful machine learning technique, convolutional neural
networks are assisted versions of neural networks. CNN employs
several mathematical models, including gradient descent, regu-
larization, and backpropagation. Convolution, pooling, and fully
linked are the three main layers of a straightforward CNN model
[49].

Convolutional Layer: Dorj et al. [SO] demonstrated that the
core part of a CNN is a convolutional layer. In this layer, filtering
is performed in specific settings to produce some output from
input. The neurons in convolutional layers are arranged in either
arectangular grid or a cubic block. It implies that the filters may
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Original Image

Vertical Flip

Fig. 5. Resultant images after the augmentation stage.

also consist of a cubic block of neurons or a rectangle grid. The
filter is applied from the top left to the bottom right. Everywhere
along the filter, a new neuron is acquired after calculating the
weighted volume of pixels by w!x + b. The volume of the output
neurons is controlled by three types of hyperparameters in the
convolutional layer: depth, zero padding, and stride.

The stride specifies executing filters by pixels in the input
neuron. Stride specifies the distance or the number of pixels
the filter skips or moves over in the input image pixel matrix.
While the stride values of two or greater are rare, an enormous
stride yields a smaller output when stride = 1, the filters move
one pixel. When stride = 2, the filters skip two pixels. When
stride = 3, the filters skip three pixels. Zero padding is used
when the filter does not fit in the input image. It is the filling
process in the input image with zeros for adjusting the size
of the input neuron for research purposes. It is typically used
when the size of the input neuron in the output neuron has to be
maintained. The following equation is used to calculate output
neuron size:

w — kg + 2p;

Output =
utpu <

+1 (10)
where w denotes the size of the input neuron, ks denotes the
size of the filter, p, is the padding size, and St represents the
stride. Linear algebraic operations are also utilized in CNN. Let
the matrix dimensions be X and Y, while X shows the rows,
and Y shows the columns. A 2-D convolutional cube calculates
the 2-D convolution with two input matrices. The dimensions of
matrix M are (X s, Yas), while the dimensions of matrix /N are
(X, Yn). The convolution equation is given as follows if the
cube determines the complete output size

C (ab)= 3 (Xar — )Y (Yar — 1) M ()

z=0 y=0

* N (a—x,0—1y) (11)
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where

0<a<Xy+Xy—-land0<b<Yy+Yy-—1. (12)

Max-Pooling Layer: A pooling layer performs the next op-
eration after each convolutional layer. The input neuron size
is reduced by using the pooling layers. This layer samples the
convolutional layer’s tiny rectangular blocks and acquires them
to produce a single output from each block. The following
equation presents a formulation for the max pooling layer, as
defined in the following equation:

hf = maxaeN(a)’ beN (b) h?_l (d, l_)) . (13)

The pooling is produced by applying the filters and sampling
the filters in each layer [50].

Fully Connected (FC) Layer: The last layer, the fully linked
layer, is created by connecting all preceding neurons. Because it
is completely connected from all input neurons to all output
neurons, the FC layer typically encourages reducing spatial
information. The BP technique is a gradient descent-based algo-
rithm that bases its fitness function on decreasing cross-entropy
loss to minimize neural network error [51]

X Y
P =>"%"—5s"logd? (14)
a=1b=1
where X is the number of samples, s, = (0, ...,0,1,...,1,
0, ...,0)is the wanted output vector, and d,, is the output vector
of the Yth class that the following formula can attain:
fa
av = = (15)
a Y a
Za=1 ef

The weight penalty is adopted for developing the function L
to include an 7 value to improve the values of the weights

X Y
1
P = E — 5 1og d® +3v E E €, (16)
PoQ

a=1b=1
where e, denotes the weights of connection, the total number
of layers is represented by P, and () shows layer 1 connections
[52].

F. Transfer Learning

Recently, several DL techniques have been introduced for fruit
plant disease diagnosis. Transfer learning has been employed to
diagnose diseases in fruit plants by transferring acquired infor-
mation to enhance diagnostic performance [53], [54]. ImageNet
dataset is utilized as a source domain represented by S; and
natural images are classified into 1000 classes as the source task
St.

The augmented Plant Village is the target domain denoted
by Ty. To classify images into eight classes is the target
task represented by T;. These four classes of grapes dataset
are Grape_Black_rot, Grape_Esca_ (Black_Measles), Grape_
healthy, and Grape_Leaf_blight_ (Isariopsis_Leaf_Spot) and
the remaining four classes of apple dataset are Healthy, mul-
tiple_diseases, RUST, and Scab. The source domain is defined

3043

~ e ]
, | A

| I
Transfer Learned ™
Knowledge

=i B

d0 0050
1000001

Fig. 6. Process of transfer learning for fruit leaf diseases model training.

as follows:

Sqa = {F;, M (F})} (17)

where F; is the ImageNet feature space and M (F;) is the
marginal distribution such that F; = {f1, fo,..., fn}, fieFi.
The target domain is also made up of two components

Ty ={F., M (F.)} (18)

where F, is the feature space of the augmented Plant Village
dataset and M (F,) is the marginal distribution such that F, =
{fi,fa, ..., fu}, fjeFe. Source task Sy, on the other hand, is
a tuple comprising two components specified as follows:

Ts = {pi, 5| F} = {p, p} (19)

where the label space of source data is denoted by p and u
is the objective function that learns from label space, such as
(fi,9i)fi€F;, giep; and feature vector pair.

Transfer learning aims to train a base network using a large
source dataset and then apply the learned features to a smaller
target dataset. Transfer learning aims to learn the conditional
probability distribution of the target domain 7};, about the in-
formation gained from a source domain Sy and source task .S;
for the given source domain S; and target domain 7}; with their
associated source task S; and target task 7; [55]. The process of
transfer learning is illustrated in Fig. 6.

G. Inception-ResNet-V2 Deep Features

Inception-ResNet-v2 is the amalgamation of inception archi-
tecture [56] and residual network [57]. The reason for the pop-
ularity of inception models is their multibranch architectures. It
comprises a collection of filters (1 x1,3x3, 535, etc.) combined
in each branch using concatenation. The inception module split—
transform—merge design is a potent symbolic capability in its
dense layers [56]. The residual model is renowned for its ability
to train very deep architectures. The hybrid Inception-ResNet-v2
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Fig. 7. Inception-ResNet-v2 model architecture [62].

network efficiently utilizes residual connections [58]. Initially,
more than a million photos from the ImageNet collection were
used to train the Inception-ResNet-v2 model. This 824-layer
network can classify data into 1000 different categories. As a
result, Inception-ResNet-v2 has picked up lively features that
represent a wider variety of images. This network requires input
images with dimensions 0of 299 x 299 x 3. The dropout layer’s
dropout rate is fixed at 0.8. Fig. 7 depicts the architecture of
Inception-ResNet-v2. We fine-tuned this model based on this
work’s last FC layer. The last FC layer includes 1000 object
classes, but in our work, the output classes are four for each
dataset, as discussed in Section III-A. As a result, we built
a new FC layer and removed the prior FC layer, which was
then connected to the earlier ones. The categorization of fruit
leaf diseases is then performed using a new model created
by deep transfer-learning-based training. Section III-C of the
document presents the DTL procedure. The newly trained model
is later utilized for deep feature extraction. The global average
pooling layer has opted for feature extraction. The activation
is employed on this layer and 1536 deep features are extracted
for each image. The extracted features are analyzed and found
some redundant information. Therefore, we employed feature
selection techniques to improve the accuracy and reduce the
computational time.

H. Best Feature Selection

The selection of the best features from the original set of
the feature vector is known as the best feature selection. The
primary purpose of best feature selection is to reduce the size
of the original feature vector in terms of redundant information
and noisy features [59], [60]. This process helps fast execution
of a framework and may improve accuracy. In this work, we
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proposed a two-way selection algorithm called tree growth—
entropy selection.

The tree growth optimization algorithm is based on the natural
phenomena of competition among trees to acquire food and light.
He et al. [57] described that the algorithm’s main phases consist
of four groups. One among these groups is the best tree group,
which is well-grown due to a favorable environment for growth.
There is competition for food among this group of trees because
the light requirement is met. The second group has competition
over the light, so they maintain distance from other trees. In
the third replace and delete group, some weak trees are deleted
and replaced by new trees. The last group is referred to as
reproductive or best trees. These are responsible for increasing
their species and reproducing new trees [61]. Mathematically,
this algorithm is defined as follows.

1) Calculate the fitness values after randomly generating the

initial population of trees on the upper and lower bounds.

2) Locate the best among trees: The best tree serves as the
minimal objective function and vice-versa when a mini-
mum optimization problem exists. For example, the TGB
Jj element at repetition j represents the finest version of
it.

3) Use the below-mentioned formula to allow S; reasonable
solutions for local search. (Search locally for numerous
solutions. Replace it if the new solution’s value is better
than the initial response.)

Xngl _ st
B

The power reduction rate is denoted by 3, which means trees
are losing energy due to aging, growth, and decreased available
food. And [ is U(0, 1); it instructs the roots of trees to move to
absorb food due to the light satisfaction of trees, causing growth
at a rate of [ X? units.

4) Distancing between the closest optimal solutions using
Sy solutions at various angles «v. First, use the following
formula to determine the distance between the selected
trees and others

+1x°. (20)

1
51452 2

> (xg, - x)°

a=1

D, if X4 # X!
Da: . b2 b
o if Xg, = X,.

D, and

2y

Then, select two solutions, 1 and 72, with minimal D, and use
the following formula for getting a linear combination among

the trees (p = U(0,1))
u = pt; + (1 —p)ts. (22)

In last, navigating this tree among trees that are adjacent to
Yo = U(0, 1) angles, using the following formula:

X% = X% + .. (23)

5) Use randomly generated solutions after eradicating Ss
worse solution.
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6) Generate novel population (novel population S =
Sy S2 + S3).

7) New solution S} is created, and a masked operator is used
to change every new solution concerning the finest solu-
tion from the population S;randomly. Now, it is added to
the novel population (novel population = novel population
+ Sy).

8) After sorting the novel population, the total number of
population S will initially be the initial population of the
upcoming iteration.

Repeat step 2 if the stopping criteria do not meet [61].

This process continues until the number of iterations is com-
pleted. In the end, a feature vector is obtained called the best
feature vector. However, based on this step’s results, we ana-
lyzed that some important features were also reduced; hence,
we considered another technique, entropy-based selection, for
selecting the most numeric value features. The entropy-based
selection is defined as follows.

The uncertainty of V/, a random variable considering various
possibilities among finite values’ set, is measured using Shan-
non’s entropy. Let P be the space of all potential probability
distributions and let V' be a random variable with a finite set of
values, including n symbols represented by {vy, v, ..., v}
The amount of information associated with v; is defined as
follows if the value of v; happens with a probability distribution

n

P(v;) such that (P(v;) > 0,4 = 1,2,...,nand Y (v;) =1
i=1
[63]

X (v;) = —logsP (v;) . (24)

Accordingly, the information produced while choosing the
symbol v; is —log, P(v;) bits for a discrete source. The average
quantity of information gathered from n output sources is as
follows if the symbol v; is picked n x P(v;) times in n choices

—n x P(v1)logyvy —n x P(ve)logavs — ... —n
x P (vy,)logovy,. (25)

Entropy is defined as a function of the distribution of V, a
random variable that depends on probabilities. Because of this,
entropy E(V) is defined as follows:

E (V)= =) P(v)logP (v).
=1

(26)

This process is continued for all features, and at the end, the
features are sorted into descending order, and selects most 50%
of them for further processing. In this work, we obtained the
entropy-based selected feature vector of dimensions N x 750
and F'Vr, is tree growth optimized vector of dimension N x 902.

1. Feature Fusion

The above-selected features are finally fused using an intel-
ligent fusion approach called serially entropy threshold. Con-
sider, FV g denotes the entropy-based selected feature vector
of dimension N x 750 and FVr; is the tree growth optimized
vector of dimension N x 902. Then, the serial fusion is defined
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as follows:

FVg
Fused = 27

FVTr>
N xT750+N x902

The size of the fusion vector is 1650. After that, we computed
the entropy value of this fused vector through (16). Based on the
entropy value, a threshold function is defined for the final fusion

TA — Fused (¢) forFused > E (28)
Ignore, Elsewhere

where F/u\sgi(z) is the final fused vector of dimensional N' x 982,
and E denotes the entropy value of the original fused vector.
Finally, the fused features are classified using machine learning
classifiers, such as trilayered neural network, bilayered neural
network, wide neural network, medium neural network, and
many others.

IV. RESULTS AND ANALYSIS

This section presents the results of our proposed work in terms
of numerical values and sometimes plots. First, the Plant Village
dataset was acquired, and two fruits—apples and grapes—
were selected. Then, the detail of the dataset is given under
Section III-A. After that, features are extracted from the trained
model and performed optimization that is finally fused using
a serial-based intelligent approach. Then, several experiments
were performed, such as results computation on the original deep
features, each optimization algorithm, and finally, fusion was
applied. Hence, a total of four experiments have been performed
for each dataset.

A. Experimental Setup

The experimental process of the proposed framework is pre-
sented in this section. For the training and testing, a 50:50
approach has been opted. Several hyperparameters have been
initialized in the transfer-learning-based training process, such
as a learning rate of 0.0001, momentum of 0.6, minibatch size of
16, epochs of 100, and stochastic gradient descent optimizer. All
results are computed through tenfold cross validation. The entire
experimental process is conducted on MATLAB2022a using a
personal workstation having 16 GB of RAM and an 8 GB Nvidia
graphics card.

B. Grapes Dataset Results

Experiment 1: For experiment 1, the augmented grapes
dataset has been utilized for training fine-tuned model Inception-
ResNet-v2. As a result, deep features are extracted from the
average pooling layer. These extracted 1536 deep features are
then passed to classifiers, and the results are presented in Table II.
The results in this table present that the wide neural network
is performing best with an accuracy of 99.9%. The recall and
precision rates are 99.9%, which can be verified through the
confusion matrix, as illustrated in Fig. 8. The computational
time is also noted during the classification process, showing that
the medium tree execution time is minimal.
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TABLE II
CLASSIFICATION RESULTS OF EXPERIMENT 1 USING GRAPES DATASET
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TABLE III
CLASSIFICATION RESULTS OF EXPERIMENT 2 USING GRAPES DATASET

Recall Precision Fl1- Accu

Recall Precision F1- Accu

Classifier Rate rate Score FPR racy fo;\])R T(i:)]e Classifier Rate rate Score FPR racy ?/:I)R T(i:)le
_ (%) (%) (%) (%) ° (%) (%) (%) (%)
Tiwered 998 99,9 99.8 0.0 998 02 1305 ered 999 99,9 999 00 998 02 740
Blayered 998 99.8 998 00 998 02 791 Sayered 998 99.7 997 00 997 03 742
Wide NN 99.9 999 99.9 0.0 999 0.1 1033 WideNN 998 9938 998 0.0 998 02 441
Nediom 999 99.9 999 00 999 01 739 Nedum 998 99.8 99.8 0.0 998 02 327
E;I“W 99.8 998 998 00 998 02 72.6 II:II;“"W 99.8  99.8 99.8 0.0 998 02 393
?aggsd 99.8  99.8 998 00 998 03 589 Bagged 998  99.8 998 00 998 02 270
ree Tree
Cosi -
o 99.8  99.8 99.8 00 998 02 2087 Cosine 99.8  99.7 99.7 0.0 997 03 825
Medi i
o998 998 99.8 0.0 998 02 2004 Il\é';?\;um 997 997 997 00 997 03 815
Cubic .
SVM 99.9 9.9 999 00 999 01 604 e 99.9  99.9 999 0.0 999 01 217
Quadratic :
SVUM 99.9 9.9 999 00 999 02 54 Quadatic 999 999 999 00 999 01 241
Linear B
SVM 99.9 999 999 00 998 02 632 cnear 999  99.9 999 00 998 02 236
Medium R
Tree 9.5 996 995 00 995 05 27 Medium 995 995 995 00 995 06 100
Tree
Bold denotes the best accuracy. Bold denotes the best accuracy.
Grape  Black rot 0.3%
Grape__Black ot 0.3%
- . Grapc  Esca 0.2%
) (([:1 hﬁ__McE:;:s_) 01% ; (Black_Measles)
E Grape._ healthy E Grape__ healthy 0.0%
Gray Leaf
I‘!ﬁse'—[ﬁ““f; blight (isariopsis
o et
TPR FNR
I'NR
Fig. 9. Confusion matrix of TPR experiment 2 on grapes dataset.

Fig. 8. Confusion matrix of TPR experiment 1 on grapes dataset.

Experiment 2: For experiment 2, entropy-based feature selec-
tion is used to select features from initially extracted features.
As a result, 750 deep features are selected and then passed to
classifiers, and the results are given in Table III. The results in
this table show that the cubic SVM is performing best with an
accuracy of 99.9%.

The recall and precision rates are 99.9%, which can be ver-
ified through the confusion matrix, as illustrated in Fig. 9. The
accuracy achieved by other classifiers is also given in this table.
Finally, the computational time for each classifier is computed,
and the medium tree took a minimum time of 10 s, which was
minimized in experiment 1.

Experiment 3: The tree growth optimization technique is
used in this experiment to choose deep features from the ini-
tially extracted features. Tree growth optimization chose 902
characteristics. The results of using several classifiers with the
data generated using this technique are shown in Table IV.
The table demonstrates that, among other things, the cubic and

quadratic SVM both have the best accuracy of 99.9%. Addi-
tionally, both classifiers have 99.9% recall and precision rates,
supported by the confusion matrix in Fig. 10. The effectiveness
of each additional classifier is also shown in the table below.
In addition, the computational time is noted, and it is seen
that the time is significantly decreased after the optimization
process.

Experiment 4: This experiment is the fusion of tree growth
optimization and entropy-based selection algorithms. The fea-
tures obtained from both algorithms are fused, and the resulting
features are 982. These features are then passed to multiple
classifiers, and Table V gives the results of all these classifiers. It
is evident from the given table that quadratic SVM is performing
with a maximum accuracy of 99.9%. The recall and precision
rates are 99.9% each. These are verifiable through the confusion
matrix, as shown in Fig. 11. The performance of all other clas-
sifiers is also given in this table, which shows the improvement.
The medium tree computational time is minimal, but compared
with experiments 2 and 3, there is a little increase in the time, but
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TABLE IV

CLASSIFICATION RESULTS OF EXPERIMENT 3 USING GRAPES DATASET

Recall

Precision

F1-

Accu

Classifier Rate rate Score FPR  racy E,Z)R T(i:)le
_ (%) (%) (%) (%)
ered 998 998 998 00 998 02 892
Blayered 9978 99.8 998 00 998 02 543
Wide NN 99.9 999 999 00 998 0.1 602
;";d‘“m 99.9 999 999 0.0 999 0.1 445
g;“"w 751 99.9 857 0.0 99.8 249 445
?agg“‘ 998  99.8 998 0.0 998 03 385
ree
Cosine
P 998  99.8 998 00 997 03 1180
Medium
KNN 998  99.8 998 00 998 02 1074
Cubic
SVM 99.9 999 999 0.0 999 0.1 418
Quadratic
SVaL 99.9 999 999 0.0 999 01 39
Linear
suM 998  99.8 998 00 998 02  39.1
Jedum =995 995 995 0.0 995 05 139
ree
Bold denotes the best accuracy.
Grape  Black rot 03% 0.3%
) (%mﬁi:%) 02% 02%
E Grape  healthy
Grape__ Leaf
blight_(Tsariopsis
Leaf Spot}
TPR FNR

Predicted Classes
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Fig. 11.

Confusion matrix of TPR experiment 4 on grapes dataset.
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Fig. 10.

Confusion matrix of TPR experiment 3 on grapes dataset.

TABLE V

CLASSIFICATION RESULTS OF EXPERIMENT 4 USING GRAPES DATASET

Recall

Precision

F1-

Accu

Classifier Rate rate Score  FPR  racy E;Q)R T(i:)]e
i (%) (%) (%) (%) ’

pered 998 998 998 00 998 02 1189
Suayered 998 998 998 00 998 02 953
WideNN 999 999 999 00 999 0.1 1128
L";d'“’“ 99.9  99.9 999 00 998 02 706
E;“"W 99.9 999 999 00 998 02 668
Bagged 99.9 998 998 0.0 998 02 555
Tree
Cosine
e 99.8  99.8 998 0.0 998 02 2245
Medium
KNN 998  99.8 998 00 998 02 2106
Cubic
s 99.9  99.9 999 00 999 0.1 679
Quadratic
SvaL 99.9 999 999 0.0 999 01 699
Linear
svM 99.9  99.9 999 00 998 02 725
'}/‘ed‘“’“ 99.6  99.6 996 00 995 04 262

ree

Bold denotes the best accuracy.

Fig. 12.  Scatter plot of original dataset and model predictions for grapes
dataset after the fusion.
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Fig. 13.  Confusion matrix of experiment 1 on the apple dataset.

accuracy is improved. In addition, the scatter plot is illustrated
in Fig. 12, which shows the original and predicted images after
the fusion process.

C. Apple Dataset Results

Experiment 1: The augmented apple dataset has been utilized
for training the fine-tuned Inception-ResNet-v2 model. A total of
1536 deep features are extracted from the average pooling layer
of the newly fine-tuned model. These extracted deep features
are passed to 12 of the same classifiers as in the grape’s dataset
case. The results are given in Table VI. As in the given table,
the cubic SVM performs best with an accuracy of 99.4%. The
recall and precision rates are 99.4% each, which can be verified
through the confusion matrix, as illustrated in Fig. 13. The
computational time for each classifier is also noted during the
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TABLE VI
CLASSIFICATION RESULTS OF EXPERIMENT 1 USING AUGMENTED APPLE
DATASET Healthy 0.5%
Recall  Precision  F1- Accu .
Classifier Rate rate Score FPR racy g}/\OI)R T(lgle RUST 0.8%
i (%) (%) (%) (%) 5
ilayered 993 993 993 000 993 07 9845 z
Bilayered Z Seab 0%
NN 993 993 99.3 000 993 07 869.4 &
Wide NN 994 993 99.3 000 993 07 1037 Maliplo
- N 0.1%
;ﬁjdmm 99.4 994 99.4 000 994 07 7228 discases
E;""W 993 993 99.3 000 993 07 719.1 Healthy — RUST  Seab  go B° PR ENR
Haseed 99.4 993 99.3 000 993 0.6 482 Predicted Classes
Cosine
KNN 73 7.4 74 0.01 T4 25 2230 Fig. 14.  Confusion matrix of experiment 2 on the apple dataset.
pequm 977 977 977 001 977 23 1384
Cabic TABLE VIII
SYM 994 994 99.4 0.00 994 0.6 523 CLASSIFICATION RESULTS OF EXPERIMENT 3 USING AUGMENTED APPLE
i DATASET
S&iﬂ'a‘w 993 992 99.2 000 992 07 540
Linear Py
98.9 98.7 98.8 0.00 98.9 1.1 553 Recall  Precision Fl1- Accu .
i/[w;/‘[ Classifier Rate rate Score FPR racy ;ELR T(l;]e
T 98.4 984 1967 001 983 16 167 (%) (%) (%) (%)
— Trilayered 995 995 92 00 992 08 768.1
Bold denotes the best accuracy. NN ) i i i . i )
oered 992 992 992 00 992 08 7351
Wide NN 993 993 99.3 0.0 993 0.7  738.1
TABLE VII MediumNN 993 993 99.3 0.0 993 0.7  558.7
CLASSIFICATION RESULTS OF EXPERIMENT 2 USING AUGMENTED APPLE Narrow NN 99.2 99.2 99.2 0.0 992 0.8 540.8
DATASET Bagged Tree  99.2 993 99.2 0.0 992 08 34.6
Cosine KNN 972 97.2 97.2 0.0 972 28 1010
Recall  Precision  F1- Accu . Medium
Classifier Rate rate Score FPR racy (F(;\‘)R T(m;e KNN 77 77 77 0.0 7T 23 8.7
(%) (%) (%) (%) ° s CubicSVM 994  99.4 99.4 0.0 994 0.6 340.8
;‘#aymd 992 992 99.2 0.0 992 08 4739 g;;ij’[”“c 972 992 98.2 0.0 992 28 512
IlfriNlayered 993 993 993 00 993 07 3690 Linear SYM  99.0  99.0 99.0 0.0 990 10 517
Medium Tree 984 98.4 98.4 0.0 984 1.6 109
Wide NN 993 993 99.3 0.0 993 07 6455 Bold denotes the beat
Mcdium NN 99.4 994 99.4 0.0 994 0.6 6282 01¢ denotes the best aceuracy.
Narow NN 993 993 99.3 0.0 993 07 3225
Bagged Tree 993 993 99.3 0.0 992 08 244
CosineKNN 978 97.8 97.8 0.0 978 22 677 Experiment 3: The improved tree growth optimization algo-
Medi . . . . .
an 98.1  98.1 98.1 0.0 98.1 19 645 rithm is applied to select the best deep features in this exper-
CubicSVM 994 994 994 0.0 994 06 259 iment. A total of 945 deep features are selected through this
drati . . .
S\l;?w ratic 993 993 99.3 0.0 993 07 283 algorithm. Then, these features are passed to various classifiers.
Lincar SVM_ 99.0  99.0 99.0 0.0 9.0 10 307 The performance of each classifier is presented in Table VIII.
Medium Tree  98.5 98.5 98.5 0.0 98.5 1.5 9.1

Bold denotes the best accuracy.

classification process, showing that the medium tree classifier
has the minimum time.

Experiment 2: Entropy-based feature selection is used to
select features from initially extracted deep features. The se-
lected features are then passed to classifiers, and the results
are given in Table VII. According to this table, medium neural
networks and cubic SVM outperform others with an accuracy of
99.4%. Furthermore, both classifiers’ recall and precision rates
are 99.9% verifiable through the confusion matrix, as plotted
in Fig. 14. The performance of other classifiers is also given in
this table. Moreover, the computational time of each classifier
is also noted, and it is observed that the medium tree execution
is quicker than the other classifiers. Moreover, this experiment
required less time for execution than experiment 1.

This table presents that the cubic SVM outperforms others with
an accuracy of 99.4%. The recall rate and precision rate are
99.4%, which can be verified with the help of the confusion
matrix, as shown in Fig. 15. The computational time for each
classifier is also noted, and the medium tree classifier consumes
less time than other classifiers. Moreover, it is also noted that the
accuracy of this experiment is consistent, but time is reduced,
which is the main strength of this work.

Experiment 4: The suggested intelligent fusion method is used
in this experiment to perform a fusion. This method allows for
enhanced tree growth optimization, and entropy-based selected
characteristics that return 980 are merged. Following that, clas-
sification is conducted on these fused features, and Table IX
provides the results of each classifier. This table explains how
well medium MM performs, with a maximum accuracy of
99.4%. The confusion matrix in Fig. 16 provides evidence that
the recall and precision rates are each 99.4%. The computing
time for the medium tree classifier is less than that of experiments
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Fig. 15.  Confusion matrix of experiment 3 on the apple dataset.

TABLE IX
CLASSIFICATION RESULTS OF EXPERIMENT 4 USING AUGMENTED APPLE
DATASET
Recall ~ Precision  Fl- Accu .
Classifier Rate rate Score FPR racy ZZF T(l:;e
i (%) (%) (%) (%)
Tered 993 993 993 00 993 07 8792
Slavered 993 993 993 00 993 07 8112
Wide NN 99.3 99.3 99.3 0.0 99.3 0.7 1002
Medium NN~ 99.4 99.4 99.4 0.0 99.4 0.6 685.1
Narrow NN 99.2 99.2 99.2 0.0 99.2 0.8 681.8
Bagged Tree 99.3 99.3 99.3 0.0 99.3 0.7 46.3
Cosine KNN 97.7 97.6 97.6 0.0 97.6 2.3 159.9
Medium
KNN 97.8 97.9 97.8 0.0 97.8 2.2 155.7
Cubic SVM 99.4 99.3 99.3 0.0 99.3 0.7 288.1
S\jﬁm‘“ 992 993 99.2 0.0 992 08 603
Linear SVM 99.1 99.1 99.1 0.0 99.0 1.0 62.1
Medium Tree ~ 98.4 98.4 98.4 0.0 98.4 1.6 18.8
Bold denotes the best accuracy.
TABLE X

COMPARISON OF THE PROPOSED FRAMEWORK ACCURACY ON SELECTED
DATASETS WITH OTHER STATE-OF-THE-ART DL TECHNIQUES

Method Dataset é}/c();uracy T(I;r)le

VGGl6+

Proposed 96.5 17.5

Optimization

VGG19+

Proposed Augmented | 96.9 21.8

Optimization Apple

Resnet50+

Proposed 98.1 26.33

Optimization

ResNet18+ 97.6 20.3

Proposed

Optimization

Proposed 99.4 9.1

VGG16+Proposed 9722 214

Optimization

VGGI19+

Proposed 98.1 24.8

Optimization

Resnet50+ é?f;g:med

Proposed 98.8 31.5
. Dataset

Optimization

ResNet18+

Proposed 98.5 27.2

Optimization

Proposed 99.9 10.0

Bold denotes the best accuracy.

Fig. 16. Confusion matrix of experiment 4 on the apple dataset.

2 and 3, but it is more. Overall, this experiment’s precision is
higher than others using the apple dataset.

D. Discussion

A detailed discussion of the proposed results has been con-
ducted in this section. As shown in Fig. 1, the proposed frame-
work contains a few important middle steps, such as entropy-
based feature selection, improved tree growth-based selection,
and fusion of both optimal feature vectors. Tables I[I-V presented
the results of the grapes dataset with the best accuracy confusion
matrix. Tables VI-IX present the results of the proposed frame-
work on the apple dataset. Moreover, a confusion matrix is illus-
trated for each experiment. These tables present the results of the
augmented datasets. Results presented in these tables show that
the accuracy is improved after the fusion process. In addition,
the entropy-based selection technique’s computational time is
less than the improved tree growth optimization algorithm. In
addition, the fusion process improved the precision rate, FPR,
and accuracy, but the computational time is jumped, which is a
drawback of this step.

To analyze the impact of data augmentation, we computed the
results on the original dataset and then compared them with an
augmented dataset, as shown in Fig. 16. This figure shows that
the difference between the accuracy of original (nonaugmented)
and augmented datasets is almost 3%. The accuracy is improved
after the augmentation process, as seen in Table X.

Fig. 17 illustrates the obtained accuracy for both datasets on
those features, which are ignored during the fusion process. In
this figure, it is clearly shown a difference in the accuracy of
best fused features (see Fig. 16). There is a 5%—6% difference
is noted among Figs. 16 and 17, whereas the augmented dataset
has been employed for the evaluation process, see Fig. 18.

In the end, a brief comparison of the proposed framework is
conducted with several DL techniques, such as VGG16 [64],
VGGI19 [65], ResNet50 [66], and ResNet18 [67]. A comparison
is given in Table IX, showing that the proposed framework
accuracy is improved than the recent techniques. Also, the
computational time of the proposed framework is less than the
other listed methods.
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Fig. 18. Comparison among final selected features and ignored features during
the final fusion step.

This table presents that ResNet50 gives better results than
VGG16, VGG19, and ResNet18; however, the proposed frame-
work shows improved accuracy. In addition, the proposed frame-
work is also tested on the original dataset (before augmentation),
and the results are shown in Table XI.

This table would present the degradation in accuracy if we
did not perform the augmentation step. Hence, the augmentation
process improved the accuracy of the proposed framework.

V. CONCLUSION

This work presents an automated DL and best feature
selection-based approach for fruit leaf disease classification.
The proposed method included several steps: contrast enhance-
ment, data augmentation, DL-based feature extraction, feature
selection, feature fusion, and classification. The original dataset
images are not in enough size to train a DL model; there-
fore, we performed data augmentation. A pretrained DL model,
Inception-ResNet-v2, extracts deep features. The best features
are then chosen using tree growth optimization and entropy-
based selection, which are later fused using an intelligent fusion
approach. These selected features are then passed to 12 different
classifiers and the classification accuracy. In comparison with
some other DL methods, it is noted that the proposed method
shows an improved accuracy of 99.9%. We concluded from the
results that using appropriate feature selection techniques in-
creases classification accuracy while decreasing computational
time.
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TABLE XI
COMPARISON OF PROPOSED FRAMEWORK ACCURACY ON SELECTED DATASETS
(BEFORE DATA AUGMENTATION) WITH OTHER STATE-OF-THE-ART DL

TECHNIQUES
Method Dataset z:/i;uracy T?SI;C
VGG16+Proposed 922 13.2
Optimization
VGG19+
Proposed 93.7 17.4
Optimization Before
Resnet30+ Augmentation
Proposed Apple Dataset 94.7 20.13
Optimization PP
ResNet18+
Proposed 94.4 17.0
Optimization
Proposed 97.2 6.8
VGGl6+Proposed 93.5 16.3
Optimization
VGG19+
Proposed 94.8 11.4
Optimization Before
Resnet50+ Augmentation
Proposed Grapes 95.2 22.3
Optimization Dataset
ResNet18+
Proposed 95.1 21.6
Optimization
Proposed 97.9 7.4

Bold denotes the best accuracy.

In addition, the augmentation method improves accuracy in
comparison with the accuracy of the original dataset. A draw-
back of this approach is that the fusion procedure lengthens the
computing time. Future proposals for intelligent-based fusion
techniques will use more effective optimization algorithms to
improve the feature data. In addition, the network based on
encoder—decoders will be considered for feature extraction.
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