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Shadow Detection and Reconstruction of
High-Resolution Remote Sensing Images
in Mountainous and Hilly Environments
Zhenqing Wang , Yi Zhou, Futao Wang , Shixin Wang, Gang Qin , and Jinfeng Zhu

Abstract—The undulating terrain in mountainous and hilly re-
gions results in a greater variety and complexity of shadows. Effi-
cient methods for shadow detection and reconstruction in high-
resolution remote sensing images are particularly important in
such hilly areas. The accurate detection of shadow masks is a
prerequisite for shadow reconstruction. By utilizing the features
of high hue and low intensity in shadow areas, an initial spectral
ratio is constructed based on the CIELCh color space model.
Simple linear iterative clustering is employed to perform superpixel
segmentation on the image, and the segmented results are spatially
constrained to reconstruct the initial spectral ratio. Afterward, an
automatic multilevel global thresholding approach is applied to
obtain the shadow mask and eliminate the influence of interfering
objects. For shadow reconstruction, the segmented superpixels
are treated as the smallest processing units. Similar neighbor-
ing objects have similar ambient light intensities. Based on this,
we propose a shadow reconstruction method, which compensates
shadow superpixels using adjacent nonshadow superpixels and
determines compensation weights based on their similarity. Fur-
thermore, the shadow boundaries are dilated to obtain penumbra,
and mean filtering is performed to compensate for the illumination
in the penumbra. Finally, the proposed method is qualitatively
and quantitatively compared with existing shadow detection and
reconstruction methods. Experimental results demonstrate that
this method can accurately detect shadows in high-resolution re-
mote sensing images in mountainous and hilly environments, and
effectively reconstruct the spectral information of shadow areas.
This has significant implications for subsequent feature extraction
and further analysis in mountainous and hilly regions.

Index Terms—High-resolution remote sensing, hilly environ-
ment, shadow detection, shadow reconstruction.
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I. INTRODUCTION

H IGH-RESOLUTION remote sensing images efficiently
capture information about areas of interest and have

played a significant role in various fields such as urban develop-
ment, environmental management, and disaster risk reduction.
However, high-resolution remote sensing images are severely
affected by shadows. Shadow coverage results in significant
loss of information in the corresponding areas, greatly impacting
subsequent feature extraction and analysis [1]. The detection and
reconstruction of shadow regions not only visually contribute
to shadow restoration but also provide assistance in tasks such
as road extraction, building detection, and impervious surface
studies [2].

From the perspective of shadow imaging mechanisms, shad-
ows can be primarily classified into two parts: cast shadows and
self-shadows. As shown in Fig. 1, cast shadows occur when
an object obstructs direct sunlight, while self-shadows are gen-
erated when an object itself blocks sunlight. Cast shadows can
further be divided into umbra and penumbra. Umbra results from
complete blockage of direct sunlight, whereas penumbra forms
due to partial obstruction of direct sunlight. In high-resolution
remote sensing images, the shadows present mainly consist of
umbra and penumbra. In plain areas, shadows primarily consist
of building shadows. However, in mountainous and hilly areas,
due to its special topography, in addition to building shadows,
slope shadows, and cloud shadows also occupy a large propor-
tion, as shown in Fig. 2. The existence of multiple types of
shadows makes shadow information restoration methods partic-
ularly important in mountainous and hilly environments.

The process of shadow information restoration involves two
main components: shadow detection and shadow reconstruc-
tion. Shadow reconstruction heavily relies on the results of
shadow detection. Currently, shadow detection methods can gen-
erally be categorized into three types: physics-based methods,
feature-based methods, and machine learning-based methods
[3]. Physics-based methods utilize mathematical models con-
structed using satellite sensor positions, solar azimuth angles,
and digital elevation models (DEMs) to obtain shadow informa-
tion. For instance, Luo et al. [1] first obtained rough shadows
through DEM and then optimized shadow features using support
vector machines. However, physics-based methods require cam-
era poses, illumination directions, and high-resolution DEMs,
which are not easily obtainable [4]. Feature-based methods
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Fig. 1. Imaging mechanism of shadows.

Fig. 2. Components of shadows in mountainous and hilly areas. (a) Slope
shadow. (b) Building shadow. (c) Cloud shadow.

typically involve image feature extraction and segmentation.
Shadow regions exhibit higher hue and lower intensity compared
to nonshadow regions. These algorithms primarily transform re-
mote sensing images from the RGB model to the hue, saturation,
and intensity space or equivalent spaces. Based on this, Tsai [5]
compared and analyzed the ratio of hue to intensity in different
color spaces, and used the Otsu algorithm to obtain the shadow
mask. Silva et al. [6] transformed the image to the CIEL∗C∗h∗
(CIELCh) model, proposed an improved shadow index, and
applied multilevel thresholding to obtain the shadow mask.
Zhou et al. [7] combined the color space with the near-infrared
band, proposed an enhanced shadow index to highlight shadows,
and employed a thresholding segmentation method to obtain
the shadow mask. In recent years, machine learning, particu-
larly deep learning networks, has rapidly developed, providing
new inspiration for shadow extraction. Many researchers have
designed various effective deep learning methods for shadow
detection and achieved better results than traditional methods
[8], [9], [10], [11], [12]. Unfortunately, current machine learn-
ing algorithms primarily focus on general images. Due to the
limitations of satellite revisit periods and weather conditions,
it is challenging to acquire shadow images and corresponding
shadow-free images from the same location to create shadow
datasets for remote sensing image shadow detection.

The spectral information of nonshadow regions serves as
the primary source for shadow information reconstruction,
and utilizing this information is crucial for shadow removal.
Common methods for shadow compensation include histogram

matching, linear correlation correction, intensity-based meth-
ods, and machine learning-based methods. Histogram matching
methods align the shadow histogram to the nonshadow his-
togram to achieve information reconstruction [13], [14], [15],
[16]. Linear correlation correction methods employ linear cor-
relation functions to reconstruct the shadow information by
adjusting the intensity of shadow pixels based on the statistical
characteristics of the corresponding nonshadow regions [17],
[18], [19]. Intensity-based methods reconstruct shadows based
on the illumination model [6], [20]. Shadow regions are formed
by ambient light, while nonshadow regions are composed of
ambient light and direct sunlight. The information of shadow
regions can be recovered by the ratio of direct sunlight to
ambient light. In recent years, various deep learning models,
such as generative adversarial networks (GAN) [8], [10], [12],
[21], have been widely used for generating shadow-free images.
GAN-based methods utilize a generator G and a discriminator
D to obtain shadow-free images, where G is trained to generate
shadow-free images and D evaluates the similarity between
the generated shadow-free images and the reference images.
However, deep learning requires a large amount of training data,
and the training cost to obtain a generalized model is significant.
Besides considering which model to use for shadow information
compensation, another key issue in shadow removal is where to
select the information from. Some researchers model the entire
image’s nonshadow and shadow regions, but this may lead to
excessive compensation of the shadow region’s information [5],
[6]. To address this issue, in some studies, modeling is performed
on shadow pixels and their neighborhood nonshadow pixels [7],
[20]. In summary, for mountainous and hilly remote sensing im-
ages with complex backgrounds, effective and accurate methods
for shadow reconstruction are still lacking.

Despite extensive research on shadow detection and recon-
struction, several limitations persist, which are as follows:

1) The accuracy of shadow detection results still has room
for improvement due to the influence of dark objects and
water bodies, among other objects.

2) Nonshadow samples used for shadow region information
restoration are crucial for achieving effective reconstruc-
tion. However, selecting the most suitable nonshadow
samples is a challenging task.

3) The increasing volume of remote sensing data calls for a
fully automated method for shadow detection and recon-
struction. Semi-automatic methods are no longer suitable
for handling large-scale shadowed remote sensing images.

In order to efficiently address complex shadow scenarios in
mountainous and hilly regions, a fully automated method for
shadow detection and reconstruction has been developed. This
research makes the following key contributions.

1) A novel shadow index is proposed by combining the
CIELCh color model and superpixel clustering tech-
niques.

2) A method is introduced for the reconstruction of shadow
superpixels based on the similarity-weighted compensa-
tion of adjacent nonshadow superpixels, taking into ac-
count the similarity of environmental lighting conditions
between neighboring similar objects.



WANG et al.: SHADOW DETECTION AND RECONSTRUCTION OF HIGH-RESOLUTION REMOTE SENSING IMAGES 1235

Fig. 3. Part of the remote sensing image of the study area. The first row is
RGB images, and the second row is Nir images. (a) Daning. (b) Hengdong.

3) Through validation on remote sensing images contain-
ing various types of shadows, the proposed method has
achieved state-of-the-art results in shadow detection and
reconstruction.

II. DATA

The data used in this study are sourced from the GaoFen-2
satellite. GaoFen-2 is the first domestically developed optical
remote sensing satellite in China with a spatial resolution better
than 1 m for civilian use. It is equipped with two sensors: a
high-resolution 1-m panchromatic sensor and a 4-m multispec-
tral sensor, providing a spatial resolution of up to 0.8 m at the
nadir. GaoFen-2 images offer the advantages of high spatial
resolution and wide coverage, enabling detailed observation of
ground information over large areas. GaoFen-2 has been utilized
in various important applications, including disaster assessment
and ground information extraction. After radiometric calibra-
tion, geocoding, and image fusion, the multispectral imagery
with a resolution of 0.8 m is obtained.

The study area comprises two hilly counties in China, namely
Hengdong County in Hunan Province and Daning County in
Shanxi Province. Hengdong County is characterized by a pre-
dominantly hilly terrain, with additional plains and mountainous
areas. Daning County, on the other hand, features a landscape of
gullies and undulating mountain ranges. Partial remote sensing
images of the two regions are shown in Fig. 3.

To quantitatively evaluate the performance of shadow detec-
tion, three subareas were selected to create ground truth values
for shadow detection. These subareas include typical exam-
ples of slope shadows, building shadows, and cloud shadows.
Multiple types were chosen to ensure the validity of the model
performance evaluation. The creation of ground truth values in-
volved the visual interpretation of multitemporal images within
the same regions. Domain experts were invited to review the

Fig. 4. Ground truth of shadowed areas. In a ground truth row, white pixels
represent shadows and black pixels represent nonshadows. (a) Slope shadow.
(b) Building shadow. (c) Cloud shadow.

results, and revisions were made based on their feedback. The
final ground truth values are presented in Fig. 4.

III. METHODOLOGY

A. Shadow Detection

Building upon the spectral ratio framework proposed by Silva
et al. [6], we perform superpixel reconstruction of the spectral
ratio. This approach enables a finer delineation of boundaries in
the shadow detection results.

Initially, the RGB color space of the remote sensing image
is mapped to the CIELCh color space. The CIELCh color
space represents the polar coordinate representation of the
CIEL∗a∗b∗(CIELab) color space, which was designed by the
Commission Internationale de l´Eclairage (CIE). The CIELCh
color space is device-independent and is derived from the CIE
tristimulus values CIEXYZ, describing colors in terms of Light-
ness, chroma, and hue.

Convert RGB to CIEXYZ color space⎡
⎣XY
Z

⎤
⎦ =

⎡
⎣0.4124564 0.3575761 0.1804375
0.2126729 0.7151522 0.0721750
0.0193339 0.1191920 0.9503041

⎤
⎦
⎡
⎣RG
B

⎤
⎦ . (1)
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where

f(x) =

{
x

1
3 if x > 0.008856

7.787x+ 16
116 else

. (5)

In the above equation, Xn, Yn, Zn are the reference values
of the standard D65 light source, that is, XnYnZn = {95.047,
100.00, 108.883}.
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Fig. 5. Superpixel segmentation and similar superpixel merging. (a) Image.
(b) SLIC result. (c) Merge result.

The CIELab color space can be transformed into the CIELCh
color space by a simple geometric transformation

C =
√

a2 + b2 (6)

h = atan2(b, a)

h =

{
h+ 360◦ if h < 0◦

h− 360◦ if h ≥ 360◦ . (7)

Due to the absence of direct sunlight, shadow areas exhibit
features of high hue and low intensity. The ratio between the hue
and intensity of pixels is calculated to accentuate the differences
in values between shadow and nonshadow regions

SR =
h+ 1

L+ 1
. (8)

Here, SR represents the spectral ratio image, while h and L
are normalized to the range of [0,1] prior to calculation. In the
spectral ratio image, pixels within shadow regions will have
higher values compared to pixels in nonshadow regions.

To address the issues of fine noise and the preservation of
shadow edge integrity when directly thresholding the spectral
ratio of shadows, superpixel reconstruction is performed on the
spectral ratio image. First, the simple linear iterative clustering
(SLIC) [22] algorithm is employed for superpixel segmentation
of the remote sensing image. SLIC significantly reduces the
number of distance calculations in optimization by limiting the
search space to regions proportional to the size of superpixels,
while providing control over the compactness of the superpixels.
Fewer superpixels can result in rough boundaries, while a larger
number increases computational complexity. To address this, an
initial generation of a larger number of superpixels is followed
by merging similar adjacent superpixels, as illustrated in Fig. 5.
The superpixels obtained from SLIC are converted into a region
adjacency graph, and regions with similar colors are gradually
merged to obtain the final superpixels.

Subsequently, the spectral ratio image is reconstructed by
taking the mean value of all pixels within each superpixel as the
value of that superpixel. Assuming the remote sensing image is
segmented into n superpixels, with each superpixel containing
mi pixels, the reconstructed pixel ratio can be expressed as
follows:

SRsp =
n⋃
i

⎛
⎝mi∑

j

(SRj) /mi

⎞
⎠ (9)

where SRj represents the SR value of pixel j.

To achieve fully automatic shadow extraction, the threshold
needs to be determined automatically. Dark objects, water bod-
ies, and shadows often lie on the same side of the spectral ratio
histogram. If a binary thresholding method is used, there is a risk
of erroneously extracting dark objects and water bodies. By em-
ploying an automatic multilevel global thresholding approach,
multiple thresholds are obtained, and the maximum threshold
value is selected as the shadow threshold. Thresholding the
superpixel-reconstructed spectral ratio image into a binary mask
allows for better segmentation of shadows from dark objects and
water bodies.

B. Shadow Reconstruction

Shadows in remote sensing images consist of umbra and
penumbra. The umbra is influenced solely by the intensity of
ambient light, while the penumbra is composed of the intensity
of both ambient light and dynamically attenuated direct sun-
light. Shadow reconstruction is divided into two parts: umbra
compensation and penumbra post-processing.

For any pixel i in the image, the value Ii can be expressed as
the product of the intensity of the light (Li) and the reflectance
of the pixel (Ri)

Ii = LiRi. (10)

Light intensity comprises direct intensity and environmental
intensity: direct intensity originates from solar radiation, while
environmental intensity is primarily caused by sky scattering
[23]. The pixel values in nonshadow and shadow regions of the
image can be calculated as follows:

Iunshaded,i = (Ld + Le)Ri

Ishaded,i = (kiLd + Le)Ri, ki ∈ [0, 1) (11)

where Iunshaded,i represents the value of a non-shadow pixel,
Ishaded,i represents the value of a shadow pixel, Ld is the direct
intensity, Le is the environmental intensity, Ri is the reflectance
of the pixel, and ki represents the attenuation factor of direct
intensity. If a pixel is solely illuminated by environmental light,
i.e., it is in the umbra region, ki is equal to 0. If a pixel is
illuminated by both environmental light and direct light, i.e.,
it is in the penumbra region, ki takes a value between 0 and 1.

The pixel values in shadow regions can be reilluminated based
on the ratio between direct intensity and environmental intensity
[20]. For any pixel i, the ratio r between environmental intensity
and direct intensity can be expressed as follows:

r =
Lunshaded − Lshaded

Lshaded
=

(Ld + Le)Ri − (kiLd + Le)Ri

(kiLd + Le)Ri

=
Ld − kiLd

Le + kiLd
≈ Ld

Le
. (12)

The final shadow reconstructed pixel value can be expressed
as follows:

IShadowReconstruction,i =
(

r+1
kr+1

)
Ii. (13)
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The reconstructed pixel value IShadowReconstruction,i can be
simplified as the shadow value multiplied by (r + 1) when k =
0 (i.e., the original pixel Ii is in the umbra).

According to the First Law of Geography, proximity implies
a closer association between objects. Each superpixel is most
likely to share similar attributes with its neighboring superpix-
els. In the absence of shadow influence, adjacent superpixels
receive similar solar radiation. Therefore, the most accurate
light intensity reconstruction for a shadow superpixel can be
achieved by using neighboring nonshadow superpixels. When
objects are occluded by shadows, the overall intensity decreases,
but the trend of the histogram remains consistent. Therefore,
the closer the similarity in histogram trends among adjacent
superpixels, the greater their contribution. Consequently, umbra
compensation can be performed through the following steps.

1) To begin with, all shadow superpixels are selected as a
preparatory step for subsequent processing.

2) Get the set SPnear = {SPnear,1, SPnear,2, SPnear,3, …,
SPnear,S} of adjacent nonshaded superpixels of a specific
shadow superpixel SPshaded, S is the number of adjacent
nonshaded superpixels of SPshaded.

3) Calculate the histogram Hshaded and Hnear of SPshaded

and superpixels in SPnear, and use the Bhattachary co-
efficient (indicated by ρ in the formula) to calculate the
similarity of the histograms, and then calculate the weight
Wnear of each superpixel:

Hshaded = hist (SPshaded) (14)

Hnear =

⎧⎨
⎩

hist (SPnear,1) , hist (SPnear,2) ,
hist (SPnear,3) ,
. . . ,hist (SPnear,S)

⎫⎬
⎭ (15)

Bnear =

⎧⎪⎪⎨
⎪⎪⎩

ρ (Hshaded, SPnear,1) ,
ρ (Hshaded, SPnear,2) ,
ρ (Hshaded, SPnear,3) ,
. . . , ρ (Hshaded, SPnear,S)

⎫⎪⎪⎬
⎪⎪⎭

(16)

Wnear =
(1−Bnear)∑S
i (1−Bnear)

∗ S. (17)

4) Calculate the intensity of SPshaded and the intensity of the
adjacent nonshadowed area to obtain the ratio

Lshaded =
P∑
i

SPshaded,i/P (18)

Lunshaded =

∑S
i

∑Q
j (SPnear,i,j ×Wnear,i)

S ×Q
. (19)

Among them, P is the number of pixels of SPshaded, and Q is
the number of pixels of superpixels in SPnear.

5) Calculate the ratio r between the environmental intensity
and direct intensity for SPshaded, leading to the result
of SPShadowReconstruction after umbra compensation of
SPshaded

SPShadowReconstruction=

(
Lunshaded−Lshaded

Lshaded
+1

)
SPshaded.

(20)

Repeat steps (2)–(5) for the remaining shadow superpixels
until all shadow superpixels have undergone illumination com-
pensation.

The penumbra lies in the transition zone between umbra
and nonshadow regions. The shadows extracted using auto-
matic multilevel thresholding only include partial areas of the
penumbra. Darker portions of the penumbra are extracted as
shadows and may exhibit overcompensation after umbra com-
pensation. Brighter portions of the penumbra are not extracted
and thus do not undergo illumination compensation, resulting in
undercompensation. Therefore, postprocessing is required for
the penumbra region.

The boundary of the extracted shadow is expanded, and the
obtained buffer is considered to be a penumbra

Penumbra = ShadowBoundary ⊕ kernel. (21)

Dilation “grows” the value in ShadowBoundary according to
the structure kernel. After that, average filtering is performed
on the penumbra area to alleviate the anomaly of illumination
compensation in the penumbra area. Get the final result image

Iresult =

{
Kb ∗ IShadowFree if in penumbra

IShadowFree else
(22)

where Kb is the kernel of mean filtering.

IV. RESULTS AND DISCUSSION

In this section, the proposed shadow detection and recon-
struction method is tested on the three subregions described in
Section II. To verify the effectiveness and robustness of the pro-
posed method, we conduct a comparative analysis with existing
state-of-the-art shadow detection and reconstruction methods.
These methods are proposed by Silva et al. [6], Zhou et al. [7],
and Liu et al. [24], respectively. The method of Liu et al. [24]
is a shadow detection method based on deep learning. Since the
corresponding shadow-free image of the shadow area is difficult
to obtain, it is difficult to carry out shadow reconstruction based
on deep learning. Therefore, deep learning-based methods are
not included in the shadow reconstruction comparison methods.

A. Performance and Comparative Analysis of Shadow
Detection

Visualizing the results of different shadow detection methods
allows for a direct comparison of their performance. Fig. 6 dis-
plays the detection results of three methods for slope shadows,
building shadows, and cloud shadows. By comparing them with
the ground truth, it is evident that our method outperforms the
others significantly. For slope shadows, all methods are capable
of identifying large contiguous shadow areas. However, the other
three methods are prone to false positives in small-scale slopes
and transition areas between shadows, as shown in the red-boxed
region in Fig. 6. For building shadows, Zhou et al.’s [7] method
misses many small-scale building shadows. All four methods
successfully detect large-scale building shadows, but our method
achieves higher precision, as demonstrated in the green-boxed
region in Fig. 6. For cloud shadows, Silva et al.’s [6] method
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Fig. 6. Detection results of shadow regions. White pixels represent shadows and black pixels represent non-shadows. (a) RGB images. (b) Ground truth for
shadows. (c) Shadow results detected using the method proposed by Silva et al. [6]. (d) Shadow results detected using the method proposed by Zhou et al. [7].
(e) Shadow results detected using the method proposed by Liu et al. [24]. (f) Shadow results detected using our proposed method.

TABLE I
DETECTION PERFORMANCE OF SLOPE SHADOWS

incorrectly identifies gaps between most cloud shadows as cloud
shadows, as indicated by the blue-boxed region in Fig. 6.

In order to quantitatively analyze the performance of different
methods, the quality of the results is evaluated using precision,
recall, and F1 score. Precision refers to the proportion of true
positive samples among all positive samples in the shadow
detection results. Recall refers to the proportion of successfully
detected shadow positive samples among all positive samples in
the ground truth. The F1 score is the harmonic mean of precision
and recall, calculated as follows:

F1 =
2 ∗ (Precision ∗ Recall)

Precision + Recall
. (23)

The detection accuracy of mountain shadow is calculated
and presented in Table I. Our method achieves the F1 score
of 94.77%, which is 4.39%, 6.30%, and 9.32% higher than the
other three methods, respectively. The improvement in precision
is more significant than the improvement in recall, mainly due
to fewer false positives at the boundary between shadows and
slopes. The detection accuracy of building shadow is shown
in Table II. Our method achieves an F1 score of 89.66%. The

TABLE II
DETECTION PERFORMANCE OF BUILDING SHADOWS

TABLE III
DETECTION PERFORMANCE OF CLOUD SHADOWS

performance in building shadow detection is not as good as
that in mountain shadow detection, mainly because it is more
challenging to identify scattered small-area building shadows
compared to concentrated large-area mountain shadows. This
is also the reason why the other three methods only achieve
F1 scores of 78.02%, 71.94%, and 69.18%, respectively. The
detection accuracy of cloud shadow is presented in Table III. Our
method still achieves the highest F1 of 93.05%. Although the
recall rate is 3.07% and 3.32% lower than the methods of Silva
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Fig. 7. Reconstruction results of the RGB bands for shadow. (a) RGB images. (b) Reconstruction results using the method proposed by Silva et al. [6].
(c) Reconstruction results using the method proposed by Zhou et al. [7]. (d) Reconstruction results using our proposed method.

et al. [6] and Zhou et al. [7], there is a significant improvement in
precision, which is 26.21% and 16.82%, respectively. Methods
based on deep learning strongly rely on training data, while the
training data of Liu et al. [25]’s method is aerial images. This
is most likely the reason why the method performs poorly on
satellite data. Our shadow detection method demonstrates the
highest performance in all three shadow scenarios, providing a
fundamental basis for subsequent shadow reconstruction.

B. Performance and Comparative Analysis of Shadow
Reconstruction

Qualitative analysis allows for subjective evaluation of the
shadow reconstruction results. Fig. 7 presents the shadow recon-
struction results in the RGB band. All three methods demonstrate
different levels of shadow reconstruction. In the red box region
of Fig. 7, our method clearly and distinctly reconstructs the
buildings, with no high contrast between the shadow edges and
adjacent non-shadow edges. In the green box region of Fig. 7,
our method achieves better recovery of vegetation information
obscured by buildings compared to the other two methods. In
the blue box region of Fig. 7, both our method and the method
proposed by Silva et al. [6] effectively restore the buildings under
cloud shadows. However, the method proposed by Zhou et al. [7]
adjusts the spectral information of the buildings to be similar to
vegetation, making it difficult to distinguish the buildings. The
method proposed by Silva et al. [6] tends to overcompensate
in thin cloud shadows, resulting in overly bright regions and a

TABLE IV
QUANTITATIVE RESULTS OF BUILDING EXTRACTION AFTER DIFFERENT

SHADOW RECONSTRUCTION METHODS

visually abrupt effect. Fig. 8 presents the shadow reconstruction
results in the NIR band, further highlighting the superior visual
quality of our method.

Due to the unavailability of shadow-free images of the same
area at the same time, direct quantitative evaluation of shadow
reconstruction is not possible. Therefore, we conducted building
extraction experiments on the shadow-reconstructed images us-
ing the building extraction model proposed by Wang et al. [25]
(the shaded area of the study area contains many buildings).
Building extraction results were used as an indirect quantitative
assessment of the shadow reconstruction performance. Table IV
presents the quantitative results of building extraction after dif-
ferent shadow reconstruction methods. Compared to the original
unprocessed remote sensing image, Silva et al. [6]’s method
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Fig. 8. Reconstruction results of the NIR band for shadow. (a) NIR images. (b) Reconstruction results using the method proposed by Silva et al. [6].
(c) Reconstruction results using the method proposed by Zhou et al. [7]. (d) Reconstruction results using our proposed method.

Fig. 9. Qualitative results of building extraction after different shadow reconstruction methods. (a) RGB images. (b) Ground truths of buildings in shadow areas.
(c) Buildings extracted from the image without shadow reconstruction. (d) Buildings extracted after shadow reconstruction using the method proposed by Silva
et al. [6]. (e) Buildings extracted after shadow reconstruction using the method proposed by Zhou et al. [7]. (f) Buildings extracted after shadow reconstruction
using our proposed method.

achieved a 3.59% (F1) improvement in building extraction. Zhou
et al. [7]’s method had a negative impact on building extraction,
possibly due to the stretching of building colors to resemble
surrounding objects. Although color adjustments were made to
shadows from a visual perspective, the adjustment magnitude
was too large, leading to significant spectral information devia-
tion. Our method achieved significant improvements in building
extraction within shadow regions. The accuracy, recall, and F1

were improved by 14.47%, 30.95%, and 24.83%, respectively.
Visualization of the building extraction results after different
shadow reconstruction methods is shown in Fig. 9. It is evident
from the highlighted rectangular boxes in the figure that our
method produced favorable results.

In addition, we use filtering operations when processing the
penumbra, resulting in a smoother connection between the
shadow area and the nonshadow area. Although this visually
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TABLE V
DETECTION AND RECONSTRUCTION TIME OF DIFFERENT ALGORITHMS

alleviates the abruptness of the shadow edges, it also loses some
details and texture information. If dynamic optical compensation
is performed on shadow edges, detailed information may be
preserved, but the time cost will be high. How to better handle
the penumbra area requires further exploration and attempts.

C. Algorithm Efficiency and Limitations

For shadow detection and reconstruction algorithms, in ad-
dition to accuracy, efficiency is also an important indicator
to measure the quality of the algorithm. Since the image size
processed by the deep learning model at a time is 512 × 512,
we uniformly use remote sensing images of 512 × 512 size as
the calculation object. The running time of different algorithms
is calculated, as shown in Table V.

It can be found that the shadow detection method we proposed
is the slowest in efficiency compared to other nondeep learning
methods. The operation of merging adjacent similar superpixels
is time-consuming and takes up most of the time in shadow
detection. But it also has two advantages. 1) It reduces the
complexity of shadow reconstruction, making the reconstruction
efficiency higher than the method of Zhou et al. [7]. 2) It
keeps the reconstruction information of adjacent similar shadow
superpixels consistent. The deep learning method used by Liu et
al. [24] takes the longest time for shadow detection when using
CPU operations, but is most efficient when accelerated by GPU.
In the future, we can consider writing a GPU running program
based on compute unified device architecture to accelerate the
operation of our method.

D. Sensitivity Analysis

In superpixel segmentation, the number of superpixels is a
key parameter. For a specific image, the number of pixels in
a single superpixel determines the number of superpixels. The
number of pixels of a single superpixel in the experiment is
set to 200. We additionally conducted comparative experiments
where the number of pixels in a single superpixel was 100, 150,
250, and 300, respectively. The experimental results are shown
in Table VI.

It can be seen that the smaller the number of pixels in a single
superpixel, the more refined the shadow segmentation result is.
When the number of pixels is less than 200, the performance

TABLE VI
RESULTS CORRESPONDING TO DIFFERENT NUMBERS OF PIXELS

TABLE VII
RESULTS CORRESPONDING TO DIFFERENT NUMBERS OF CLASSES

improvement is slow, but the running speed will slow down a
lot. So, 200 is a reasonable value after considering performance
and efficiency.

When binarizing the spectral ratios, we used an automated
multilevel global thresholding method. The number of cate-
gories set in the experiment is 4. We conducted additional
comparative experiments in categories 2, 3, 5, and 6. The ex-
perimental results are shown in Table VII.

It can be seen that a smaller number of categories corresponds
to poorer shadow segmentation results. This is because a small
number of categories will cause dark objects, water bodies, and
other objects similar to shadows to be segmented into shadows.
Excessive number of categories will also have side effects,
because some relatively bright shadows may be segmented into
nonshadows. Therefore, setting the analog number to 4 is a
moderate value.

V. CONCLUSION

Aiming at the common occurrence of hill and hillside en-
vironments, including slope shadows, building shadows, and
cloud shadows, we propose a fully automatic method for shadow
detection and reconstruction. For the shadow detection task, a
shadow index is constructed based on the spectral characteris-
tics of shadows. The image’s color space is transformed into
CIELCh, and the initial spectral ratio is computed using hue and
luminance. To achieve clear shadow boundaries, the image is
subjected to superpixel segmentation, and the resulting segments
are merged based on their similarity. The merged superpixels
are used to reconstruct the initial spectral ratio, and an automatic
multilevel global threshold is applied to extract the shadow mask
from the spectral ratio. Considering that nearby objects have
higher correlations, nonshadow superpixels adjacent to shadow
superpixels are used as references for shadow reconstruction.
The contribution weights for information recovery are weighted
based on the correlations between superpixels, ensuring that
the reconstructed shadows restore their original spectral infor-
mation as accurately as possible. For special cases of partial
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shadows, a mean filtering method is employed to reduce the
abrupt transition between reconstructed shadows and nonshad-
ows. In order to validate the generalization and effectiveness
of the proposed method, detection and reconstruction experi-
ments are conducted on the three types of shadows. Through
comparisons with existing state-of-the-art methods, the pro-
posed method demonstrates its applicability in shadow detection
and reconstruction of high-resolution remote sensing images
in hill and hillside environments, contributing to the further
development and application of remote sensing in such areas.
For the convenience of researchers, the code in the experiment
will be available online at https://github.com/WangZhenqing-
RS/Shadow-Detection-and-Reconstruction-RSI.
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