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Abstract—Detailed and timely monitoring of the location and
intensity of the fire is critical to reducing the destructive impacts
of a fire. Satellite imagery platforms, in particular geostationary
satellites with high temporal resolution, allow for real-time fire
monitoring. However, because of the coarse resolution of geo-
stationary satellite images, even when deep learning models are
applied, precision still remains limited. Thus, the prediction models
easily fall into a local optimal solution because of the insufficient
semantic information from low spatial resolution. Therefore, in this
study, we proposed a novel deep learning model, SBT-FireNet, to
monitor fire spots from Himawari-8 satellite images. Specifically,
the extraction modules of spatial, band, and time-series features
were designed and integrated into the model. The spatial feature ex-
traction module served to collate information about fires and their
surrounding environment, while the band and time-series features
were designed to obtain fire-sensitive band and time information,
respectively. The newly structured SBT-FireNet model was tested
in four fire-prone areas with high forest cover. The precision of
SBT-FireNet in four test areas is 35.2% higher than other methods.
The model yielded significant improvements through the combi-
nation of the modules of spatial, band, and time-series features
and their fire-tailored design. The advantages of the high temporal
resolution of geostationary satellite images were fully integrated
into the model to ensure that the model monitors the possibility of
fire in an automated way in a near-real-time manner.

Index Terms—Convolutional neural network (CNN), deep
learning, LSTM, near-real-time monitoring, transformer, wildfire.

I. INTRODUCTION

G LOBALLY, not only are wildfires among the most im-
portant natural phenomena but they are also vital to the

health and productivity of the ecosystem. In recent years, their
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frequency has increased [1]. Although there are many types of
ecosystem services [2], wildfires can also cause casualties and
property losses [3]. The researchers explored trends associated
with fire interference and gradual recovery in the global north
and temperate forests in the study area and found that between
2001 and 2018, 181 million hectares of the study area were
burned [4]. Globally, the annual burned area was estimated
at approximately 420 million hectares [5]. Therefore, timely
and accurate monitoring of wildfires is of great importance
for fire management and policy, as well as for conservation
of nature [6]. Due to its significant advantages, such as wide
coverage, low cost, and repeated monitoring, satellite remote
sensing technology has been widely used to monitor fires over
the past decades. Therefore, several algorithms for fire detection
using satellite images have been proposed.

Fire detection methods can be categorized into threshold and
deep learning approaches [7]. Threshold methods usually use
abnormal warming characteristics of fire (in particular, abnor-
mal increase in emissivity) in the mid-infrared and far-infrared
bands, with a threshold value to divide all pixels into fire and
nonfire spots [8], [9], [10], [11], [12]. To suppress disturbance
factors, such as clouds, smoke, and snow, contextual or temporal
information is integrated to generate stronger results [13], [14],
[15], [16]. The context threshold method sets a pixel as center
and a window with a size of X × Y as background and removes
a quantity of background interference pixels that can be caused
by clouds, water, or other factors, based on a series of thresholds.
Finally, after the average temperature (brightness temperature)
variance of effective background pixels is calculated as the
background feature of the central pixel, fire spots are detected
using the difference in the features of the background and fire
spots. The National Oceanic and Atmospheric Administration
has developed active fire products based on the context threshold
method by using the Moderate-Resolution Imaging Spectro-
radiometer (MODIS) [17]. The MODIS fire products and the
global fire spot monitoring system developed using the Medium
Resolution Spectrum Imager-II onboard FY-3D are based on
typical context threshold methods. The context threshold meth-
ods require that the surrounding pixels have background pixels
whose certain availability and quality standards are met and not
compromised, such as cloud coverage and background pixels
of the same nature as the central pixel [18], [19], [20]. In
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general, traditional threshold methods face the issues of high
threshold sensitivity and poor applicability. In addition to the
poor spatiotemporal generalizability of thresholds, even minor
changes in them may result in the omission of small target fires
and a large number of false positives [11], [21].

Thanks to the rapid development of deep learning technology,
advanced features can now be extracted using a deep learning
model, such as convolutional neural networks (CNNs) with
convolution kernels as the core, recurrent neural networks with
sequence data as input and transformer [22], [23], [24]. He
et al. [25] proposed the ResNet model in 2016, which solves
the problem of gradient vanishing and exploding that may occur
during deep learning training through a residual structure. On
the basis of ResNet, a number of variants have been presented,
e.g., ResNeSt [26], iResNet [27], and Res2Net [28], by adding
attention mechanisms, improving the information flow, and us-
ing other methods. Chen et al. [29] proposed FasterNet, which
reduces redundant computation problems in CNNs through par-
tial convolution and improves the spatial feature extraction effi-
ciency of the model. In 2020, Dosovitskiy et al. [30] introduced
the transformer structure into the field of computer vision and
proposed the vision transformer (ViT) model, which had better
performance compared to the most advanced CNNs at the time.
Compared to CNNs, ViT has better global feature extraction
ability, and it possesses stronger sequence data processing ability
through the self-attention mechanism. Liu et al. [31] further
extended the transformer structure to semantic segmentation
tasks and proposed the Swin Transformer. Lee et al. [32] used
overlapping convolutional patches to embed and improve ViT,
and proposed MPViT. MPViT exhibits excellent performance
in object detection, strength segmentation, and semantic seg-
mentation tasks. Due to the intelligence and automation of
deep learning models [33], [34], [35], they have been widely
used in fire-monitoring tasks. For example, Langford et al. [36]
adopted a weight selection strategy to solve the issue of sample
imbalance in the training set between fire and nonfire conditions
and detected wildfires more accurately using DNNs with this
strategy than one without it. Ba et al. [37] designed a novel CNN
model, SmokeNet, to detect smoke scenes in satellite images
by integrating spatial information and band-wise information
attention mechanisms to extract more effective features. Zhang
et al. [22] used the Siamese self-attention classification strategy
to map burned areas, based on the data synergy of Sentinels 1 and
2. De Almeida Pereira et al. [38] applied the U-Net structure to a
fire segmentation task based on Landsat-8 images and obtained
accurate results on the global image dataset. Martins et al. [7]
proposed an improved U-Net structure for PlanetScope image
fire segmentation, using Landsat-8 data for transfer learning.
Seydi et al. [39] designed a two-stream feature deep learning
framework, Fire-Net, for fire segmentation of Landsat-8 images
with optical and thermal modalities. Yolov3, SqueezeNet, and
other deep learning models have been used to detect fires from
images and surveillance videos of unmanned aerial vehicle [40],
[41], [42], [43]. In general, these methods apply the classical
semantic segmentation network to satellite remote sensing im-
ages, with the assumption that the images can provide sufficient
semantic information, that is, high spatial resolution. However,

these sun-synchronous satellites usually have a lower temporal
resolution of 5–16 days, which is not conducive to wildfire
monitoring [44], [45], [46].

The temporal resolution of geosynchronous satellites is sig-
nificantly higher than that of sun-synchronous satellites and
allows for a continuous monitoring and time-series data of
a specific geographical location. For example, the 10 min
temporal resolution of Himawari-8 spots to the possibility of
near-real-time monitoring or early warning of fires. Thus far,
few studies have monitored wildfires based on geosynchronous
satellite images using deep learning methods. To the best of
the authors’ knowledge, there exist only two related studies
in the related literature. Ding et al. [47] proposed a fully con-
nected CNN model based on the Himawari-8 satellite platform,
with its wildfire detection accuracy of > 80%, which was
significantly higher than that of the other traditional machine
learning algorithms, such as support vector machine, random
forest and clustering of k-means. However, the testing data
in their study mostly included images of large-area fires, al-
though most small fires occupy only a few pixels; thus, their
model performance remains to be validated against small fire
events. In addition, in our previous study [48], FireCNN was
designed as a novel CNN to detect fire spots from Himawari-8
satellite images, possessed multiscale convolution and residual
acceptance to learn the features of fire spots, and resulted in
51.7% higher prediction accuracy than traditional fixed thresh-
old methods. However, its disadvantage is that variance and
mean values associated with environmental factors are manually
added to the data before processing to enhance the fire feature
representation.

Currently, deep learning of wildfires from geosynchronous
satellite images remains a challenge for the following reasons.
First, the spatial resolution of geostationary satellites is relatively
low, causing fire spots occupy only a small portion of the
original image. The limited number of fire spots, combined with
an overwhelmingly large number of nonfire spots, leading to
an imbalanced sample size between the categories, which will
inevitably impact the accurate training of deep learning models
and increases the risk of false negatives. When the existing
semantic segmentation network is implemented, the model tends
to identify all pixels as nonfire spots and falls into a local optimal
solution. Second, a strategy is needed to screen the samples
for the deep learning models to be trained, as the quantity
of nonfire spots is higher than that of fire spots. Otherwise,
the network is not able to fully learn and causes high false
positives or omissions. Finally, given the incomplete semantic
information of the fire pixels, they are easily blurred because
of the low spatial resolution, suggesting that more features are
needed to explore the features of fire spots and improve detection
precision.

Therefore, the purpose of this study was to propose a novel
deep learning model to detect fire spots using Himawari-8 satel-
lite images. In particular, the following three critical research
questions were posed.

1) How can a spatiotemporally robust dataset be built to
resolve the issue of imbalanced data between fire spots
and nonfire spots?
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Fig. 1. Study areas.

2) How can we further explore the features of fire spots from
low spatial resolution by leveraging the advantages of high
temporal resolution?

3) How can a robust deep learning model be constructed to
achieve accurate and precise detection of fire spots?

The next is the arrangement for the rest of this article. In
Section II, we introduce the study area and the dataset used in
this article. Section III describes the methodology, in particular,
data processing and extraction modules of spatial, band, and
time features. Section IV discusses the experimental results. Sec-
tion V. discussed the model and conducted ablation experiments.
Finally, a conclusion summary is provided in Section VI.

II. STUDY AREA AND DATASETS

The study area comprises the following eight provinces
located in southern China between 18°10’N-30°08’N and
97°31′E-120°30E: Fujian, Guangdong, Guangxi, Hunan,
Jiangxi, Hainan, Yunnan, and Guizhou (Fig. 1). The study areas
are characterized by a subtropical or tropical monsoon climate,
with long-term annual temperature range of 12°C–29°C. The
percentage of forest cover in the eight provinces is greater than
55%. From April to December, due to the dry and warm weather,
the probability of forest fires increases greatly. Furthermore,
local residents with their traditional customs, such as ancestor
worship, burning candles, and other sacrificial rituals, acciden-
tally increase the probability of forest fires [53]. The detailed
information of the research area is shown in Table I.

The Himawari-8 satellite is the source of data used in this
study. As a successor to the MTSAT series of geosynchronous
meteorological satellites, the Himawari-8 satellite was launched

on 7 October 2014 and is equipped with Advanced Himawari
Imagers (AHIs). The AHIs have a total of 16 observation bands:
10 infrared bands, 3 near-infrared, and 3 visible. The time inter-
val between the full-disk observations is 10 min. The detailed
information of Himawari-8 satellite is listed in Table II. Bands
3, 4, 6, 7, 14, and 15 were selected. Band 3 is a visible band
with a central wavelength of 0.64 μm, band 4 is a near-infrared
band with a central wavelength of 0.86 μm, and band 15 has a
central wavelength of 12.4 μm. By using combination of these
three bands the influence of clouds can be effectively mitigated
[5], [49]. In addition, considering that fire spots exhibit abnor-
mal warning characteristics in the mid-infrared and far-infrared
bands [15], [19], band 7 with a center wavelength of 3.9 μm and
band 14 with a center wavelength of 11.2 μm were also selected.
Moreover, band 6 with a wavelength of approximately 2.3 μm
was employed to reduce the influence of water [14], [49].

The fire location data (label) is provided by the Meteorological
Satellite Ground Station, Guangzhou, Guangdong, China. The
fire label was initially generated using the adaptive threshold
method [52]. First, real-time histogram statistics are used to ob-
tain thresholds for excluding some nonfire spots. Next, potential
fire spots are further filtered through the relative increment of
background information, while cloud and water masks are used
to exclude the influence of clouds and water. Finally, a field
survey was conducted to correct any missed points.

III. METHODOLOGY

A. Established Dataset

Our dataset included data from October 1, 2018 to June 30,
2021, two times a day: 3:00 (Coordinated Universal Time, UTC)
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TABLE I
DETAILED INFORMATION OF THE STUDY AREA

TABLE II
BAND INFORMATION OF HIMAWARI-8

and 7:00 (UTC). Data from January 1, 2021 to June 30, 2021
were used to generate the test dataset, whereas the remaining
data were used to generate the training dataset. Therefore, there
was no overlap between the training and testing datasets.

Taking into account the main features of fires, the input data
should include as much information about the band, spatial,
and time of all pixels as possible. Our input data primarily
included the following three parts for a pixel: context patch,
band data, and band data in continuous time-series. As shown in
Fig. 2, the context patch of a pixel referred to a window of size
M × N centered on the pixel and the environmental information
of the pixel was contained in the context patch. The context
patch contained the spatial information of the central pixel. In
this study, M and N were set to 21. The band data of a pixel
refers to the specific value of each band on the pixel. Band data

in continuous time-series refer to the sequence data composed
of the band values of the pixel within a certain continuous period
of time.

The quantity of fire spots in an image was very small in
an actual scene; for example, we estimated that the average
quantity of fire spots in a 400 × 300 image was 0.3, whereas
the average quantity of nonfire spots was 119999.7, pointing to
a large imbalance between the quantity of fire spots and nonfire
spots. If all pixels were added to the training dataset, the network
would easily fall into a local optimal solution. In our preliminary
experiments, this caused the network to identify all pixels as
nonfire spots.

If all pixels were added to the training dataset, the network
easily would fall into a local optimal solution. In our preliminary
experiments, this caused the network to identify all pixels as
nonfire spots. When the quantity of nonfire spots was signifi-
cantly larger than that of fire spots, the cost of identifying pixels
as nonfire spots was very small. Therefore, in this study, this
imbalance was addressed. One common method used to that
effect is undersampling. For example, the quantity of nonfire
spots in the training dataset was systematically reduced until
that of both fire spots and nonfire spots was equivalent to one
another. However, because of the small quantity of fire spots, this
method greatly reduced the quantity of nonfire spots, causing
the network not to be able to fully learn the features of nonfire
spots, thus increasing the high false detection rate. Therefore,
before the quantity of nonfire spots was decreased, the quantity
of fire spots was appropriately increased to ensure that the fire
spot data were augmented. However, to the best of the authors’
knowledge, there is no widely used data augmentation method
for fire spots, based on geosynchronous satellites. Therefore, this
study proposed a data augmentation method that can increase
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Fig. 2. Input data included context patch, band data, and time-series band data.

Fig. 3. Initial fire detection results. The yellow box refers to the fire spots
extracted from the model, and the background is a false color image.

the quantity of fire spots while maintaining the rationality and
diversity of environmental information. Thus, we used cloud,
water, and underlying surface masks to copy fire spots to
noncloud and nonwater forest/grassland pixels to increase the
quantity of fire spots while ensuring the rationality of new fire
spots. At the same time, we also keep the underlying surface
information of the fire spots unchanged, that is, the fire spots oc-
curring in forest are copied to forest, while fire spots in grassland
landforms are transferred to the respective grassland areas. In
this way, fire spots were copied to new environments, they could
also enrich the spatial information in the training dataset. Using
this new data augmentation method, the quantity of fire spots was
increased to 20 times that of the original, and a random selection
method was then used to extract an equal quantity of nonfire
spots to form a preliminary training dataset. The ratio of fire
spots to nonfire spots in the preliminary training dataset was 1:1.
In early experiments, we used the preliminary training dataset
and obtained not ideal experimental results. As shown in Fig. 3,
the model identified a large number of cloud edge spots as fire
spots. The main reason for this was that, when selecting nonfire
spots, to ensure their relative fair representativeness, we adopted
a random selection method which in turn led to less training data
that were easily confused with fire spots, such as cloud edges
and thin clouds. The network could not fully learn the features
of nonfire spots/cloud edges/thin clouds and failed to accurately
distinguish fire spots from nonfire spots/cloud edges/thin clouds.

To resolve this issue, this study first used the preliminary
training dataset for the incomplete model to predict all images

(excluding those in the testing dataset), extracted the misclassi-
fied pixels in each image, added them to the preliminary training
dataset, and set a number limit. Each image can have at most
100 misclassified pixels that could be added to the preliminary
training dataset. The upper limit of the number was so set as to
prevent too many nonfire spots from being predicted, the local
optimal solution. This method was named “rumination.” Finally,
the training dataset obtained included 1 54 245 fire spots and
8 34 524 nonfire spots.

B. SBT-FireNet Architecture

Taking inspiration from the traditional threshold method,
fire spots exhibit the following three main characteristics:
1) Abnormal warming in their mid-infrared and far-
infraredbands, evidenced by an increase in radiation value,
which means band information is critically important for ex-
tracting the fire spots; 2) Distinguishing high temperature and
brightness compared to the surrounding environment, which can
be described as the spatial feature of the fire spots; and 3) The
development of fire exhibits temporal characteristic, that is, at
the beginning of the fire, it is relatively weak, then gradually
become stronger. Finally, it extinguishes. This imply that the
temporal information is extremely important. Therefore, this ar-
ticle designs a novel model namely SBT-FireNet for monitoring
fire spots. The flow chart of the proposed SBT-FireNet is shown
in Fig. 4. SBT-FireNet is a customized three branch network
designed according to the fire features. We transformed the fire
detection problem into a classification problem, that is, each
pixel in the image was divided into a fire spot and a nonfire
spot. The proposed deep learning network mainly includes the
following two parts: a fire feature extraction part containing
three components and a fully connected layer part to output
classification scores.

The fire feature extraction part primarily consists of three
modules: the spatial feature extraction module (SFE), the band
feature extraction module (BFE), and the time-series feature
extraction module (TFE). These modules are designed to extract
spatial, band, and temporal features of fire spots, respectively.

The main body of SFE was a ViT structure. We leveraged
the powerful global learning ability of ViT to adaptively extract
and learn the features and their associations contained in the
context patch. The main body of BFE was of a multilayer
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Fig. 4. Flowchart of our model, SBT-FireNet, and the overview of SBT-FireNet, N is the number of sample points.

perceptron (MLP) structure. TFE included an MLP layer and
a Bi-long short-term memory (Bi-LSTM) structure. We map
the features of each day to a higher dimension and used the
Bi-LSTM structure to fully learn the features embedded in the
time-series data.

The classification part of the fully connected layer was com-
posed of a fully connected layer with 678 nodes to comprehen-
sively consider the features extracted by the feature extraction
process. Pixels with high fire classification scores were classified
as fire spots; while those with low fire classification scores
are classified as nonfire spots. Based on the combination of
these strategies, the proposed method can overcome the issue
of deep learning applications to geosynchronous satellites and
fully consider the features of fires.

1) Structure of SFE Module: We use the SFE module to
extract features from the context patch of the sample point.
This context patch consists of the neighboring pixels of the
sample point (center pixel) and, to some extent, represents the
environmental information related to the sample point. The core
component of the SFE module is the ViT structure. Given the
small size of the context patch, using 2D convolution or 2D
pooling operations for processing can lead to the loss of spatial
information. However, ViT does not rely on 2D convolution
and 2D pooling operations, making it well-suited for this task.
Moreover, compared to CNNs, ViT exhibits superior global
feature extraction capability, which is why the ViT structure
is chosen as the primary component of the SFE module.

The input of SFE was a context patch X ∈ RM×N×C . The
function of SFE was to learn the spatial features of a spot from
a context patch. The main component of SFE was ViT. ViT is
a successful application of transformer architectures in the field
of computer vision [50]. ViT directly applied the transformer

to image classification tasks and achieved accurate and precise
results [51]. The structure of ViT is shown in Fig. 5.

In the field of natural language processing, transformer is first
proposed to complete text translation tasks. Transformers are
typically used to process 1D data. To apply transformer to 2D
image data, ViT reshaped the imageX ∈ RH×W×C into a series
of 2D patches Xp ∈ Rn×(p2·C), which are flattened into 1D, and
(H, W) is the size of the 2D image; C is the number of bands of the
2D image; and (p, p) is the size of each image patch. Therefore,
the input series length for the transformer was n = HW/p2.
To represent the state of the 2D image, a learnable embedding
called a class token was applied to the series of flattened patches.
In addition, to preserve the position information, a 1D position
embeddings is added to the flattened patch. While it is true
that some local information may be lost during this process,
it significantly enhances the module’s capacity to extract global
features. In addition, the inclusion of position embeddings helps
to partially compensate for the loss of positional information
resulting from the flattening process. Given the low spatial
resolution of the utilized data (2 km) and the imprecise semantic
information provided by the data, we consider the extraction of
global features to be of greater importance in this particular
dataset.

The transformer encoder is primarily composed of multi-
headed self-attention [50], layer-normal, and MLP The class
token, the output of the transformer encoder, was inputted into
the MLP head. Finally, the MLP head outputted a score for the
2D image in each class. In this task, we set the MLP head to
output a 294-dimensional feature vector as the output of the
entire SFE module, which is used to represent the spatial features
learned by SFE. To make ViT competent for this task, we set p to
7: such an input was split into nine patches. After flattening the
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Fig. 5. Structure of SFE, L is the number of times the module is repeatedly stacked.

Fig. 6. Structure of BFE.

nine patches and adding a learnable feature token that was the
same as the class token, we inputted them into the transformer
encoder. The feature token output of the transformer encoder was
used as the output of SFE. The feature token was an extracted
spatial feature.

2) Structure of BFE Module: The structure of BFE is illus-
trated in Fig. 6. The input of BFE was a column vector with
shape (1, 6) that included the values of six band of the pixel. In
BFE, we used MLP to map the input 6D band features to higher
dimensions to learn the features in the band. Specifically, MLP
consisted of one input layer for receiving input information, two
hidden layers for learning hidden features in input information,
and an output layer for outputting learned features. The number
of neuron nodes in the two hidden layers was 1024 and 512,
respectively, and the number of neuron nodes in the output
layer was 128. The activation function used in this model is
the Gaussian error linear unit (GELU) function. GELU is an
enhancement of the linear rectification function (ReLU), which
outputs 0 directly for negative values, and can effectively address
the issue of gradient disappearance associated with ReLU.

3) Structure of TFE Module: The structure of TFE is illus-
trated in Fig. 7. TFE consisted of a MLP and a Bi-LSTM. The
input of TFE was time-series data of the pixel. Its shape was
(D, 6), where D represents the time-series length. Due to TFE
is used to process continuous time information, we input band
information from the same time point for consecutive D days
into TFE, where D is 7 and the number of input bands is 6.
Therefore, the actual input shape is (7, 6). It is worth noting that
these data (including SFE and BFE inputs) were not averaged
or normalized before input. In TFE, we first input the D-day
band data into the MLP to learn the band features of the spot in
each day, and then concatenate the D-day band features into the
Bi-LSTM to learn the time feature of the spot in D days. The
structure of MLP is exactly the same as that used in BFE. In this
study, D was set to 7.

Bi-LSTM extracted features from time-series data in two
ways. Once the data information of the previous time spot was
learned, the LSTM structure transferred the learned features to
the next LSTM structure, which could fully learn the change
features contained in the time-series data. These change features
can reflect the change process of the band information of the
sample in continuous time-series, thus providing the basis for
distinguishing whether or not a pixel was a fire spot.

LSTM was initially used to resolve the issues of gradient
disappearance and gradient explosion during sequence data
training. The LSTM can transmit the cell state c, and the cell state
can continuously accept new information and transmit these new
and old information to the next node. Each LSTM node will
forget the input of the node (including xt and ht), and update
more important information to the cell state. At the same time,
the hidden state (ht) of the node is transmitted to the next node
by using the input and cell state of the node. LSTM involved the
following three steps.

1) Accept the ct-1 passed by the previous node, and accept
the ht-1 output by the previous node and the xt input by the
node. Through a sigmoid unit (σ) to forget the information
in ht-1 and xt, and update the unforgettable information
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Fig. 7. Structure of TFE.

to ct-1, through the process of “forgetting” unimportant
information.

2) The information in ht-1 and xt is learned through a sigmoid
unit and tanh unit, and the learned information is updated
to ct-1, and the updated ct is transmitted to the next node.

3) Accept ct, ht-1 and xt. The ct is passed through a tanh unit to
determine which information in the ct needs to be output.
Then ht-1 and xt are multiplied by the sigmiod unit and the
ct passing through the tanh unit to output ht and pass ht to
the next node.

From the above-mentioned steps, LTSM could learn the input
of the current node while retaining the important features learned
by the previous node. For LTSM to learn the information con-
tained in the above, Bi-LSTM underwent not only the process
of passing from the previous node to the next node but also that
of passing from the next node to the previous node to ensure
that it could learn the information in the given context more
completely. Therefore, the Bi-LSTM was selected to determine
the time characteristics of the fire spots.

The input size of Bi-LSTM is 128, and the hidden size of
Bi-LSTM is 128. We only used one layer of Bi-LSTM.

IV. EXPERIMENTAL RESULTS

A. Experimental Environment

All the code of this study is written in version 3.6 of Python.
In the part of building deep learning model, the learning library
used is version 1.2 of PyTorch. All experiments in this article
were conducted on an Intel CoreI i9-10900K CPU @ 3.70 GHz,
128 GB of RAM, with an NVIDIA GeForce GTX 3080. In the
training process of each deep learning model, we use the Adam
optimizer as the parameter optimizer, the loss function as the
cross-entropy loss function, epochs set to 500, batch size set
to 100, and learning rate set to 10−6. With the exception of

the “no-aug” method, all deep learning methods employ the
same training set and test set. The test set and training set
do not overlap; they are entirely separate from each other. In
addition, the accuracy (A), precision (P), recall (R), F1-score
(F1), missed detection rate (MD), and error detection rate (ED)
were used as the key performance indicators of the model
as follows:

Accuracy = (TP + TN) / (TP + TN + FP + FN) (1)

Precision = TP/ (TP + FP ) (2)

Recall = TP/ (TP + FN) (3)

F1 = (2 · P · F ) / (P + F )) (4)

MD = 1−R (5)

ED = 1− P (6)

where TP is a true positive; TN is a true negative; FP is a false
positive; and FN is a false negative.

B. Comparison Methods and Implementation Details

In order to evaluate the effectiveness of the proposed model,
five state-of-the-art methods are selected for comparison pur-
pose, which are ResNet50 (Res50), ResNet50-low (Res50-low),
ViT, FasterNet, and MPViT.

ResNet50 is a classic CNN classification model that uses a
multilayer convolutional pooling structure to gradually learn the
semantic information of the image and uses a residual structure
to prevent gradient disappearance or gradient explosion.

The structure of ResNet50-low is the same as ResNet. The
only difference is that ResNet50-low will also classify pixels
with low fire spot scores as fire spots. Specifically, all pixels
with high fire spot scores above 0.95, except for ResNet-low,
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TABLE III
COMPARISON OF EXPERIMENTAL RESULTS

Fig. 8. Fujian fire map and ground truth generated by each method, where red “×” is the fire spot.

will be classified as fire spots. For ResNet-low, pixels with fire
spot scores surpassing 0.8 are classified as fire spots.

ViT is the successful application of transformers in image
classification, which transforms image data into blocks and then
compresses them. It uses a multilayer attention mechanism to
iteratively learn the features of each block and finally outputs
the classification of the image by head.

FasterNet and MPViT are relatively new deep learning net-
works, which were proposed in 2023 and 2022, respectively.
FasterNet incorporates partial convolutions to reduce redundant
computations and memory access. This approach not only ac-
celerates network training speed but also enhances performance.

MPViT, on the other hand, leverages multiscale path embed-
ding and multipath structures to enhance the representation of
both fine and coarse features. In addition, it utilizes global-to-
local feature interaction to improve the model’s ability to process
global context effectively.

It should be noted that all the comparison methods are con-
ducted in the same environment, and data augmentation is also
employed except “no-aug.”

C. Results Analysis

As indicated in Table III, SBT-FireNet had the best compre-
hensive performance. Res50-low had an extremely low precision
and identified a large number of pixels as fire spots. The MD
value of Res50 up to 1.000 and the ED value of Res50-low
up to 0.999 indicated that the two models were completely
unqualified for the task of fire spot detection. SBT-FireNet
achieved a precision of 0.747, recall rate of 0.761, and F1-score
of 0.754. Compared to those of ViT, the precision and recall
rate of SBT-FireNet improved by 0.352 and 0.665, respectively.
SBT-FireNet achieved the highest F1-score, indicating that SBT-
FireNet was more suitable for the fire detection. This result was
expected because ViT and Res50 were not designed for the fire
detection mission based on geostationary satellites and failed to
comprehensively utilize of all information aspects of fire. Both
FasterNet and MPViT exhibit a high number of false positives
in fire detection.

A fire map for the different methods is presented in
Figs. 8–11. ViT missed most of the fire spots. Res50-low
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Fig. 9. Guangdong fire map and ground truth generated by each method, where red “×” is the fire spot.

Fig. 10. Hunan fire map and ground truth generated by each method, where red “×” is the fire spot.

detected almost all the pixels as fire spots, whereas Res50 iden-
tified all the pixels as nonfire spots. ViT, Res50, and Res50-low
were incapable of detecting fire spots. FastNet and MPViT
both have a large number of false positives, and as shown
in Fig. 10, MPViT has poor robustness to the cloud, while
FastNet has poor robustness to cloud edges. However, the fire
map generated by SBT-FireNet was consistent with the ground
truth.

To evaluate the effectiveness of our proposed data augmen-
tation methods, we conducted performance tests on the SBT-
FireNet model using a “no data augmentation” strategy (referred
to as “no-aug”). As shown in Table III, the precision, recall
rate, and F1 value are significant lower compared to that of
SBT-FireNet, which decreased 0.104, 0.21, and 0.161 lower,

respectively. “No-aug” method exhibits a significant number of
false positives and omissions. As depicted in Fig. 10, “no-aug”
shows poor fire detection performance at cloud edges and in
areas with thin clouds, leading to the occurrence of false posi-
tives. These results indicate that utilizing the enhanced dataset
can significantly imporve the accuracy and recall rate of the
model.

Table III also includes the average time consumption of each
method for detecting fire spots in an image. As can be seen from
Table III, the time cost of FasterNet and MPViT is 23.529 s and
17.541 s, which is significantly higher than the other methods.
ResNet50, ResNet50-low, ViT, and the proposed SBT-FireNet
generate comparable time efficiency, which can provide nearly
real-time monitoring of fire spots.
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Fig. 11. Jiangxi fire map and ground truth generated by each method, where red “×” is the fire spot.

Fig. 12. Structures of (a) BT, (b) ST, and (c) SB.

V. DISCUSSION

SBT-FireNet consisted of the three feature extraction modules
designed based on the fact that fire spots exhibit significant
differences from the surrounding pixels, such as extremely
high temperatures. In addition, the intensity and severity of
fires change spatiotemporally. Therefore, continuous time-series
data play a vital role in fire monitoring. Based on the above-
mentioned fire characteristics, we proposed a fire-customized
deep learning model. To verify the effectiveness of the de-
signed network, the function of each module was explored
and discussed based on the inclusion or exclusion of each for
the original SBT-FireNet model. We compared SBT-FireNet to
SBT-FireNet without SFE (BT), SBT-FireNet without BFE (ST),

and SBT-FireNet without TFE (SB). The structure is shown in
Fig. 12. We used SFE to learn the context patch of the fire spot
and output the spatial features of the fire spot. If there was no
SFE module, the model would lose the perception of the spatial
features. For example, if the pixel was located in the cloud area,
the edge of the cloud, or the thin cloud, its band and time features
would be similar to those of the fire pixel. As there was no spatial
feature to distinguish, the model could easily classify such pixels
as fire spots, reducing the model accuracy. From Table IV, it
can be seen that BT (without SFE) had lower precision than
SBT-FireNet for Fujian, Guangdong, Hunan, and Jiangxi (0.074,
0.063, 0.120, and 0.101, respectively). Low precision led to a low
F1-score of SB. In SFE, we used ViT as the main body as it had
a strong global feature learning ability, did not involve pooling
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TABLE IV
TESTING RESULTS OF ABLATION EXPERIMENT

TABLE V
EXPERIMENTAL RESULTS OF FIRELESS AREAS

operations, and did not cause the loss of detailed information
because of pooling in the learning process. These characteristics
rendered ViT suitable for SFE.

We used an MLP as the main body of BFE as it could map
band information to a higher dimension and learn the abstract
features embedded in it through several hidden layers. The final
output band features characterized the characteristics of the fire
spot in the band. ST (without BFE) was not able to distinguish
between the fire and nonfire spots when pixels were compared
with the environment or past data. As can be seen from Table IV,
the precision and recall of ST were not higher than those of
SBT-FireNet.

In TFE, we first used an MLP to map each day data to a higher
dimension and then used Bi-LSTM for the time feature extrac-
tion. The fire had different brightness temperatures and radiation
values before and after the combustion. By observing this change
process, the fire spot (abnormally high temperature or high bright
spot) could be identified; however, the time feature also received
an image of the cloud. The change characteristics before and
after the cloud coverage were similar to those before and after
the fire. If TFE was omitted, the time feature extraction could
not be performed, and the model accuracy might be accordingly
improved, whereas the recall rate would be reduced. According

to Table IV, SB (without TFE) achieved higher precision in
the Fujian and Guangdong regions; however, its recall F1-score
was lower than those of SBT-FireNet. SBT-FireNet obtained the
highest F1-score in the training area and obtained a F1-score
of 0.813 in the remaining testing area, slightly lower from the
best F1 score (0.815) in this area. In the absence of SFE, BT
exhibited the worst P score and the high false detection rate in
the three test areas. In the absence of BFE, the ST showed the
lowest F1-score, with poor comprehensive ability in all the four
regions. In the absence of TFE, SB yielded the best F1-score in
the Fujian test area and had a good F1-score in the other test
areas. Overall, SB was second only to SBT-FireNet, resulted in
good precision and recall, and even achieved the best F1-score in
the Fujian region. ST achieved the lowest F1-score in all the four
regions. Given the above-mentioned results and the performance
of ST, testing whether or not to detect fire spots by comparing
the band information of the central pixel with the environmental
information or by comparing its band information with the time
information proved to be an effective strategy.

Most geostationary satellite images show no fires or few fires.
We also tested the classification performance of SBT-FireNet in
the absence of fire spots. As the data used were images without
any fire spots, the recall rate and accuracy were invalid. It is
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important to note that in the previous test and training phases, the
data utilized included both fire spots and nonfire spots. However,
in this experiment, the data used exclusively consisted of images
without any fire spots. We computed the specific values of TP,
TN, FP, and FN in the four test areas as well as the number of
testing images, as shown in Table V.

According to Table V, our network still exhibited accurate and
robust classification performance in the absence of fire spots.

The limitation of this study is that the best combination
of various spectral bands for fire point detection task is not
explored. This issue will be addressed in our future work.

VI. CONCLUSION

In this study, a novel deep learning model named SBT-FireNet
was proposed to detect fire spots from Himawari-8 satellites.
The proposed model successfully resolved the issue that the
existing sematic segmentation in the traditional deep learning
models cannot accurately detect fire spots from geosynchronous
satellite images because of the incomplete semantic informa-
tion of the low spatial resolution images. The proposed model
transformed the fire detection problem into a classification prob-
lem and includes the following two parts: 1) feature extraction
and 2) fully connected layer classification. To comprehensively
learn the features of fires, the three extraction modules of
spatial, band, and time-series feature were designed and in-
tegrated in the model. A series of strategies were adopted to
alleviate the sample imbalance issue between fire and nonfire
spots.

We trained SBT-FireNet based on the constructed dataset and
tested it in the four provinces in southern China with high forest
coverage. The results demonstrated that the best precision was
achieved by SBT-FireNet, which was 35% higher than that of
the other models.

The main contribution of this study can be summarized as
follows.

1) We built a new fire spot database, using numerous
Himawari-8 satellite images. To alleviate the issue of cat-
egory imbalance between fire and nonfire spots, geosyn-
chronous satellite data and data augmentation and “ru-
mination” strategies were adopted. A robust dataset was
constructed, which supported the full and high-quality
learning of fire features.

2) This study customized a novel deep learning model to de-
tect fire spots from Himawari-8 geosynchronous satellite
images. Specifically, SFE, BFE, and TFE modules were
designed to strengthen the feature representation of fires.
Finally, a powerful deep learning model, SBT-FireNet,
was obtained.

3) The proposed method fully exploited the advantages of
the high temporal resolution of geosynchronous satellites.
Also, SBT-FireNet was automatized for the near-real-time
monitoring of fire spots.

The limitation of the proposed model is that it was only vali-
dated using Himawari-8 satellite images. In the future, we will
further explore the generalizability of this model by applying it
to other satellite images.
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