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AEDNet: An Attention-Based Encoder–Decoder
Network for Urban Water Extraction From High

Spatial Resolution Remote Sensing Images
Yanjiao Song , Xiaoping Rui , and Junjie Li

Abstract—Accurate water extraction from urban remote sensing
images holds great significance in assisting the formulation of river
and lake management policies and ensuring the sustainable devel-
opment of urban water resources. However, urban high-resolution
remote sensing images encompass complex spatial and semantic
information, which leads to disparities between the extracted water
body features based on local and global information, consequently
affecting the accuracy of urban water extraction. To tackle this
issue, an attention-based encoder–decoder network was proposed.
In this network, the backbone employing atrous convolution (AC)
facilitated the acquisition of low-level and high-level features of
urban remote sensing images at various scales. Integrated with
the attention mechanism, the encoder–decoder structure extracted
global features in both the spatial and channel domains. Subse-
quently, these two types of features were merged to yield the urban
water segmentation. Moreover, considering both intersection over
union and class weights, a joint loss function (JLF) was introduced
to further enhance the accuracy of urban water extraction. Ex-
perimental results demonstrated the strong performance of the
proposed method on both GID and LoveDA datasets.

Index Terms—Atrous convolution (AC), attention mechanism,
joint loss function (JLF), remote sensing, urban water extraction.

I. INTRODUCTION

WATER serves as the fundamental source of life, play-
ing a crucial role in supporting all known life forms

on the earth. Its impact extends to climate, biodiversity, and
the well-being of humans [1]. Notably, urban water resources
assume a vital role in preserving the ecological equilibrium of
cities and fostering the robust development of urban economies
[2]. However, owing to the influence of climate change, human
activities and other factors, the distribution of urban water bodies
is highly heterogeneous [3]. Therefore, obtaining an accurate
depiction of urban water body distribution holds immense sig-
nificance in assisting governmental efforts to formulate effective
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river and lake management policies and ensure the sustainable
development of urban water resources.

Due to its significant advantages, such as wide coverage, long
time series, high efficiency, and cost effectiveness in terms of
manpower and resources, remote sensing has gained increas-
ing importance in water extraction efforts [4]. The extraction
of water bodies primarily relied on the spectral differences
between water and other objects in various bands of remote
sensing images [5]. Among these traditional methods, the widely
used approach is the water index method. This kind of method
calculated a specific index that reflects the water characteris-
tics by considering multiple bands of remote sensing images.
Subsequently, threshold segmentation was performed on this
index to classify the image into water and nonwater areas.
Over the years, scholars have proposed different water body
indices, such as the normalized difference water index (NDWI)
[6], modified normalized difference water index (MNDWI) [7],
automated water extraction index (AWEI) [8], and weighted
normalized difference water index (WNDWI) [9]. However,
due to the complex semantic information present in urban high
spatial resolution remote sensing images, roads, buildings, and
building shadows are prone to misclassification as water bodies.
Furthermore, a major challenge with the water index method lies
in determining the appropriate threshold, and improper selection
of the threshold can significantly impact the accuracy of water
extraction results [10], [11]. Automatic binarization algorithms
like OTSU [12] is commonly used in image thresholding, but
it is inappropriate to apply a local optimal threshold to remote
sensing images of different regions at different times [13].

Classical machine learning methods, such as support vec-
tor machine [14], [15], decision tree [16], [17], and random
forest [18], [19], have been applied to water body extraction
tasks. These algorithms effectively address the problem of water
misclassification by taking manually labeled training data and
teaching the computer to detect similar features in the data
[20]. However, feature construction in these methods can be
time consuming, leading to relatively lower efficiency in water
extraction using machine learning [21].

Deep learning methods offer advantages by automatically
extracting features from raw images through multiple convo-
lutional layers, eliminating the need for intricate feature engi-
neering and significantly improving efficiency [22], [23], [24].
Among them, semantic segmentation models based on convo-
lutional neural networks (CNNs) can extract semantic features
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from images and associate them with specific class labels. In
recent years, substantial progress has been made in semantic
segmentation models such as FCN [25], U-Net [26], PSPNet
[27], and DeepLab [28], [29], [30], [31], achieving high accuracy
in water extraction tasks [32], [33]. However, the aforemen-
tioned semantic segmentation models can only extract water
features with a fixed receptive field size or extract multiscale
water body features with multiple receptive field sizes [34],
[35], [36], [37]. Nevertheless, the intricate semantics present
in urban high-resolution remote sensing images often cause
water features extracted based on local information to deviate
from global information, thereby affecting the accuracy of urban
water semantic segmentation [38].

In recent years, the attention mechanism has emerged as
a significant research focus in deep learning area, and many
related neural networks have been proposed, such as nonlocal
neural networks [39], SENet [40], CBAM [41], DANet [42], and
so on. It enables the calculation of weight distributions based
on global information and applies these weights to emphasize
specific features, thereby facilitating the extraction of global
features. Many scholars have applied attention mechanism into
water extraction tasks. Wang et al. [43] adopted the spatial and
channel squeeze and excitation attention mechanism in flood
extraction from SAR image, and achieved better accuracy of the
model prediction. Zhang et al. [44] involved SE-attention to an
end-to-end CNN structure, in which the SE-attention module
can enhance the prediction results, mitigate the blurring effect,
and make the segmented water boundaries more continuous.
Yu et al. [45] presented a hierarchical attentive high-resolution
network to export semantic-discriminative, target-oriented fea-
ture representations for precise water body segmentation. Dai et
al. [46] proposed a multiscale location attention network, which
focused on location-spatial information and channel information
of water and improved the boundary extraction of water bodies.

In this article, to address the challenges in urban water extrac-
tion, an attention-based encoder—decoder network (AEDNet)
was proposed. AEDNet tackles these challenges by incorporat-
ing several key components. First, the backbone of AEDNet
utilizes atrous convolution (AC) to capture both low-level and
high-level features of urban remote sensing images across mul-
tiple scales. Subsequently, within the encoder–decoder architec-
ture, the dual attention module facilitates the extraction of global
features in both the spatial and channel domains. Ultimately,
features from both domains are fused, yielding accurate water
extraction results. In addition, a joint loss function (JLF) is
proposed to address the challenge of imbalanced positive and
negative samples arising from the uneven distribution of urban
water bodies. This JLF combines the intersection over union
(IoU)-based loss function, specifically Lovász hinge [47], with
a weighted cross-entropy loss function. The main contributions
of this article can be summarized as follows.

1) A backbone incorporating AC was designed, allowing
for the extraction of both low-level and high-level water
features at various scales.

2) A dual attention module within the encoder–decoder struc-
ture was proposed. This module applies a spatial atten-
tion mechanism to the low-level features and a channel

attention mechanism to the high-level features. By com-
bining these two types of attention, AEDNet can effec-
tively extract global water features, taking into account
both spatial and semantic information.

3) A JLF was designed to address the issue of imbalanced ur-
ban water samples and the importance of IoU in accuracy
evaluation. This loss function combines the Lovász hinge
loss based on IoU with a weighted cross-entropy loss.

II. PROPOSED METHOD

The overall structure of the proposed AEDNet is shown in
Fig. 1. The baseline is an encoder–decoder network, while
AC, channel attention module (CAM), and position attention
module (PAM) are incorporated to enhance feature extraction.
ResNet [48] with AC is employed to extract both low-level and
high-level features from the input images at different scales.
CAM is utilized to extract global features in the channel domain,
capturing the interdependencies between different channels.
PAM focuses on extracting global features in the spatial do-
main, capturing spatial relationships within the image. In the
decoder section, the features extracted by CAM and PAM are
concatenated. Further feature extraction is then performed to
refine the combined features and generate the final segmentation
result. In addition, a JLF for urban water semantic segmentation
is proposed to ensure the accuracy and stability during model
training.

A. Backbone With Multiscale AC

Water bodies exhibit significant spatiotemporal variability,
and remote sensing images often contain large-scale water fea-
tures. To capture the dependencies of such water features, a
larger receptive field is required in the backbone of the model.
AC, also known as dilated convolution, addresses this need. AC
introduces holes in the filters of standard convolution to increase
the receptive field. By adjusting the dilation rate, the receptive
field of AC can be dynamically modified, allowing the model to
capture feature information at different scales. This mechanism
enables the extraction of contextual information over a larger
area, enhancing the understanding of complex water features
in remote sensing images. Fig. 2 illustrates the concept of AC
and its effect on the receptive field. With the same number of
parameters, AC expands the effective field of view, enabling
the model to incorporate information from a wider range of
neighboring pixels.

In 1-D AC, for the input signal x(i), the output y(i) can be
calculated using the following equation:

y (i) =

K∑

k=1

x (i+ r · k) · ω (k) (1)

where ω refers to a filter of size K, and r is the dilation rate.
ResNet is a widely recognized deep CNN architecture, and

its key idea of addressing overfitting through residual blocks
has been incorporated into many contemporary CNN models. In
this article, ResNet-101 with AC is employed as the backbone
of AEDNet. The last three residual blocks of ResNet-101 are
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Fig. 1. Overall structure of AEDNet. The baseline is an encoder–decoder network, while AC, CAM, and PAM are incorporated to enhance feature extraction.

Fig. 2. AC with different dilation rate. (a) Atrous conv. (b) Rate = 1.
(c) Rate = 2. (d) Rate = 3.

Fig. 3. Residual block with AC used in this article. The dilation rates are set
to 2, 4, and 8, respectively.

modified to enhance the performance, as depicted in Fig. 3. First,
a 1×1 convolutional layer is employed to reduce the number of
feature map channels from 256 to 64. Subsequently, an atrous
convolutional layer with varying dilation rates (2, 4, and 8 in this
article) is applied to capture feature dependencies at different
scales. Another 1 × 1 convolutional layer is used to restore
the number of feature map channels from 64 to 256. Finally,
the features before and after processing are element-wise added
pixel by pixel to produce the output of the residual block. For
feature extraction, the output of the first three residual blocks
of ResNet-101 is utilized as low-level features, while the output
of all residual blocks serves as the high-level features. These
features are then fed into subsequent neural networks to further
process.

B. Attention-Based Encoder–Decoder (AED) Structure

The low-level features generated by the backbone of AEDNet
are rich in spatial information, whereas the high-level features

Fig. 4. Specific structure of PAM and CAM. (a) Position attention module.
(b) Channel attention module.

contain more channel-related information. Building upon the
success of DANet, similar PAM and CAM are incorporated
into the encoder–decoder structure. This enables the processing
of low-level and high-level features separately, allowing the
network to capture global feature dependencies in both the
spatial and channel domains. The specific structure of PAM and
CAM is illustrated in Fig. 4.

In the PAM, the feature map A ∈ RC×H×W is first subjected
to a 1×1 convolution operation to obtain feature maps{B,C} ∈
R(C/8)×H×W , and reshaped to R(C/8)×N (N = H × W, number
of pixels). Then, the transposed B is multiplied by C, and the
product is normalized by a softmax layer to obtain an attention
map S ∈ RN×N as follows:

sji =
exp (Bi · Cj)∑N
i=1 exp (Bi · Cj)

(2)
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where sji represents the influence of pixel i on pixel j. At the
same time, a 1 zed by a softmax layer to obtain an attention
map features separately, allowimap D ∈ RC×H×W . D is first
reshaped to RC×N and multiplied by the transpose of S, then
the product is reshaped from RC×N to RC×H×W . Finally, using
the idea of residuals, the product is weighted by the parameter
α and added element-wise with the original feature map A to
obtain PAM result E ∈ RC×H×W .

Ej = α

N∑

i=1

(sjiDi) +Aj (3)

where the initial value of the weight α is 0. In the feature map
E output by PAM, each element is the weighted sum of features
between all positions and the original features, so it can represent
the global spatial dependence.

Similar to PAM, the CAM calculates the dependencies be-
tween different channels. In order to better preserve the rela-
tionship between channels, CAM do not perform convolution
operations, but directly reshapes the feature map A to RC×N ,
multiplies A by its transpose, and normalizes the product with a
softmax layer to obtain an attention map X ∈ RC×C as follows:

xji =
exp (Ai ·Aj)∑C
i=1 exp (Ai ·Aj)

(4)

where xji represents the influence of pixel i on pixel j. Then,
the transposed X is multiplied by A and the product is reshaped
to RC×H×W . Finally, using the idea of residuals, the product is
weighted by the parameter β and added element-wise with the
original feature map A to obtain CAM result E ∈ RC×H×W as
follows:

Ej = β
C∑

i=1

(xjiAi) +Aj (5)

where the initial value of the weight β is 0. In the feature map E
output by CAM, each element is the weighted sum of features
between all channels and the original features, so it can represent
the global channel dependence.

In the encoder part of AEDNet, a pointwise convolution
followed by upsampling by a factor of 4 is employed. This se-
quential operation ensures that the output size of CAM matches
that of the low-level features. Moving to the decoder part, the
output of PAM is concatenated with the output of the encoder.
This fusion of low-level and high-level features enhances the net-
work’s ability to capture both spatial and channel information.
To complete the fusion process, a 3 × 3 convolution is applied.
Finally, through a 1×1 convolution layer and upsampling by
a factor of 4, the segmentation result with the same size as the
input image is obtained.

C. JLF for Urban Water Extraction

In the field of image segmentation, compared to the commonly
used cross-entropy loss function, IoU can better evaluate the
performance of models [47]. The IoU score, also known as the

Jaccard Index, can be expressed in the following form:

Jc (y
∗, ỹ) =

|{y∗ = c} ∩ {ỹ = c}|
|{y∗ = c} ∪ {ỹ = c}| (6)

where c is the category, y∗ is the true value, and ỹ is the predicted
value. In order to use the Jaccard index as a loss function, it can
be transformed into

ΔJc
(y∗, ỹ) = 1− Jc (y

∗, ỹ) . (7)

The misclassified pixel set Mc can be represented as

Mc (y
∗, ỹ) = {y∗ = c, ỹ �= c} ∪ {y∗ �= c, ỹ = c} . (8)

Thus, (7) can be rewritten as

ΔJc
: Mc ∈ {0, 1}p �→ |Mc|

|{y∗ = c} ∪Mc| (9)

where p is the number of pixels in the image. ΔJc
is discrete and

nondifferentiable, so it cannot be used directly as a loss function.
The Lovász hinge smooths ΔJc

through the Lovász extension
and transforms the input space from the discrete {0, 1}p to the
continuous Rp. For a set function Δ : {0, 1}p → R, its Lovász
extension is shown as follows:

Δ : m ∈ Rp �→
p∑

i=1

migi (m) (10)

with gi (m) = Δ ({π1, . . . , πi})−Δ({π1, . . . , πi−1}) (11)

where π represents the descending order of the elements in
m. Although the input form of the function changes after the
transformation, its output value remains unchanged and has
convexity. For the Jaccard lossΔJ1

of the positive class in binary
classification, its Lovász hinge is shown as follows:

l (F ) = ΔJ1
(m (F )) (12)

where F is the model output, ΔJ1
is the Lovász extension of

ΔJ1
, and m is the hinge loss associated with the prediction.

The Lovász hinge has achieved the application of IoU as a
loss function in CNNs and has shown good performance in the
training and testing of semantic segmentation models. However,
it has the problem of unstable training process, manifested by a
fluctuating loss curve. In addition, in the task of urban water body
semantic segmentation, the proportion of positive and negative
samples usually differs greatly, but the Lovász hinge does not
take into account this class imbalance problem. In contrast,
although weighted cross entropy cannot bring higher IoU scores
to the model, it has a stable training process and alleviates the
problem of positive and negative sample imbalance through
weighting. The equation for weighted cross entropy in binary
classification is as follows:

l = − 1

N

N∑

i=1

[(1− w) yi ln pi + w(1− yi) ln(1− pi)] (13)

where N is the total number of samples, yi is the label of sample
i, pi is the probability of sample i being predicted as positive, and
w is the proportion of positive sample pixels in the total pixels
of all data. Before training, w is calculated first. The fewer the
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TABLE I
DATASETS AND DATA PREPROCESSING DETAILS

number of positive samples, the smaller the w, and the greater
the weighting of the positive class in the loss function.

Taking into account the importance of IoU, the stability of the
training process and the handling of sample imbalance problems,
a JLF that combines Lovász hinge and weighted cross entropy
was proposed for urban water extraction. Its equation is as
follows:

L = γl1 + (1− γ) l2 (14)

where γ ∈ (0, 1) is a hyperparameter set before training, l1 is
the Lovász hinge in (12), and l2 is the weighted cross-entropy
loss function in (13).

III. EXPERIMENT

To evaluate the performance of our proposed method, experi-
ments were conducted on two publicly available high-resolution
remote sensing image semantic segmentation datasets: GID [49]
and LoveDA [50].

A. Datasets

GID is a large-scale land-cover dataset containing 150
Gaofen-2 satellite images acquired from more than 60 cities
in China. Two panchromatic (PAN) and multispectral (MS)
sensors with effective spatial resolution of 1 m (PAN) / 4 m
(MS) are onboard the Gaofen-2 satellite. After processing,
each Gaofen-2 image in GID providing a spatial dimension of
7200×6800 pixels and 4 bands: near-infrared (NIR), red (R),
green (G), and blue (B).

LoveDA dataset contains 5987 high spatial resolution images
with 166 768 annotated objects from three cities in China, and
encompasses urban and rural domains. Images in this dataset are
obtained from the Google Earth platform with spatial resolution
of 0.3 m, providing R, G, and B bands.

To prepare the data for urban water semantic segmentation, 34
images from urban areas were manually selected from the GID
dataset, with R, G, and B bands selected. From the LoveDA
dataset, images classified as urban were selected. Then, all im-
ages were cropped to samples of 512× 512 pixels to ensure con-
sistency. Next, certain criteria were applied to filter the samples.
If a sample group did not contain any water, that group would
be removed from further analysis. Similarly, if a sample group
did not contain any urban buildings, such as houses or roads,
that group would be randomly deleted with a 90% probability.
Finally, the processed data would be divided into training and
validation sets, with an 8:2 ratio for training and validation. This
division allowed us to obtain the necessary data for training
and evaluating the performance of our semantic segmentation

model. The details of the dataset division can be found in Table I.
During the training and validation process, data augmentation
techniques were performed on the samples, containing random
flipping (horizontal and vertical) and random rotation (90°, 180°,
and 270°) operations. Not increasing the number of samples,
these operations helped to enhance the diversity and robustness
of the training data, improving the performance of the model.

B. Evaluation Metrics

The evaluation metrics used in this article are divided into
accuracy evaluation metrics and efficiency evaluation metrics.

The efficiency evaluation metrics are the number of model
parameters and floating-point operations (FLOPs). The accuracy
evaluation metrics are precision, recall, and IoU, all of which
are pixel-level metrics calculated from the confusion matrix.
The calculation equations are as follows, where TP represents
the number of true positive pixels, TN represents the number of
true negative pixels, FP represents the number of false positive
pixels, and FN represents the number of false negative pixels.

Precision refers to the proportion of pixels that are actually
positive among those predicted to be positive. The equation is

Precision =
TP

TP + FP
. (15)

Recall refers to the proportion of pixels predicted to be posi-
tive among those that are actually positive, as follows:

Recall =
TP

TP + FN
. (16)

IoU refers to the ratio of the intersection to the union of pixels
predicted to be positive and pixels that are actually positive. The
equation is

IoU =
TP

TP + FP + FN
. (17)

C. Implementation Details

AEDNet was designed based on the Pytorch 1.13.0 frame-
work, and the network model training was performed on a
GPU server: containing 1 CPU (Intel Xeon E5-2640 v4) with a
total of 64-GB RAM, 2 GPUs (NVIDIA Tesla V100 16 GB)
with a total of 32-GB VRAM. The main parameter settings
were:the data batch size was 4, the initial learning rate was 1e-4,
the dynamic adjustment strategy of learning rate was StepLR,
the optimizer was stochastic gradient descent, the normalization
method was synchronized batch normalization [51], and the
number of training epochs was 100.
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT MODELS ON THE GID DATASET

Fig. 5. Water extraction results of different methods on GID dataset, where white pixels refer to water and black pixels refer to nonwater. (a) Raw image.
(b) Ground truth. (c) U-Net. (d) PSPNet. (e) DeepLabv3+. (f) CBAM. (g) DANet. (h) MECNet. (i) MSResNet. (j) AEDNet.

D. Comparative Experiments

Experiments were conducted using the GID and LoveDA
datasets to compare the performance of AEDNet with sev-
eral state-of-the-art models, including several general semantic
segmentation models: U-Net [26], PSPNet [27], DeepLabv3+
[31], CBAM [41], and DANet [42], as well as two models for
water extraction tasks: MECNet [52], [53] and MSResNet [37].
The quantitative analysis of the GID dataset is presented in
Table II. The bold entities represents the best performance in
a certain accuracy evaluation metric (a certain column), and
the same applies to the tables in the following contents. From
the results, it can be observed that CBAM and DANet exhibit
relatively poor performance in terms of accuracy. This indicates
that the conventional attention mechanism, which overlooks the
significance of low-level features, is not effective for urban
water extraction. On the other hand, DeepLabv3+ performs
better among the state-of-the-art methods due to its ability to

extract multiscale features and combine low-level and high-
level features. MECNet demonstrates superior performance in
comparison to general semantic segmentation models. However,
it is important to acknowledge that MSResNet falls short in
terms of accuracy when contrasted with the other models. This
underscores the fact that due to the inherent complexity of ur-
ban remote sensing images, conventional water body extraction
models may struggle to produce satisfactory results. However,
the proposed AEDNet surpasses all the compared methods in
terms of accuracy on the GID dataset. It achieves a precision
of 95.52%, recall of 95.66%, and IoU of 91.55%. Moreover,
AEDNet also demonstrates higher efficiency with relatively
fewer parameters, making it an excellent choice for urban water
extraction tasks.

The water extraction results of different methods on the GID
dataset are depicted in Fig. 5. It can be observed that U-Net,
PSPNet, CBAM, MECNet, and MSResNet have, to varying de-
grees, overlooked the small river branches that are interspersed
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT MODELS ON THE LOVEDA DATASET

Fig. 6. Water extraction results of different methods on LoveDA dataset, where white pixels refer to water and black pixels refer to nonwater. (a) Raw image.
(b) Ground truth. (c) U-Net. (d) PSPNet. (e) DeepLabv3+. (f) CBAM. (g) DANet. (h) MECNet. (i) MSResNet. (j) AEDNet.

within the urban area (highlighted in the red box) in the original
image. DeepLabv3+ and DANet are able to recognize the small
rivers in the example, but the extracted river boundaries appear
wider than the actual boundaries due to misclassification caused
by buildings and their shadows. In contrast, AEDNet extracts
this section of the river more comprehensively and accurately.
The extracted boundary is closer to the ground truth and shows
better delineation of the water bodies. It is important to note that
the “Ground Truth” of the sample data may not be completely
accurate. For instance, in Fig. 5(a), several bridges on the small
river are not reflected in Fig. 5(b). However, it can be observed
that AEDNet is still able to recognize these unmarked nonwater
bodies to some extent, as evidenced by the truncation of the small
river in its extraction result. This further indicates the excellent
performance of AEDNet in extracting urban water bodies.

Quantitative analysis on the LoveDA dataset is provided
in Table III. Mirroring the results observed in the GID
dataset, CBAM, and MSResNet display comparatively lower

performance in terms of accuracy. It is noteworthy that MECNet
does not surpass the performance of typical semantic segmen-
tation models. Conversely, AEDNet excels by achieving the
highest recall and IoU scores. Nevertheless, the precision of
AEDNet falls slightly short, which can be attributed to the
emphasis of the proposed loss function on optimizing the IoU
metric, rather than precision.

The water extraction results of different methods on the
LoveDA dataset are illustrated in Fig. 6. The challenging aspect
of segmenting this scene lies in a small “island” located within
a large body of water. The densely planted trees on the island
exhibit spectral features that are similar to those of water bodies
in true color images (red, green, and blue). In addition, the shad-
ows cast by the trees can further confuse the segmentation algo-
rithm when distinguishing between water and nonwater bodies.
As observed from the example, U-Net, PSPNet, CBAM, and
DANet do not perform well in accurately segmenting the water
bodies. DeepLabv3+ demonstrates better performance but still



SONG et al.: AEDNET: AN ATTENTION-BASED ENCODER–DECODER NETWORK 1293

TABLE IV
QUANTITATIVE EVALUATION RESULTS OF ABLATION EXPERIMENTS ON THE GID DATASET

misclassifies numerous nonwater pixels as water bodies. Re-
markably, in this particular scene, both MECNet and MSRes-
Net displayed notably inadequate performance, resulting in the
generation of blurry water boundaries. The LoveDA dataset has
higher spatial resolution than GID, and this observation under-
scores the limited capability of these two models in extracting
complex water bodies from high-resolution remote sensing im-
ages. Only AEDNet successfully extracts the boundary between
the small island and the surrounding water body, showcasing its
accurate segmentation capabilities in challenging scenes.

E. Ablation Experiments

The effects of each improvement in AEDNet were investi-
gated through relevant ablation experiments. ResNet-101 was
used as the backbone, and the three improvements: AC, AED
and JLF were incrementally integrated to the model. These
networks were then tested on the GID dataset, and the results
are summarized in Table IV. When JLF is not incorporated,
the conventional cross-entropy loss function is employed. It is
evident that “Backbone + AC + AED + JLF” confers clear
advantages in terms of IoU and demonstrates relatively high
precision and recall. Each enhancement, when compared to
the baseline “Backbone,” leads to a substantial improvement
in all three accuracy evaluation metrics. “Backbone + AC +
AED” achieves the highest precision, reinforcing the idea on
the side that our proposed JLF, as opposed to conventional
cross-entropy loss, places a greater emphasis on IoU, making
it more compelling for semantic segmentation tasks. On the
other hand, “Backbone + AED + JLF” exhibits suboptimal
performance in precision and IoU, underscoring the significance
of employing AC to enhance accuracy. “Backbone + AC +
JLF” performs least effectively among networks that incorporate
two enhancements, with accuracy even lower than some net-
works utilizing only one single improvement. This emphasizes
that haphazardly stacking enhancements may not necessarily
yield the desired results. Conversely, “Backbone + AC + AED
+ JLF” demonstrates a significant improvement compared to
“Backbone + AED,” highlighting the synergistic advantages of
integrating AED with AC and JLF.

Fig. 7 illustrates the results of water extraction in ablation
experiments conducted on the GID dataset. Fig. 7(b) serves

as a reference for accurately delineating larger water bodies,
although it may occasionally overlook the boundaries between
water bodies and small rivers in this scene. Upon comparing the
segmentation results, it becomes evident that all the networks
outperform the backbone. Networks lacking the AED compo-
nent tend to miss numerous water pixels, resulting in indistinct
boundaries between the extracted water bodies and urban areas.
In the red box at the top of this scene, Fig. 7(e), (g), and (j)
demonstrates superior extraction of narrow water features, with
Fig. 7(j) displaying the best performance. When focusing on
the red box at the top of this scene, Fig. 7(j) exhibits enhanced
performance in delineating water body boundaries compared to
Fig. 7(e), (g), and (i), underscoring the beneficial role of AC
and JLF in enhancing segmentation details. These visual results
provide further validation of the effectiveness of the proposed
enhancements in AEDNet, highlighting the pivotal role of AED,
AC, and JLF in achieving superior performance in urban water
extraction.

IV. DISCUSSION

In this section, the superiority of AEDNet compared to tra-
ditional methods in urban water extraction tasks, the values
of hyperparameters in the proposed JLF, and the defects and
mitigation measures of AEDNet will be discussed.

A. Comparison With NDWI-Based Methods

Comparative experiments have unequivocally demonstrated
that AEDNet outperforms other state-of-the-art semantic seg-
mentation models in terms of water extraction accuracy. In
this section, a detailed comparison will be conducted between
AEDNet and traditional NDWI-based water extraction methods.
The NDWI equation is as follows:

NDWI =
Green − NIR
Green + NIR

(18)

where Green refers to the green band and NIR refers to the
near-infrared band. Given that the LoveDA dataset lacks the
near-infrared band necessary for NDWI calculations, this com-
parative experiment was restricted solely to the validation set of
the GID dataset, as indicated in Table I.
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Fig. 7. Water extraction results of ablation experiments on GID dataset, where white pixels refer to water and black pixels refer to nonwater. (a) Raw image.
(b) Ground truth. (c) Backbone. (d) Backbone with AC. (e) Backbone with AED. (f) Backbone with JLF. (g) Backbone with AC and AED. (h) Backbone with AC
and JLF. (i) Backbone with AED and JLF. (j) Backbone with AC, AED, and JLF.

TABLE V
ACCURACY EVALUATION RESULTS OF NDWI METHODS AND AEDNET ON THE

GID DATASET

After calculating the NDWI image for each sample, two
distinct methods were employed for binary segmentation. The
first method involved manually setting a threshold (0.2, 0.3, 0.4)
and applying this threshold uniformly to all NDWI images. The
second method utilized the Otsu algorithm to automatically com-
pute the threshold for each NDWI image and perform segmen-
tation. The implementation of the Otsu algorithm involves the
calculation of interclass variance, with the equation as follows:

δ2 = pw × (Mw −M)2 + pnw × (Mnw −M)2 (19)

where δ is the interclass variance of water and nonwater, pw and
pnw are the proportions of the water and nonwater classes, Mw

and Mnw are the mean values of water and nonwater classes,
M is the mean value of the whole image. The Otsu algorithm
iterates through all possible thresholds and finds the one that
maximizes the interclass variance.

Comparison between the NDWI-based methods and AED-
Net (utilizing ResNet-101) is presented in Table V. It is im-
portant to note that NDWI-based methods and deep learning
methods differ significantly in terms of efficiency, making it
impractical to calculate directly comparable indicators in this

experiment. The results clearly indicate that AEDNet achieves
significantly higher water extraction accuracy when compared
to NDWI-based methods. Among the NDWI-based methods,
the accuracy of Otsu methods is not ideal, while the accuracy
of the manual threshold method is highly sensitive to different
threshold settings.

Fig. 8 showcases the water extraction results of NDWI-based
methods and AEDNet on the GID dataset, featuring six samples,
including those previously presented in Figs. 5 and 7. For the
NDWI-based methods, segmentation results with a manually set
threshold of 0.3 (yielding the highest IoU) and the Otsu threshold
segmentation results were displayed. A clear observation is that
the water extraction results of AEDNet exhibit a higher degree of
consistency with the “Ground Truth” when compared to NDWI-
based methods. Both manual and Otsu threshold segmentation
methods tend to misclassify building roofs and shadows as water
bodies, a challenge that AEDNet minimizes. However, it is
worth noting that AEDNet may sacrifice some details at the
boundaries between water bodies and nonwater bodies, such
as narrower roads and bridges spanning water bodies, whereas
NDWI-based methods excel in preserving these fine-grained
distinctions.

B. Experiment About the Hyperparameter in Loss

The hyperparameter γ in (12) significantly affects the perfor-
mance of the model, so its optimal value needs to be discussed.
Different γ were set and the performance of AEDNet is tested on
GID dataset. The IoU curves in the validation stage are shown in
Fig. 9. As γ increases, the IoU tends to increase until γ = 0.9,
illustrating the obvious effect of Lovász hinge on improving
the prediction accuracy of the model. Then, the IoU decrease
when γ = 1, indicating that the model with the JLF has better
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Fig. 8. Comparison of NDWI-based methods and AEDNet on GID dataset, where white pixels refer to water and black pixels refer to nonwater. The false color
image refers to the image displayed in the order of NIR–Red–Green bands.
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Fig. 9. Comparison of IoU curves of AEDNet with different γ in the validation
stage on GID dataset.

performance compared to using Lovász hinge alone. Based on
these experiments, it is found that the model performs best when
γ = 0.9, and this optimal value have been used in all other
experiments using the JLF previously.

C. Deficiencies and Future Steps

In this article, an AEDNet was proposed for urban water
extraction from high-resolution remote sensing images, and
we have proved the effectiveness of this model through a se-
ries of experiments. However, AEDNet still has some defi-
ciencies. First, as shown in Fig. 8, compared with traditional
methods, AEDNet has fewer misclassifications, but it cannot
obtain as clear boundaries as threshold segmentation results.
Fuzzy boundaries represent a common challenge in the realm of
semantic segmentation. Contemporary research endeavors are
increasingly dedicated to addressing this issue, encompassing
approaches such as introducing supplementary losses related to
boundary information [52], [53] and segregating the features of
boundaries and those within the regions separately [54]. In the
future, our exploration will focus on incorporating these akin
concepts into AEDNet to enhance the precision of urban water
boundary delineation.

Second, the training process of AEDNet demands substantial
computing resources, and GPUs with limited memory often face
challenges in efficiently completing the training. For this reason,
this method is difficult to use in large areas (such as the global
scale), thus limiting its application value. Presently, numerous
scholars have introduced light-weight models designed specif-
ically for remote sensing image semantic segmentation [55],
[56]. Our future efforts will be directed toward amalgamating
the merits of these lightweight models with AEDNet, with the
aim of enhancing its computational efficiency and practical
applicability.

V. CONCLUSION

In this article, an AEDNet was proposed for urban water
extraction from high-resolution remote sensing images. The
proposed ResNet-101 with AC can extract features at differ-
ent levels and scales as a backbone. The AED structure with

dual attention modules can effectively capture global feature
dependencies in both the spatial and channel domains. The
proposed JLF in combination with Lovász hinge and weighted
cross entropy can further improve the model performance on
urban water extraction.

Through a series of rigorous comparative experiments and
meticulous ablation studies on the GID and LoveDA datasets, the
efficacy of the three proposed enhancements has been substanti-
ated. The results underscore the superior accuracy and efficiency
of AEDNet in urban water extraction tasks when compared to
analogous methods. Furthermore, our research has established
that AEDNet achieves greater accuracy than traditional NDWI-
based methods in urban scenarios.

In our forthcoming research, we will concentrate on enhanc-
ing the clarity of water boundary extraction results generated by
this model. Simultaneously, our efforts will be directed toward
optimizing the model’s computational efficiency by making it
more lightweight.
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