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Fine-Grained Abandoned Cropland Mapping
in Southern China Using Pixel Attention

Contrastive Learning
Haoyang Li , Haomei Lin, Junshen Luo , Teng Wang , Hao Chen, Qiuting Xu, and Xinchang Zhang

Abstract—Cropland abandonment has multifaceted and con-
troversial impacts on the natural environment and socioeconomic
development. Utilizing remote sensing data offers the potential for
comprehensive coverage and large-scale insights into automated
abandoned cropland identification. However, accurately capturing
small abandoned cropland, particularly in regions, such as south-
ern China, with fragmentized farmland, poses a significant chal-
lenge using the traditional optical image-based mapping methods
due to their coarse spatial resolution. In addition, irregular and
chaotic textures of abandoned cropland further complicate the
accurate prediction using very high resolution (VHR) data. In this
article, we propose a novel deep learning network termed pixel
attention contrastive network (PACnet) to map fine-grained aban-
doned cropland based on VHR data. Cross-image pixel contrast
learning is introduced to discern distinctive features distinguishing
abandoned cropland from other land types across various inter-
images. Moreover, a criss-cross attention module is embedded to
enhance the contrasting characteristics within individual intraim-
ages. Experimental outcomes validate the efficacy of PACnet, show-
casing the highest accuracy (OA = 93.8% and mIOU = 71.7%)
when compared with classical semantic segmentation networks.
Our proposal not only underscores the potency of VHR remote
sensing data in finely delineating abandoned cropland but also
carries significant implications for cropland abandonment impact
analysis and informed policy formulation.

Index Terms—Abandoned cropland, contrastive learning, deep
learning (DL), very high resolution (VHR).
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I. INTRODUCTION

ABANDONED cropland represents a form of land use
characterized by marginalization arising from inadequate

suitability and economic viability [1], [2], [3]. The abandon-
ment of arable land has multifaceted and profound effects on
factors, such as soil erosion, biodiversity, carbon storage, and
the development of the agricultural economy [4], [5], [6], [7]. In
China, the matter of abandoned cropland has garnered signifi-
cant attention, primarily driven by concerns over food security,
particularly in the economically developed regions of southern
China [3], [8], [9]. Precise mapping of abandoned cropland is
essential for analyzing the driving factors contributing to its
occurrence and understanding its impact on the natural envi-
ronment and socioeconomic aspects. In contrast to less efficient
field-based research, remote sensing (RS) technology provides
a more convenient and expeditious means of mapping large-
scale land use types, and it can also be applied effectively for
monitoring abandoned cropland [10].

Numerous studies have developed algorithms for mapping
abandoned cropland, with the majority utilizing time series of
optical imagery and depending on temporal feature analysis [8],
[10], [11], [12], [13], [14], [15], [16], [17], [18]. Cultivated
cropland exhibits rapid changes in RS observations due to
activities, such as planting, harvesting, and swift phenological
transitions. Abandoned cropland exhibits lower variability in
optical time-series curves when compared with cultivated areas
[10]. Consequently, these studies investigate the disparities in
temporal fluctuations between abandoned cropland and vari-
ous other land categories [13], [14]. Researchers create suit-
able spectral indices as indicators, employing machine learning
classifiers (e.g., random forest [10], [11], [16]) and temporal
change detection algorithms (e.g., LandTrendr [17], [18]) to map
abandoned cropland. In addition to directly mapping abandoned
cropland as described above, certain studies attempt an indirect
approach. They map multiple land cover types over an extended
time series and analyze land conversion patterns to identify
abandoned cropland [8], [9]. In terms of spatial resolution, the
studies mentioned above utilizing MODIS (250 m) [12], [13],
[14], [15], Landsat (30 m) [11], [16], [17], [18], and Sentinel-2
(10 m) [10] operate at a relatively coarse scale.

Existing mapping methods employing coarse images
(>= 10 m) frequently encounter challenges posed by mixed
pixels at the edge of small parcels, rendering the accurate
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depiction of small abandoned cropland particularly challenging,
notably in southern China. Owing to physical geographical
conditions and historical factors, cropland parcels in South-
ern China exhibit fragmentation and marginalization [19]. In
contrast, very high resolution (VHR) images (<= 1 m) can
more effectively identify small and fragmented parcels. There-
fore, the utilization of VHR images is imperative for acquir-
ing finely detailed maps of abandoned land. Constrained by
data availability, VHR images with limited temporal series
density pose challenges for conducting temporal and spectral
analysis. Thus, the key to mapping abandoned cropland at the
submeter level lies in the profound exploration of fine-grained
information and visual features within a single-phase VHR
image.

Recently, methods based on deep learning (DL) have demon-
strated their efficacy in VHR image interpretation [20], [21]. In
contrast to traditional texture modeling methods, DL networks
exhibit a superior capacity to harness spatial-context information
in VHR images, offering an enhanced depiction of surface details
and intricate spatial information [22], [23]. The extraction of
deeper texture features and semantic information through the
layers of deep neural networks effectively captures the visual
target information within VHR images [24]. Numerous DL
networks have been proposed for the fine-grained extraction
of diverse land cover types from VHR images [25], [26]. An
increasing number of DL frameworks are under development
to enhance the capability to perceive complex VHR semantic
information for specific tasks, including change detection [27],
building extraction [28], tree crown mapping [29], etc. DL meth-
ods can yield improved results by analyzing specific objectives
and adjusting DL modules. Critical directions for DL network
design and improvement include feature enhancement [30], [31]
and feature fusion [22], [32]. In addition, incorporating graph
structures constitutes a novel approach for mining topological
information [33] and distilling contextual information [34]. The
powerful learning capability of DL in the context of fine-grained
high-resolution landscapes offers a viable avenue for mapping
VHR abandoned cropland.

Abandoned cropland exhibits distinct visual discriminative
features in VHR images, yet its fuzzy and amorphous char-
acteristics present a significant challenge for DL networks.
Unlike cultivated farmland, abandoned cropland in VHR images
exhibits distinct fuzzy texture features. It lacks signs of artifi-
cial cultivation and typically appears as grassland and shrub
characteristics. Contrasted with the orderly patterns found in
neighboring farmland and orchards, abandoned cropland dis-
plays conspicuous chaotic and disordered texture characteristics,
as illustrated in Fig. 1. This forms a clear visual foundation for
identifying abandoned cropland. DL techniques can effectively
train and predict by extracting the distinct visual textures of the
target areas.

Nonetheless, the fuzzy and uncertain textures of abandoned
cropland continue to present challenges for accurate identifi-
cation by DL architectures. Indeed, DL algorithms excel in
recognizing objects with well-defined boundaries and textures
(e.g., buildings and roads) rather than natural amorphous re-
gions characterized by fuzzy edges and intraclass variations

Fig. 1. Abandoned cropland in VHR images. Compared with the surrounding
neat landscape, abandoned cropland presents amorphous and disorderly charac-
teristics in vision.

(e.g., agricultural areas) [35], [36]. Abandoned cropland exhibits
more pronounced amorphous characteristics than typical natural
features, posing significant challenges for fine-grained mapping.
Shen et al. [37] conducted experimental work to map abandoned
cropland in VHR images, introducing a neural network with
a texture calculation module. Although texture enhancement
learning can bolster the context-awareness capability of DL, the
capacity for perceiving textures in abandoned cropland remains
inadequate. Consequently, tackling the challenge of perceiv-
ing the amorphous features of abandoned cropland remains a
paramount concern.

Driven by the pronounced distinctions between abandoned
cropland and well-maintained cropland, our approach centers on
contrasting the heterogeneity between cultivated and abandoned
areas rather than directly identifying the unclear features. To
accentuate the distinctive features, we have developed a pixel
attention contrastive network (PACnet) designed to capture the
differentiated features of both inter and intraimages. In PACnet,
we employ cross-image pixel contrastive learning (CPCL) to
analyze distinctive features among interimages. Subsequently,
a criss-cross attention module (CCAM) is applied to bolster
the capacity to capture disparities among neighboring regions
and highlight the contrast between abandoned cropland and its
nearby surroundings.

In a nutshell, our contributions can be listed as follows.
1) We construct a VHR abandoned cropland dataset (VACD)

exceeding 14 000 samples for DL network training and
propose a DL network called PACnet designed explicitly
for extracting fine-grained details of abandoned cropland
from VHR (0.5 m) RS images.
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2) Confronted with abandoned cropland’s ambiguous and
disordered visual attributes, we introduce CPCL and
CCAM to characterize contrasting features between aban-
doned cropland and other land categories.

3) Our proposed approach yields competitive results on the
VACD dataset, affirming the viability and substantial po-
tential of VHR abandoned cropland mapping.

II. RELATED WORK

A. Semantic Segmentation in RS

Semantic segmentation is the foundational task in the com-
puter vision field, which refers to labeling all the pixels in im-
ages. The proposal of fully convolutional networks (FCNs) [38]
marked a significant milestone in image segmentation. FCN,
employing deconvolution in place of a fully connected layer,
enables processing input images of any size and predicting every
pixel within them. Recent research endeavors [39], [40], [41],
[42], [43], [44], [45] in the domain of semantic segmentation fall
into two primary categories. One aims to expand the receptive
field and facilitate multiscale context extraction, while the other
focuses on the incorporation of attention modules. Unet [39]
exemplifies the former category, characterized by its distinc-
tive asymmetric “U” shape structure. U-Net merges low- and
high-level features via skip connections, retaining some edge
characteristics.

Furthermore, the utilization of atrous convolution [40] consti-
tutes another representative approach. By incorporating a fully
connected conditional random field (CRF) and atrous spatial
pyramid pooling (ASPP), DeepLab series [41] attains enhanced
representation capability and more precise multiscale object
segmentation. The introduction of attention mechanisms repre-
sents another crucial technique for improving DL performance.
These mechanisms excel in extracting contextual importance
by calculating correlations among instances. The convolutional
block attention module [42] and dual attention module [43]
serve as typical examples of such attention modules. In addi-
tion, leveraging attention mechanisms, the transformer-based
architecture has introduced a new perspective to the computer
vision field. Milestone works in this regard include the vision
transformer [44] and the segmentation transformer [45], which
have significantly advanced the utilization of transformers in
semantic segmentation.

The rapid advancements in DL offer a novel perspective
for RS image classification, akin to the principles underlying
semantic segmentation in the computer vision field. In contrast
to natural images, RS images captured by satellites and aircraft
are susceptible to various factors, including lighting and pho-
tography angles [46]. Hence, incorporating spatially contextual
information is essential in RS image segmentation. In recent
years, extensive research efforts [18], [47], [49], [50], [51],
[52], [53], [54], [55], [56], [57], [58], [59], [60] have focused
on enhancing pixel-level accuracy in semantic segmentation of
RS images. These efforts can be categorized into three primary
strategies: multiscale contextual information extraction, infor-
mation fusion, and postprocessing techniques [24]. Zhao and
Du [47] employed a multiscale convolutional neural network

to extract deep spatial information from hyperspectral images.
ScasNet was developed to capture multiscale contexts on the en-
coder output [48]. MC-FCN [47] applied additional constraints
to intermediate layers, thereby enhancing its multiscale feature
representations and improving building segmentation accuracy.
MGSNet [58] extracted background information surrounding
the target to improve sample distinguishability. Li et al. [59]
proposed multiscale split attention to acquire more detailed
representations through grouping. ACAHNet [55] utilizes the
asymmetric multiheaded cross-attention module to enhance the
contextual features extracted by both CNN and transformer
network. Information fusion is another integral aspect of the DL
network. Marmanis et al. [49] extracted spectral and digital ele-
vation model information from two channels, and a convolution
layer combines the results from both channels. Wang et al. [53]
introduced a gated convolutional neural network for selecting
adaptive features during the fusion of different layer features.
AERNet [56] employed a contextual feature aggregation module
to fuse information from different context features. SSPN [57]
applied multiscale interfusion to enrich the extracted features
and improve the sensitivity of the spectral–spatial information.
Wang et al. [60] designed a global dependence fusion module
to fuse features extracted from hyperspectral and SAR im-
ages. Postprocessing techniques, such as simple linear iterative
clustering superpixel segmentation [50] and CRFs [51], are
commonly applied to refine the RS image segmentation results.
Additional postprocessing techniques, such as the integration of
point clouds and high-resolution images, mitigate the salt-and-
pepper noise in classification results [54].

B. Contrastive Learning

Categorized by label availability, contrastive learning can be
grouped into unsupervised and supervised contrastive forms.
In the realm of unsupervised contrastive learning (UCL), pi-
oneering studies [61], [62] laid the foundation by introducing
pretext tasks and defining positive/negative samples. Wu et al.
[61] introduced instance discrimination as the pretext task for
UCL. Ye et al. [62] defined positives as varying augmenta-
tion outcomes from a single image, considering other images
and their augmentations in the dataset as negatives. Nearly
all studies [63], [64] find that the size of the negative sample
collection dramatically influences the performance of UCL.
However, the challenge of designing sample collections that
balance computational efficiency and UCL performance per-
sists. Subsequently, milestone work—MoCo [63] and simCLR
[64]—were proposed to solve the above problem. MoCo in-
troduced a queue structure and momentum encoder to create
a comprehensive and coherent sample collection. SimCLR, on
the other hand, discarded conventional data containers in favor
of memory banks and raised projection heads to outperform
prior self-supervised methods significantly. Most UCL serves
as a pretraining step for the downstream task, especially for
the classification task. The performance of UCL pretraining on
dense work, such as semantic segmentation and object detection,
is unsatisfactory [65]. DenseCL [66] and VICRegL [67] were de-
veloped to address this issue. However, while they demonstrate
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effectiveness on natural image datasets, their performance on
RS image datasets warrants further improvement. Concerning
supervised contrastive learning (SCL), it primarily incorporates
the concept of CL to amplify representational capacity and
regularize the embedding space. Zhao et al. [68] defined pix-
els belonging to the same class in other images as additional
positive samples. The introduction of these more challenging
positives directed the network to cluster pixels of the same class.
The model was initially trained using pixelwise label-based
contrastive loss and, subsequently, fine-tuned with pixelwise
cross-entropy loss for semantic segmentation. Chaitanya et al.
[69] employed the global contrastive loss to enhance image-
level representative capacity and the local contrastive loss to
distinguish adjacent regions. These studies leverage both global
and local context at the image level while striving to extract
distinctive pixel-level features.

III. METHODOLOGY

This section introduces the dataset prepared for experi-
ments and details the proposed PACnet. The dataset pre-
pared for experiments is presented in Section III-A. Then, we
briefly introduce the PACnet framework in Section III-B. In
Section III-C, CPCL is proposed for enhancing contrasts inter-
images, and in Section III-D, CCAM is embedded for exploring
contrasts intraimages. Finally, we introduce the loss function of
PACnet.

A. Dataset Preparation

The VACD is annotated on Google Earth VHR images (0.5 m)
obtained in 2022 in Guangdong Province, China. We label the
abandoned cropland through human visual interpretation. As
shown in Fig. 1, abandoned cropland and cultivated farmland
are similar in spectral as vegetation but quite different in texture
information. The cultivated fields have neater and more regular
textures, while the textures of abandoned cropland are signif-
icantly irregular and messy. Abandoned cropland filled with
ruderal is often located in monticules and depressions. Since
weeds often overgrow shrubs, the surrounding shrubs hinder the
extraction of abandoned farmland.

We crop the complete scene of images into 512×512 patches
and randomly divide them into a train collection of 10 608
patches, a validation collection of 2653 patches, and a test
collection of 1474 patches. Some patches of the detailed VACD
are shown in Fig. 2.

B. PACnet Architecture

According to the characteristics of abandoned cropland and
the surrounding surface features, we propose PACnet as Fig. 3 to
enhance the comparable features from interimages and intraim-
ages. We introduce CPCL to focus on the overall and global
feature contrast. We cast CPCL as a dictionary query task [52].
The target pixel for prediction is seen as a query, and the search
range containing samples (positive and negative) is similar to
a dictionary with keys. CPCL calculates the contrastive loss
between the selected pixel(query) embeddings and other pixel

Fig. 2. Details of VACD dataset.

and region embeddings(keys) we sample from the memory bank.
As for CCAM, we attach importance to the local difference of
the pixels in the current image from two essential directions. And
the powerful feature representative capacity by applying CCAM
can guide the CPCL network to have perfect performance on
contextual information extraction in return.

The network architecture is represented in Fig. 3. For an input
image P, it passes through the encoder ResNet50 and is mapped
into dense features P with a spatial size of H ×W ×D.
D denotes the number of dimensions here. Then, P is fed
into two branches. The one is to apply a CCAM in capturing
contextual importance from both lateral and longitudinal orien-
tation to intensify the pixelwise representative ability. The output
embeddings P ’ ∈ RH×W×Dof CCAM are then projected into
DeepLabV3 decoder, where P ’ is transformed into a score map
S ∈ RH×W×|𝒞|. |𝒞| denotes the number of classes in the dataset.
And finally, in this branch, we calculate the segmentation loss
between S and the label of the input image.

The other branch, CPCL branch, is to pass P through a
projection head, which is composed of two 1× 1 convolution
layers with ReLU. The projection head maps every high-level
pixel featurep ∈ P into a 256-dimension 𝓁2-normalized feature
vector, making preparations for the calculation of contrastive
loss. The projection head applied here is only complemented in
the training process and is eliminated in the inference section.
The contrastive loss is later computed between the query and
keys selected from the memory bank. The memory bank contains
the pixel and region embeddings, and the region embeddings
are calculated by image projected feature P and corresponding
labels.

C. Cross-Image Pixel Contrastive Learning (PCL)

This section provides a detailed introduction to CPCL in
PACnet.

1) Pixel Contrastive Learning: Unlike classical image con-
trastive learning (ICL), CPCL is a kind of PCL, a supervision
algorithm. The brief frameworks of ICL and PCL are shown in
Fig. 4. ICL conducts CL by using different data augmentation of
one image and finally implementing the features from the output
of projections. In contrast, PCL performs contrastive feature
mining at the pixel level and mines fine-grained features. For RS
images, the details in a scene are often too complex to clarify
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Fig. 3. Framework of the proposed PACnet.

Fig. 4. Comparison of the structures of ICL and PCL. (a) Image contrastive
learning. (b) Pixel contrastive learning.

the semantics for ICL, making pixel-level contrast as PCL more
meaningful.

2) Pixel-to-Pixel and Pixel-to-Region Contrast: CPCL is in-
troduced to explore the significantly different texture informa-
tion between abandoned cropland and other land types. Through
pixel-to-pixel and pixel-to-region contrasting, CPCL regularizes
the embedding space by shortening the distance between the
same class features while lengthening the different class fea-
tures’ distance. Both pixel embeddings and region embeddings
are stored in a memory bank ℬ. The details of CPCL are shown
in Fig. 5.

As for pixel-to-pixel contrast, given that pixel p in training
images is the query with the semantic label c̄, then the positive
samples here are other pixels with the same label, while the
negative samples are the pixels not belonging to c̄. The positive
and negative samples mentioned above as keys are not restricted
to being selected from the same image.

For pixel-to-region contrast, it is proposed to supplement the
image content information lost during the downsample process.
Concerning pixel p labeled c̄ as a query, the positive samples are
the c̄ class semantic regions in all images and the negative ones
are the 𝒞\c̄ classes semantic regions in the dataset.

During training, we select queries by the “hard segmenta-
tion sampling” strategy [70] and keys by the “harder example
sampling” strategy [70], [71], [72], [73]. For the former, half
of the queries are chosen randomly, and half are sampled from

Fig. 5. Structure of CPCL.

the harder queries. The harder queries here are the pixels with
the wrong prediction in the segmentation task (i.e., c �= c̄).
This strategy guides the CPCL to focus on the pixels that
make it difficult for the network to predict and intensify the
critical feature generation. As for key selection, we use the
“harder example sampling” strategy. For each query embed-
ding p, we select the top 10% harder negatives from memory
bank ℬ as negative collection, and positives are the same. The
definition of “harder” here relates to the computation of the
designed contrastive loss, and we will further explain it in
Section III-C4. Then, we randomly sample K negative/positive
embeddings from the respective collection to compute the de-
signed contrastive loss ℒNCE. K denotes the number of samples
here.

3) Memory Bank: Our designed memory bank ℬ aims to
balance training efficiency and representative capacity. The
memory bank contains pixel and region embeddings. For pixel
embeddings, a pixel queue with size T is stored for each cate-
gory. The pixel embeddings are contained in ℬ with a size of
|𝒞| × T ×D and part of them (V/T ) are dynamically updated
by the recent batch. That is, during training, only a few pixels
(i.e., V , T � V ) are selected from the images in the latest batch
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and pulled into the queue. The above design guarantees pixel em-
beddings’ consistency and time efficiency in the memory bank.
For region embeddings, providing that we have a segmentation
dataset with N images and |𝒞|classes, the keys for pixel-to-region
contrast are region embeddings with size |𝒞| ×N ×D, where D
is the dimension of the pixel embeddings. The (c̄, n)th element
of the region embeddings is the feature vector calculated by the
average pooling of every pixel embedding with the same c̄ class
in the nth image. Therefore, the total size of the memory bank
ℬ is |𝒞| × (T +N)×D.

4) Loss Function of CPCL: The InfoCE loss is widely used
in UCL, and it can be represented as

ℒNCE
P = −log

exp (v · v+/τ)

exp
(
v · v+/τ +

∑
v−∈𝒩P

exp (v · v−/τ)
)
(1)

wherev+(v−) is the embedding of the positive(negative) sample
for image P,𝒩P stores the embeddings of negative samples, “·”
denotes the dot product, and τ > 0 is a temperature hyperparam-
eter. All the embeddings here are 𝓁2-normalized.

CPCL extends (1) to the supervised dense prediction task
to practice the pixel-to-pixel and pixel-to-region contrast men-
tioned above. It can be defined as

ℒNCE
p =

1

|𝒫𝓅| X. (2)

And X is defined as follows:

X =
∑

e+∈𝒫𝓅
−log

exp (p · e+/τ)
exp (p · e+/τ) +∑

e−∈𝒩𝓅
exp (p · e−/τ)

(3)
where 𝒫𝓅and 𝒩𝓅 denote the positive and negative sample
collections stored in the memory bank ℬ for pixel p, e+ and
e− are the embeddings of positives and negatives, respectively,
and p represents the pixel embedding of the query pixel p.

The discernibility of training samples is vital in the segmen-
tation task. In our work, the derivation of the contrastive loss (2)
with respect to the query embedding p can be given as follows:

∂ℒNCE
𝓅

∂p
= − 1

τ |𝒫𝓅|Y . (4)

And Y is defined as follows:

Y =
∑

e+∈𝒫𝓅

⎛
⎝(1−mp+) · e+ −

∑
e−∈𝒩𝓅

mp− · e−
⎞
⎠ (5)

where mp+/− ∈ [0, 1] is the matching probability between the
key e+/e− and the query p, the computation of the probability
can be represented as follows:

mp+/− =
exp

(
p · e+/−/τ

)
∑

e’∈𝒫𝓅∪𝒩𝓅
exp (p · e’/τ)

. (6)

The dot product of query p and negative e− with a value closer
to 1 is deemed to be a sign of a harder negative sample. i.e., the
negative key is similar to the query p. Meanwhile, the positive
e+ with a value closer to −1 is regarded as a harder positive,
i.e., the positive key is dissimilar to the query p.

TABLE I
EXPERIMENTAL RESULTS WITH OTHER NETWORKS

TABLE II
EXPERIMENTAL RESULTS OF ABLATION STUDIES

Fig. 6. Details of CCAM.

D. Criss-Cross Attention Module

The nearest surface features (e.g., cultivated farmland
and shrub) in the current scene of an image contain mas-
sive and abundant content information, so we use CCAM
to intensify the extraction of contextual importance and
local feature representative capacity from two orientations
within individual images. And better representative capacity
in intraimages can help improve the performance of PAC-
net. Unlike nonlocal attention modules [74] that calculate
all pixel weights directly, CCAM focuses on the pixels in
essential directions and dramatically reduces the computed
quantity.

The detailed structure of the CCAM is represented in Fig. 6.
The CCAM captures contextual information from both lateral
and longitudinal directions. For a feature map P with a spatial
size of H ×W ×D, it first passes through two branches with
1 × 1 convolution and is transformed intoM ∈ RH×W×D’ and
N ∈ RH×W×D’(D > D’), respectively. Via the affinity compu-
tation ofM andN , we generate the affinity matrix, that is, the at-
tention mapAwith a spatial size of (H ×W − 1)× (W ×H).
For each pixel p in the featureM , we can obtainMp ∈ RD’. By
extracting the feature vector in the same row/column as p in the
feature N , we can acquire Ωp ∈ R(H×W−1)×D’. The affinity
matrix is computed as follows:

zi,p = Mp Ω
T
i,p (7)
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where Ωi,p ∈ RD’ is the ith element of Ωp(i =
[1, …,H+W−1]), zi,p ∈ Z is the correlation between Mp

and Ωi,p, and Z ∈ R(H+W−1)×(W×H).
After that, a softmax operation is applied on Z to calculate

the final attention map A. Another 1× 1 filter used on P
generates L ∈ RH×W×D for feature adaptation. For each pixel
p in the feature L, we can acquire a feature vector Lp ∈ RD

and a collection of feature vectors Φp ∈ R(H+W−1)×D whose
position is in the same row/column as p. The horizon and
vertical contextual information of p are obtained by aggregation
operation represented as follows:

P ′
p =

H+W−1∑
i=0

Ai,p Φi,p + P p (8)

where P ′
p is a feature vector with a spatial size of H ×W ×D

for pixel p and Ai,p is the correlation value at channel i and
pixel p in the attention map A.

In (8), the contextual importance is joined to feature P to
enhance the representative capacity. With a broader context
extraction perspective and richer context aggregation from at-
tention map A, the PCAnet achieves significant progress and is
more robust for the segmentation task.

E. Total Loss Function

Our loss function contains classical segmentation loss and
the designed contrastive loss we put forward above. The former
allows PACnet to study the discriminative features essential for
abandoned cropland classification, and the latter enhances the
contrast between abandoned farmland and surrounding ground
features (e.g., cultivated cropland and shrubs) by explicitly
exploring global semantics between pixel and region samples.

The segmentation loss we use in PACnet is the cross-entropy
loss. Given pixel p in the image P is classified into a semantic
class c̄ ∈ 𝒞. The cross-entropy loss ℒCE can be computed as
follows:

ℒCE
𝓅 = −1T

c̄ log (softmax (s)) (9)

where 1T
c̄ denotes the one-hot encoding of c̄, c̄ ∈ 𝒞 represents

the label of pixel p, s = [s1, s2, . . . , s|𝒞|] ∈ R|𝒞|is the unnor-
malized score vector for pixel p, and s ∈ S. For the softmax
optimization, that is

softmax (sc) =
exp (sc)∑|𝒞|

c’=1 exp (sc′)
. (10)

The contrastive loss ℒNCE is computed as (2) between the
query embeddings and the key embeddings from the memory
bank ℬ. The hard segmentation sampling strategy selects the
former, and the harder example sampling strategy samples the
latter. Then, the ultimate training loss ℒOverall is computed as
follows:

ℒOverall =
∑
𝓅

(
ℒCE
𝓅 + λℒNCE

𝓅

)
(11)

where λ > 0 is the weight of contrastive loss.

IV. EXPERIMENTS AND RESULTS ANALYSIS

A. Experimental Setting

Our VACD dataset contains 14 735 samples with a size of
512× 512. The size of the train set is 10 608, that of the
validation set is 2653, and the test set is 1474. We train the model
on the train set for 100 epochs with a batch size of 64. We use the
stochastic gradient descent optimizer to optimize the parameters
in the model. The initial learning rate is 0.01, the weight decay is
0.0001, and the momentum is 0.9. The temperature τ in (3) is set
as 0.1. The weight λ of the contrastive loss ℒNCE

𝓅 is 1. The learn-
ing rate decay strategy is LambdaLR with a step size of 100 and
gamma of 0.5. Random horizontal flips and brightness are used
to intensify the model’s generalization for data augmentation.
The probability of the image being flipped is 0.5. All training
images are brightened, and the shift value is 10. The validation
and test datasets do not have any augmentation operations. Our
models and experiments are implemented by the open-source
DL framework Pytorch. We train the model by the Distributed
DataParallel strategy. The experimental environment is Centos
7.5.1804. The GPU is GeForce RTX 2080ti. The CPU is Intel(R)
Xeon(R) CPU E5 2680.

B. Evaluation Metrics

In this study, we use overall accuracy (OA), intersection
over union (IoU), recall rate, precision rate, and F1 score
to evaluate the effectiveness of all models. In binary classi-
fication, true positive (TP) represents the positive pixels in
the label correctly classified as positive pixels. True negative
(TN) means the negative pixels in the label correctly clas-
sified as negative pixels. False positive (FP) represents the
negative pixels in the label, which are incorrectly classified
as positive pixels. False negative (FN) means the label’s pos-
itive pixels, which are incorrectly classified as negative pix-
els. TP, TN, FP, and FN are used to calculate the evaluation
metrics.

IoU is a widely used metric in semantic segmentation, which
calculates the intersection of label and prediction over the union
of label and prediction, indicating the effectiveness of a model
at pixel level by the overlap of label and prediction. mIoU is
the average of the IoU of every class i. OA shows the overall
prediction accuracy. Recall rate indicates the proportion of pos-
itive pixels identified in the label, while precision rate suggests
the accuracy of all positive pixels in the prediction. F1 score
weighs the recall rate and precision rate to represent the overall
performance to avoid bias due to sample imbalance. All these
five metrics can be calculated as follows:

OA =
TP + TN

TP + TN + FP + FN
(12)

IoU =
TP

FN + TP + FP
(13)

mIoU =

∑n
i=1 IoUi

n
(14)

Recall =
TP

TP + FN
(15)
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Fig. 7. Visualization results of comparisons with other methods. (a) Original images. (b) Ground truth labels. (c) DeepLabV3+. (d) OCRnet. (e) PSPnet.
(f) Unet++. (g) Segformer. (h) Our PACnet.

Precision =
TP

TP + FP
(16)

F1 Score =
2× Recall × Precision

Recall + Precision
. (17)

C. Comparisons With Other Methods

To better demonstrate the effectiveness of PCAnet, we select
the following mainstream segmentation networks for compari-
son on the VACD dataset and quantify the evaluation results.

Unet++: Unet++ [75] is a semantic segmentation network
developed from Unet. It nests encoder and decoder subnetworks
to Unet and redesigns the skip-connection module in Unet.
By adding the deep supervision mechanism, Unet++ achieves
faster model convergence.

DeepLabV3+: DeepLabV3+ [41] is one of the DL networks
in the DeepLab series. DeepLabV3+ uses a typical encoder–
decoder network structure. The encoder can extract multiple-
resolution features, and by introducing ASPP, DeepLabV3+
expands the receptive field and enhances the representative
capacity.

Pyramid scene parsing network (PSPnet): The critical module
of the PSPnet [76] is the pyramid pooling module. It can combine
contextual information from diverse regions and obtain a more
potent global representative capacity. To some extent, PSPnet

solves the problem of mismatch of pixel context, confused
semantic labels, and difficulty in small class prediction.

OCRnet: OCRnet [77] is often paired with HRnet as a back-
bone to obtain high-quality context importance and maintain
high-resolution features. OCRnet implements a coarse-to-fine
strategy to get a pixel-enhanced object-contextual representa-
tion.

Segformer: Segformer [78] is a simple and efficient semantic
segmentation network with a transformer framework. Segformer
extracts multiscale features by using a hierarchically structured
transformer decoder.

It can be seen from Table I that our proposed PACnet achieves
the highest OA, mIoU, Precision rate, and F1 score of 93.8%,
71.7%, 70.7%, and 68.3%, respectively. Segformer obtains the
highest recall rate of 72.2% and 6.2% higher than our proposed
PACnet due to its transformer framework. Although the recall
rate of our proposed PACnet is lower than some other competi-
tive models, the precision rate is much higher due to a specific
inhibitory effect on noise labels, which will be discussed and
analyzed in Section V. Among all these models, our proposed
PACnet obtains the best result considering all accuracy metrics
comprehensively.

From Fig. 7, we could find that the extraction result of our
proposed PACnet is smooth and precise. From the images in
Row 4, it is evident that other models cannot extract the target
abandoned cropland completely but PACnet does. Besides, the



LI et al.: FINE-GRAINED ABANDONED CROPLAND MAPPING IN SOUTHERN CHINA 2291

Fig. 8. Visualization results of ablation experiments. (a) Original images. (b) Ground truth labels. (c) DeepLabV3. (d) DeepLabV3+CCAM.
(e) DeepLabV3+CPCL. (f) Our PACnet.

prediction of PACnet is more in line with the actual surface of the
label in Fig. 7(b) because of its noise resistance. In conclusion,
our proposed PACnet with its promising ability to capture texture
information and hidden key features makes fewer mistakes than
other models and can extract the complete abandoned cropland
in a more complex scene.

D. Ablation Experiments

To represent the influence of CPCL and CCAM, we con-
duct ablation experiments on the VACD dataset and quantify
the evaluation results. First, we carry out the baseline experi-
ment of the initial network with ResNet50 as the encoder and
DeepLabV3 as the decoder. Then, we add the CCAM into
the baseline model to better extract the intraimage features
from different directions. In like manner, we introduce CPCL
to the baseline to enhance the interimage feature extraction.
Finally, the experiment of the baseline with CPCL and CCAM is
conducted.

Table II presents the metric results of our ablation experi-
ments. The “Base” model is the baseline model without any

tricks. “+CCAM” represents the base model with CCAM.
“+CPCL” means the base model with CPCL. From Table II, we
can find that adding CCAM into the baseline improves by 0.2%
in OA and 3.5% in precision rate, which indicates that CCAM
pays more attention to contextual importance and local feature
representative capacity from two orientations within images to
lower the possibility of mistakenly classifying. Moreover, the
involvement of CPCL improves the performance of the baseline
remarkably in all metrics. Therefore, PACnet with CCAM and
CPCL at the same time obtains further improvement compared
with the baseline with only a single module.

Fig. 8 further demonstrates the function of CCAM and CPCL.
We can find in Fig. 8(c) and (d) that the baseline makes some
mistakes in organizing the background as abandoned cropland,
but the baseline with CCAM does not. By comparing Fig. 8(d)
and (e), we can find that CPCL makes fewer mistakes and tends
to extract the abandoned cropland more completely. The predic-
tion results in Fig. 8(f) are significantly closer to the accurate
label, which proves the effectiveness of our proposed CCAM and
CPCL. We believe that using CCAM and CPCL simultaneously
can enhance PACnet’s ability to extract comprehensive texture
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Fig. 9. Visualization details of the inhibitory effect of CPCL on noise labels.
(a) Image. (b) Label. (c) PACnet.

information and essential deep features, leading to improved
performance.

V. DISCUSSION

A. Noise Suppression Ability of PACnet

Due to the difficulty in ensuring absolute accuracy through
manual annotation, labels used for training often have some
noise. Indeed, some studies have shown that contrastive learning
has a particular antinoise performance for labels with noise [79],
[80]. The experimental results indicate that the CPCL used in
this article has a specific inhibitory effect on noise labels because
CPCL smooths out erroneous information in segmentation loss
by continuously comparing the similarities and differences of
pixels. As shown in Table I, the method proposed in this article
has a relatively low recall rate but the highest precision rate. This
suggests that CPCL can identify more typical abandoned labels,
implying a certain level of noise resistance against incorrect
labels. As shown in Fig. 9, for labels that were not accurately
annotated during the training process, predicted results could be
closer to the actual surface textures. The above findings further
demonstrate the inhibitory effect of CPCL on noise labels, which
alleviates the considerable cost of fine labeling and is worth
further exploration.

B. Pros and Cons of PACnet

As we analyze in Section IV, PACnet can accurately extract
fine-grained abandoned cropland from single-time-phase VHR
data. Our qualitative and quantitative assessments substantiate
that PACnet outperforms mainstream segmentation networks.
This success can be attributed to the incorporation of CPCL
and CCAM. PACnet distinguishes itself by emphasizing captur-
ing intra- and interimage contrastive features, a critical aspect
often overlooked by classical models. This differentiation is
particularly significant, given the inherent complexity of directly
modeling amorphous abandoned cropland. The integration of
CPCL into PACnet enhances its proficiency in discerning differ-
ent characteristics of abandoned cropland and other land types
at both pixel and semantic region levels. Furthermore, intro-
ducing CCAM enriches the network’s representative capacity,
contributing to its superior performance.

Nevertheless, it is imperative to acknowledge a limitation in
PACnet’s performance. Our sampled experimental area contains
a substantial expanse equivalent to that of a province. This cov-
erage confirms PACnet’s proficiency in mapping fine-grained
abandoned cropland across southern China. However, we remain
aware that its efficacy might not be universally consistent when
applied to regions characterized by distinct topography and crop-
land attributes. Addressing this potential deficiency constitutes
a crucial direction for our future work, where we intend to prior-
itize the advancement of PACnet’s transfer learning capabilities
and will further mine the abundant information of time-series
data.

VI. CONCLUSION

In this article, faced with the problems of farmland fragmen-
tation and amorphous characteristics of abandoned cropland in
southern China, we proposed a new fine-grained abandoned
cropland mapping method (PACnet) based on the pixel-level
contrast learning. By integrating CPCL and CCAM, our pro-
posal enhances the comparative characteristics between aban-
doned land and other land features from inter- and intraimages.
The experimental results show that PACnet has the highest
accuracy (OA = 93.8% and mIOU = 71.7%) in mapping aban-
doned cropland compared with classical DL algorithms. We can
find that CPCL has a specific inhibitory effect and antinoise
performance on inaccurate labels. Our proposed method has vital
reference significance for VHR abandoned cropland mapping
and analysis research. In the future, we will continue to explore
the synergistic use of time-series features and VHR images to
map abandoned cropland more accurately.
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