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MUSEnet: High Temporal-Frequency Estimation of
Landslide Deformation Field Through Joint InSAR

and Hydrological Observations Using Deep Learning
Aoqing Guo , Qian Sun , Jun Hu , Senior Member, IEEE, Wanji Zheng , Rong Gui , and Yana Yu

Abstract—The Three Gorges hydropower station in China cre-
ates a large reservoir by diverting water from the Yangtze River,
increasing the risk of geological disasters, especially massive land-
slides along the reservoir shoreline. To mitigate these risks, improv-
ing geological monitoring and early warning systems is crucial.
Interferometric Synthetic Aperture Radar (InSAR) is widely used
to monitor reservoir bank landslides. However, its potential in early
warning systems is limited due to temporal resolution constraints,
preventing timely warnings. To address this, we propose integrat-
ing daily hydrological data (precipitation and water level obser-
vations) with historical InSAR deformation sequences using our
deep learning-based multivariate united state estimation network,
“MUSEnet.” This approach generates customized daily landslide
deformation products for high-risk areas, greatly enhancing early
warning capabilities by providing timely and accurate information
on landslide occurrence and magnitude. We validated our method
using 161 Sentinel-1 A images of the Xinpu landslide in the Three
Gorges Reservoir area. Through statistical analysis, we identified
different degrees of influence from rainfall and reservoir water
level on the deformation of the Xinpu landslide at various locations.
Additionally, we observed distinct lag times between deformation
and corresponding rainfall and reservoir water level events. By
utilizing deep learning, our method estimates nonlinear states by
considering hysteresis and intelligently accounts for the impact
of rainfall and reservoir water level, resulting in more accurate
estimations compared to traditional models.

Index Terms—Deep learning, InSAR, landslide, prediction.
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I. INTRODUCTION

CHINA’S Three Gorges Hydropower Station, one of the
world’s largest, has created an immense artificial reservoir

by redirecting water from the Yangtze River. This reservoir
plays a vital role in regulating water flow and facilitating stable
water transport. However, it also introduces an increased risk
of geological disasters, particularly numerous landslides along
the reservoir banks. As the water levels rise and fall, creep
phenomena can occur in the rock and soil of the reservoir
slope [1]. These sudden and destructive landslides can rapidly
slide into the reservoir, generating massive waves within a matter
of seconds. Consequently, they pose a significant threat to human
lives and property [2], [3].

The use of historical surface deformation evolution has proven
to be valuable in predicting the risk of landslide collapse in
advance [4], [5], [6], [7]. The Global Navigation Satellite System
(GNSS) is a technology capable of monitoring real-time defor-
mation in areas prone to landslides. However, GNSS monitoring
stations located in deformation areas are susceptible to damage,
and the available GNSS observations often have limited spatial
coverage, which hinders obtaining a comprehensive view of
landslide deformation on a global scale [8]. In contrast to GNSS,
Interferometric Synthetic Aperture Radar (InSAR) can provide
high-resolution spatial information on landslide deformation [9],
[10] and is not affected by weather conditions or daylight.
However, due to the revisit period of SAR satellites, InSAR can
only monitor landslides at a low frequency, lacking the ability
to provide daily updates on the development of deformation
areas [11]. For instance, between August 9 and August 18, 2016,
a sudden small shallow landslide with a displacement of 62 mm
occurred on the Xinhua slope of the Dagangshan reservoir area
in Sichuan, China, following heavy rainfall [12]. Unfortunately,
the Sentinel-1 satellite, which is the most commonly used SAR
data source for deformation monitoring, updates its data every
12 days and was unable to capture this deformation signal in a
timely manner [13].

Reservoir bank landslides are influenced by a combination of
geological, geomorphological, and hydrological factors. They
exhibit specific spatio-temporal patterns in terms of their shape,
movement characteristics, and overall development trend. These
patterns offer crucial prior environmental information for ana-
lyzing InSAR time series deformation [14]. Numerous studies
have shown that bank landslides are highly responsive to factors
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such as precipitation and fluctuations in reservoir water levels.
The regulation of pore pressure resulting from these factors leads
to the occurrence of slow-moving landslides that exhibit annual
seasonal cycles [15], [16]. By considering the causal relationship
between landslide deformations and hydrologic observations,
it is possible to enhance the accuracy and feasibility of early
warning systems for landslides on reservoir banks [17], [18].
Furthermore, integrating landslide deformations with hydro-
logic observations can effectively minimize the time gap in
detecting deformations using InSAR. This approach enables
the estimation of landslide states at a high temporal-frequency
(HTF) resolution, providing more timely and accurate informa-
tion for monitoring and response purposes.

Indeed, methods for estimating the deformation state of land-
slides (EDSL) can be broadly categorized into model-driven and
data-driven approaches. Model-driven methods aim to establish
quantitative relationship models between deformation and fac-
tors such as rainfall or reservoir water levels, utilizing techniques
like Kalman filtering (KF) [19]. These methods estimate the
optimal deformation state by fitting the model to the observed
data. However, studies have shown that the relationship between
rainfall and landslide behavior is not straightforward. The cu-
mulative effect of long-term rainfall can trigger landslide move-
ment [20], and there may not be a one-to-one mapping between
rainfall and deformation. Furthermore, this relationship is often
nonlinear and exhibits a time lag [21]. For example, research on
the Krini landslide in Greece found a lag time of 13.5 days
between maximum rainfall and landslide displacement [22],
while landslides in southern Oregon, USA, showed a lag time of
1-2 months during the rainy season [23]. Therefore, it is crucial
to determine the specific lag time for each landslide monitoring
point to achieve optimal EDSL using model-driven methods. In
addition, certain sections of a landslide may be more susceptible
to variations in reservoir water levels, whereas others may be
primarily impacted by rainfall. Consequently, if the model is
unable to assign appropriate weights to these influencing factors
in a dynamic manner, it could result in inaccurate estimation of
deformation.

On the other hand, data-driven methods directly analyze his-
torical deformation sequences to predict future deformations.
Techniques such as long short-term memory (LSTM) [24] and
support vector machine (SVM) [25] are commonly used for
univariate deformation estimation. However, these methods can
only provide results consistent with the frequency of the input
historical deformation data [26]. The temporal resolution of
deformation fields obtained from existing methods, which rely
on SAR data with a revisit period of typically 11 to 24 days,
may lack the necessary level of detail. To overcome these limi-
tations, it is necessary to develop a deep learning algorithm that
combines the advantages of both model-driven and data-driven
methods. This hybrid approach would leverage the quantifiable
relationship models while incorporating the flexibility and pre-
cision of deep learning techniques. By doing so, it would be
possible to achieve high-precision estimation of EDSL on a daily
basis.

Hereby, we have acquired a total of 161 Sentinel-1 A im-
ages covering Xinpu, China, from 1st August 2016 to 19th

February 2022. In order to obtain historical deformation data, we
employed the independent component analysis (ICA)-assisted
time coherent point (TCP) InSAR processing algorithm, which
provided us with temporal deformation at a resolution of 12 days.
For hydrological observations, we utilized freely available rain-
fall data in conjunction with water level data from a funded
database, these observations were incorporated into our analysis
to capture the influence of hydrological factors on landslide
deformation. Our objective is to achieve HTF estimation of
deformation in the area by integrating the processed deformation
data with hydrological observations. To accomplish this, we
propose a deep learning network-MUSEnet, which adapts its
parameters based on InSAR-derived historical deformations and
the associated influencing factors in various scenarios. Unlike
the linear state estimation algorithm represented by KF [19],
[27], MUSEnet does not require a predetermined functional
relationship between hydrological observations and landslide
deformation. Instead, it acquires this relationship through adap-
tive neuron parameter computations. By leveraging this rela-
tionship, MUSEnet enables HTF state estimation of landslide
deformation.

II. METHODOLOGY

A. Algorithm Flow

First, to obtain the time series deformation field of a landslide,
we employ ICA-assisted TCP-InSAR technology. TCP-InSAR
technology mitigates the interference from incoherent signals by
screening for temporal coherence, thereby preventing unwrap-
ping errors associated with phase ambiguities. Additionally,
ICA technology allows for noise separation within the mixed
signal, facilitating extraction of the ground deformation signal
and enhancing the quality and reliability of InSAR data. This
approach enables measurement of line-of-sight (LOS) distances,
which are subsequently geocoded (see Fig. 1).

Second, to generate an estimated dataset, we combined
daily rainfall data, reservoir level height measurements, InSAR-
derived low-frequency deformation values, and their respective
timestamps. The details regarding the number and duration of
these data are explicitly provided in Section III-C.

Third, based on the time-varying frequency characteristics of
HTF hydrological observations from InSAR and low temporal-
frequency deformation data, we constructed a deep learning
network. The dataset was divided into a training dataset and a test
dataset. The training dataset was used to train the deep learning
network, which consisted of a time-delay feature extraction
module and a state estimation module. The network is detailed
in Section II-B.

The test dataset was fed into the estimation model to estimate
the HTF deformation. The accuracy of EDSL was evaluated
using four evaluation metrics: Root mean square error (RMSE),
mean absolute error (MAE), mean absolute percentage error
(MAPE), and Pearson correlation coefficient (PCC). Based on
the evaluation results, the optimal response parameters of the
model were adjusted. The algorithm flowchart, as shown in
Fig. 1, presents a step-by-step depiction of the algorithm’s
application process.
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Fig. 1. Flowchart of the method.

B. MUSEnet

Among the various factors that affect landslide deformation,
there are rainfall, reservoir water level, the location and slope
of the landslide, as well as the geological properties of the soil
and the physical properties of surface vegetation. However, due
to the difficulty in obtaining all the data related to these factors,
in this article, we classify the influencing factors of landslide
deformation into fixed factors and nonfixed factors based on
their stability over time. Fixed factors refer to the deformation
that remains unchanged throughout the year or factors that result
in similar deformation patterns occurring every year for the
landslide, such as slope gradient, slope direction, location, soil
properties, and surface vegetation. Nonfixed factors refer to
those whose occurrence or degree of change cannot be deter-
mined and their influence on landslide deformation is difficult
to ascertain, such as rainfall and reservoir water level. Since

the impact of fixed factors on landslide deformation remains
constant every year, we can predict future deformation patterns
by utilizing historical deformation patterns at specific points.
However, the impact of nonfixed factors needs to be updated
daily and adjusted in real time. Reservoir landslide deforma-
tion is effectively characterized by considering both historical
deformation and hydrological factors. Historical deformation
provides insights into the systematic and regular behavior of a
slope under specific conditions. On the other hand, hydrological
factors, including rainfall and reservoir water level, have an
immediate impact on reservoir landslide deformation while also
exhibiting a lag effect. The lag effect is influenced by various
geological conditions such as slope lithology, shape, and lo-
cation. Additionally, the intensity and frequency of variations
in reservoir water level and rainfall further contribute to the
overall deformation pattern [28]. To enhance the MUSEnet
network’s capability in coordinating historical deformation and
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Fig. 2. MUSEnet architecture consists of (a) the feature extraction part, which comprises several blocks; (b) the parameter estimation part, which comprises nine
fully connected layers that compute the relationship; and (c) the internal structure of a BLOCK, which is constructed using LSTM and used to extract time-lag
information. The input to the BLOCK is the dataset X, while the output is the feature information.

hydrological factors, two modules, namely time-lag feature ex-
traction and state parameter estimation, are integrated into the
network. The time-lag feature extraction module facilitates the
collaboration of the three types of data, enabling them to extract
context information without interference [29]. In addition, this
module calculates time-lag features, which capture the temporal
relationships between historical deformation and hydrological
factors. By incorporating these features, the network gains a
deeper understanding of the interplay between the two types
of data, resulting in more accurate estimations and analysis.
Obtaining the time-lag features serves the purpose of identifying
the lagging or advancement of deformation in relation to rainfall
or reservoir water levels. This information is crucial to ensure
that when new rainfall or reservoir water levels are acquired, the
corresponding deformation value can be obtained without any
delay or advancement. The state parameter estimation module
follows the time-lag feature extraction module and aims to learn
and simulate the function of the time-lag features derived from
historical deformation and hydrological factors. This integration
allows for the fusion of InSAR and hydrological data, enabling
an accurate estimation of EDSL (see Fig. 2).

1) Feature Extraction: The feature extraction module in
MUSEnet aims to adaptively extract the temporal lag features
of landslide deformation, including both systematic deforma-
tion features and lag features influenced by various factors.
The long short term memory (LSTM) algorithm [30] has been
proven as an efficient tool for preserving valuable informa-
tion in time series data [24]. Therefore, in our new approach
MUSEnet, a feature extraction module based on LSTM has
been developed with the purpose of capturing lagged defor-
mations and lagged features related to rainfall and reservoir
water level. These features exhibit dynamic changes over time,
providing a solid foundation for subsequent HTF deformation
estimation.

We organized historical deformation and hydrological factors,
including rainfall and reservoir water level, along with their
temporal information, into datasets. These datasets were fed into
BLOCK1, BLOCK2, and BLOCK3 in order to extract time se-
ries features. To illustrate, if precipitation is the only influencing
factor, then only BLOCK1 and BLOCK2 are utilized. BLOCK1
processes InSAR time series data to extract deformation time
delay features, while BLOCK2 processes rainfall data to extract
rainfall time delay features. The time range for the historical
deformation data is [t− 1, . . ., t− n], where n is the length of
time that continues to affect subsequent deformation. For rainfall
data, the time range is [t− 1, . . ., t−m], wherem is the lag time
of landslide deformation caused by rainfall. It is not possible to
accurately estimate m and n artificially, but setting them to a
larger value does not have an impact on prediction accuracy.

The sequence was fed into the LSTM in reverse order, and
three gates and a self-updating unit in the LSTM start working.
The forgetting gate ge controls the weight of the current infor-
mation; the external input gate ge adds new information; the
output gate qe controls the information that needs to be output;
the state inside the cell goes through a self-renewing unit se. The
mathematical foundations of feature extraction networks can be
represented by
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where e is the sequence number of the feature; j is the sequence
number of the input data, from t− 1 to e, t is the sequence
number of the output data; b,U , andW are the bias, input weight
and cycle weight in LSTM cells, respectively; σ(∗) and tanh(∗)
are sigmoid function, which are used as the activation function
of neural networks to map variables between 0 and 1 or −1
and 1.

For BLOCK1, as e goes through [t− 1, . . ., t− n], he also
exhibits varying deformation time delay characteristics. Simi-
larly, for BLOCK2, as e goes through[t− 1, . . ., t−m], he has
different precipitation time delay characteristics, which can be
expressed as (6). In the feature extraction part, we obtained the
time delay characteristics of deformation and rainfall/reservoir
water level [Hdef Hpre ][

Hdef

Hpre

]
=

[
F1 (X (E1) ; θ1)
F2 (X (E2) ; θ2)

]
. (6)

Here, Hdef = [He1
def , H

e2
def , . . ., H

em
def ] represents the de-

formation time delay characteristics vector and Hpre =
[He1

pre , H
e2
pre , . . ., H

en
pre ] represents the precipitation time de-

lay characteristics vector. F1 and F2 denote the functional
relationships between the input data and their features, re-
spectively, while θ1 and θ2 represent the parameters of the
function obtained after training. X refers to the input data.
E1 = [t− 1], [t− 1, t− 2], . . ., [t− 1, t− 2, . . ., t−m] and
E2 = [t− 1], [t− 1, t− 2], . . ., [t− 1, t− 2, . . ., t− n] rep-
resent the time series of information involved in the features.

2) Parameter Estimation: After feature extraction, it is nec-
essary to estimate the nonlinear correlations between deforma-
tion delay characteristics, rainfall/reservoir water level delay
characteristics, and the state that need to be updated. The L-layer
deep neural networks (DNN) network calculates the weight and
bias of neurons based on the relationship between features and
state values, with the rectified linear unit (ReLU) activation
function used to modify the linear element and simplify the
calculation process. The mathematical foundations of param-
eter estimation networks can be represented by (7) and (8).
Subsequently, the weight of each feature is iteratively updated
by calculating the loss value between truth- and calculated
values, and the training process is expressed in (9). We can
then obtain the optimal relationship between the deformation
delay characteristics, rainfall/reservoir water level time delay
characteristics, and the state to be updated⎧⎪⎪⎨

⎪⎪⎩
H0 =

[
Hdef

Hpre

]
Hi+1 = ReLU (WiHi + bi) , i = 0, 1, . . . ,L− 2
HL = WL−1HL−1 + bL−1.

(7)

Abbreviated as

HL = G(H0, θ3) = G{F(X(E); θ)}. (8)

In (7) and (8), b,W are bias and input weight in DNN cells,
respectively; HL is the predicted final state

θ̂ = argmin
∥∥∥H̃L −G{F(X(E); θ)}

∥∥∥2 . (9)

In (9), X(E) represents the training dataset, θ represents the
initial parameter, and F and G denote the relations for feature
extraction and parameter estimation, respectively. θ̂ represents
the training parameter.

C. Experimental Details

For this task, our hyperparameter settings are as follows: One
layer of LSTM is applied to the feature extraction, and ten
layers of DNN are applied to the parameter estimation with the
different dimensions (i.e., [input_dim, 64], [64, 128], [128, 256],
[256, 512], [512, 256], [256, 128], [128, 64], [64, 32], [32, 16],
[16, 1]). The m square error (MSE) loss function is used to score
the prediction effect, and the Adam optimization algorithm is
used to iteratively update the parameters of MUSEnet based on
the training data, with a learning rate of 1e − 4.

D. Comparison Methods

In the comparative experiment of this study, three estimation
methods are used to evaluate and compare their performance.
The first approach is KF, this model-driven estimation method
is widely used for state estimation in various fields. It utilizes
a recursive algorithm to estimate the state of a system based
on dynamic models and noisy measurements [31]. The second
method combines KF with autoregressive integrated moving
average (KF-ARIMA) model. This method uses the ARIMA
model to capture behavior that changes over time. Before ap-
plying KF for deformation estimation correction, ARIMA is
used for univariate deformation prediction, which improves the
subsequent estimation accuracy. The third method is KF-LSTM,
which combines KF with LSTM, a type of recurrent neural
network. The LSTM component helps capture long-term de-
pendencies and temporal patterns in the data. Before applying
KF for deformation estimation correction, LSTM is used for
univariate deformation prediction, enhancing estimation perfor-
mance. These three methods were compared in experimental
tests to evaluate their effectiveness relative to the new method
and to compare their performance.

III. DATA SOURCES AND ANALYSIS OF DEFORMATION CAUSES

A. Study Area

The study area is situated in Xinpu Village, Anping Township,
within the Three Gorges Reservoir Area in China [see Fig. 3(b)].
The Xinpu landslide, influenced by multistage activities [32],
can be divided into three sections: DaPing (DP), ShangErTai
(SET), and XiaErtai (XET) slopes, from top to bottom. Previous
studies have indicated a strong correlation between rainfall and
water level fluctuations with the deformation of the Xinpu land-
slide. These hydrological factors play a significant role in driving
and influencing the movement and behavior of the landslide in
this area [33], [34], [35].
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Fig. 3. (a) Optical image of Xinpu landslide and the slide boundary. Four points on the slope are selected for analysis. (b) Topographic map of the study area.
Blue lines outline the coverage of the used Sentinel-1 data. (c) Time series deformation of the selected four points. (d) Reservoir water level and precipitation from
2016 to 2022. The heavy rainfall events on 6 July 2017, 18 June 2018, and 7 July 2021 are reflected in the deformation of the five points. The extraction and storage
of the reservoir water level are also reflected in the deformation. (e) Time series deformation map.

The flood season in the study area takes place from June to
July annually and is characterized by heavy rainfall. In prepa-
ration for the flood season, the reservoir water level is typically
lowered through artificial discharge from early March. This
discharge helps mitigate the risk of flooding, but also results
in a reduction in the reservoir water level. The combination of
artificial drainage and natural rainfall constitutes the primary
factors contributing to landslide deformation during this period.
It is worth noting that the leading edge of the XiaErtai (XET)

slope borders the Yangtze River valley [see Fig. 3(a)]. In this
region, the occurrence of traction slip failure is attributed to the
combined effects of precipitation and water level fluctuations.
These factors, acting upon the XET slope, increase the likelihood
of instability and contribute to the deformation of the slope
during the flood season [36].

When the reservoir water level increases, it causes a rise
in the groundwater level within the slope body. This rise in
groundwater level leads to a decrease in the shear strength of the
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TABLE I
SENTINEL-1 A TIME SERIES SAR DATA INFORMATION

slip zone due to the influence of pore pressure modulation caused
by the higher reservoir water level. As a result, the stability
of the slope is compromised, increasing the risk of deforma-
tion and landslides. Conversely, when the reservoir water level
decreases, the downward dragging and unloading effect of the
reservoir water on the landslide occur. This effect can accelerate
the deformation of the slope, making it more susceptible to
movement and instability. These changes in water level have
a direct impact on the behavior of the slope, influencing its
stability and deformation patterns [37]. The trailing edge of
the XET slopes is positioned in the heart of the landslide,
subject to frequent rainfall that washes over them. As a result,
loose stones and soil blocks on the slope’s surface are regularly
displaced. These incessant erosion and displacement processes
significantly contribute to the ongoing deformation of the slopes
within this region of the landslide.

B. Data Analysis

We obtained 161 Sentinel-1 A images from 1 August 2016
to 19 February 2022 over Xinpu landslide. The cumulative
deformation results of time series with a temporal resolution
of 12 days were obtained using the ICA-assisted TCP-InSAR
processing algorithm [38]. Additional SAR data information is
provided in (Table I). In the data processing process, the data
registration accuracy was guaranteed to reach 0.02 m, and the
average coherence of the interference points was greater than
0.5. The RMS of the deformation point in a 200 m × 200 m
window far from the deformation area was calculated, and the
results show that deformation monitoring accuracy was ensured
to be better than 15 mm/year. Results show that XET landslide
experienced significant slip from 2016 to 2022 [see Fig. 3(e)],
which moved down the slope and reached −90 mm/year in the
LOS direction. The displacement of the landslide center point
reached 500 mm (LOS). The time-series cumulative deformation
shows that the landslide deformation presented a periodic char-
acter, with larger displacement usually occurring in the summer,
this phenomenon is because the landslide deformation is affected
by seasonal rainfall or river level fluctuations. Daily frequency
precipitation records were collected from NOAA for the period
of 1st August 2016, to 19th February 2022. The precipitation
measuring station (Station #57348) was located approximately
17 km away from the Xinpu landslide site.

The ground measurement data, GPS-1 and GPS-2, are situated
in the central area of the XET landslide [see Fig. 3(a)]. These
measurements correspond to the same period as the InSAR
data and are updated daily, providing further validation for our
methodology. P1 is located at the upper boundary of the landslide
area, while P2 is positioned at the lower boundary [see Fig. 3(a)].

These points help us analyze the varying effects of rainfall and
reservoir water level on deformation. During the flood season,
which typically occurs from June to July, artificial water release
is often conducted in early June to manage the increased water
flow. This caused the water level of the reservoir to drop, which
caused the landslide to move away from the satellite. This trend is
observed at all four measurement points. Additionally, as heavy
rainfall intensifies during the flood season, the displacement of
the landslide surface increases. This phenomenon is particularly
prominent at GPS-1, GPS-2, and P2 points located on the upper
part of the landslide. However, it should be noted that after the
2021 summer rainstorm, the LOS deformation at P2 showed
an elevated pattern. It is speculated that this phenomenon is
caused by the accumulation of loose soil on the lower edge
of the landslide. The rain washed away the loose soil on the
upper edge of the landslide, causing it to fall toward the lower
edge. Furthermore, in the summer of 2018, the water level in
the reservoir remained stagnant for a certain period. During
this time, deformation and uplift were observed at the GPS-2
point. Once the water level resumed falling, the deformation
also decreased accordingly [see Fig. 3(c)].

C. Data Preparation

In the XET slope, we extracted 4905 Time-Coherent Points
with a coherence value higher than 0.3 for EDSL. For each
feature point, 1648 datasets were constructed, each consisting of
three parts: 1) InSAR time series data and its time information
(year, month and day); 2) rainfall time series data and time
information (year, month, and day); and 3) reservoir water level
and time information (year, month, and day). The length of
each dataset needed to be adjusted for different scenarios. In
Xinpu, when the accumulated rainfall reaches its peak, the land-
slide surface displacement increases rapidly. After analyzing the
correlation between rainfall, reservoir water level and landslide
surface displacement, we found that the landslide deformation
lags behind rainfall and reservoir water level by approximately
10–22 days, Therefore, the lag coefficients of rainfall and reser-
voir water level (as described in Section II method) were set to
a larger value (30) in this experiment. Fig. 3(c) shows that the
periodicity of deformation is in years, so the deformation lag
coefficient was also set to 30*12 days, encompassing the whole
cycle of landslide deformation. All time-series data were divided
into a 2:1 ratio, resulting in 1090 training sets and 558 test sets.
The deformation data of the training set ranged from 1 August
2016 to 11 July 2020, while the test set spanned from 11 July
2020 to 19 February 2022.

IV. RESULTS

A. Validation of Deformation Estimation Results Using
Ground Truth Measurements

There is interference from InSAR data processing errors in
using ground GNSS monitoring data to evaluate the accuracy
of HTF estimation results. Therefore, in order to accurately
verify the accuracy of HTF estimation, we need to exclude the
interference from InSAR data processing errors. For these two
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Fig. 4. Accuracy evaluation of HTF deformation estimation using ground
truth measurements. (a) Performance of HTF deformation estimation at GPS-1.
(b) Performance of HTF deformation estimation at GPS-2. (c) Reservoir water
level and rainfall situation for the corresponding time period.

monitoring points, we calibrated the InSAR data using GNSS
data to minimize the InSAR data processing errors, and then
trained the model after this processing. We inputted the test data
into the trained model to obtain HTF deformation estimation re-
sults from July 11, 2020 to February 19, 2022. These results were
then compared with ground measured data collected from GPS-1
and GPS-2 points [see Fig. 4(a) and (b)]. During the period from
March to June 2021, the reservoir continued to discharge water.
It was observed that the corresponding InSAR measurements of
land subsidence showed an accelerating trend during this period.
On June 28, 2021, a heavy rainstorm occurred, accompanied by
continuous rainfall before and after [see Fig. 4(c)]. However, in
the month following June 28, 2021, neither GPS-1 nor GPS-2
exhibited significant immediate deformation, which is consistent
with both estimates and ground measurements. Nevertheless,
it is evident that the summer of 2021 received a significantly
higher amount of rainfall compared to the previous summers
of 2018–2020. As a result, the cumulative deformation in 2021
was the highest, indicating that while rainfall may not result
in immediate deformation, long-term cumulative rainfall can
contribute to future deformation acceleration. Therefore, relying
solely on the traditional one-to-one mapping model method
for estimating deformation is not entirely accurate. The RMSE
between the estimated deformation value of GPS-1 and the
ground measured value was calculated to be 0.55 mm. Similarly,
for GPS-2, the RMSE between the estimated deformation value
and the ground measurement was determined to be 0.83 mm.

B. Comparison of EDSL From Four Methods

To assess the effectiveness of MUSEnet’s algorithm, we
conducted three sets of controlled experiments using KF, KF-
ARIMA, and KF-LSTM, respectively. Regarding overall esti-
mation accuracy, the MUSEnet method achieved an RMSE as

Fig. 5. Accuracy comparison of multiple methods.

low as 0.70 mm. It was followed by KF-ARIMA with 1.98 mm,
KF-LSTM with 2.05 mm, and KF with the lowest accuracy level
of 7.17 mm. In order to assess the method’s estimation capability
for varying magnitudes of deformation, we categorized the
results into five groups based on the deformation gradient. We
then evaluated the RMSE for each category (see Fig. 5). Among
the five types of deformation gradients, KF exhibits the highest
RMSE, indicating that its estimation accuracy is the lowest.
Conversely, MUSEnet demonstrates the smallest RMSE among
the five types of deformation gradients, suggesting the highest
estimation accuracy. KF-LSTM and KF-ARIMA, supported by
prediction models, exhibit some correction effects on the esti-
mation results. As the absolute value of the deformation gradient
increases, the estimation accuracy of model-driven KF-ARIMA
and KF methods gradually decreases. However, the accuracy
of data-driven KF-LSTM and MUSEnet does not exhibit this
phenomenon. This suggests that the accuracy of data-driven
methods is less influenced by the severity of deformation. In
other words, data-driven methods demonstrate minimal suscep-
tibility to error accumulation. This indicates that data-driven
methods may have advantages over model-driven methods in
terms of accuracy and robustness, particularly when dealing
with severe deformations. Table II presents the values of four
precision evaluation indixes (i.e.,RMSE, MAE, MAPE, PC) at
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TABLE II
ACCURACY EVALUATION

various deformation gradients. These values further elucidate
the aforementioned issues.

Fig. 6(a) and (b) shows the test results of EDSL at GPS-1
and GPS-2 points, respectively. The upper and middle rows
of Fig. 6(c)–(h) display the EDSL details of individual test
results at GPS-1 and GPS-2 points, respectively, while the lower
panel displays the corresponding hydrological data, including
precipitation and reservoir water level. This figure provides a
concise and informative visual representation that demonstrates
the EDSL estimation results and the observed hydrological data
in the study. In Fig. 6(b) and (c), the estimation effect of small
deformation is depicted, where the deformation gradient (the
instantaneous gradient between two SAR scenes) is less than
2 mm. Fig. 6(d) and (e) illustrates the estimation effect of
moderate deformation, with gradients greater than 4 mm and
less than 6 mm. Finally, Fig. 6(f) and (g) depicts the estimation
effect of large deformation, where the deformation gradients
are greater than 8 mm. According to the order of deformation
gradient from small to large, the accuracy of MUSEnet improves
by 13%, 58%, 67%, 73%, and 91% compared to the other
optimal method. Particularly, the maximum deformation of XET
occurs from May to September each year, and the displacement
exceeds 8 mm per day during this period. In this case, MUSEnet
is able to provide an average accuracy estimation of 0.14 mm,
while KF-ARIMA is only able to provide a estimation accuracy
of 2.96 mm.

Upon careful comparison, we have discovered that both the
KF method and the KF-based method require a quantitative
relationship between precipitation, reservoir level, and landslide
deformation obtained from previous studies. However, in our
specific study area, this relationship proves to be inapplicable.
Consequently, it is not feasible to utilize hydrological factors to
accurately simulate renewed measurements of landslide defor-
mation. Furthermore, it is essential to note that these methods
do not incorporate the hysteresis effects of deformation or the
combined impacts of historical deformation. As a consequence,
the estimates generated by these methods are prone to being
unreliable.

C. Evaluation of Estimation Performance Under Two
Hydrological Phenomena

To further demonstrate the effectiveness of MUSEnet, we
conducted an analysis encompassing two hydrological phenom-
ena: two instances of extreme rainfall events and two fluctu-
ations in the reservoir water level. Study have indicated that
the slope ridge point at the top of the slope is particularly
susceptible to intense rainfall events, while the slope foot point
near the reservoir bank is highly vulnerable to variations in
the reservoir water level [39]. With this in mind, we employed
point P1 [see Fig. 3(a)] to evaluate the estimation performance
of HTF deformations during extreme rainstorms, as shown in
Fig. 7(b)–(e) and (g)–(j), while point P2 [see Fig. 3(a)] was
utilized to assess the estimation performance of HTF deforma-
tions during reservoir water level fluctuations, as shown in Fig.
8(b)–(k) and (g)–(j).

The initial heavy rainfall event took place on July 28, 2020
[see Fig. 7(f)]. However, based on the InSAR measurements of
the instantaneous rate, it was observed that this heavy rainfall
event did not immediately trigger any deformation. Instead, its
impact was observed during several days of continuous light
rainfall around August 6 [see Fig. 7(f)]. Notably, MUSEnet’s
estimated results align with the InSAR measurements in terms
of the observed deformation patterns [Fig. 7(e)]. Conversely,
both the KF results and the derived method of KF indicate
a sudden increase in the deformation rate on July 28, which
contradicts the actual situation [Fig. 7(b), (c), and (d)]. Similarly,
the second heavy rainfall event took place on July 8, 2021
[see Fig. 7(k)]. However, once again, InSAR measurements and
the corresponding instantaneous rate did not show immediate
deformation triggered by this rainfall event [see Fig. 7(k)].
Nonetheless, it is evident that the overall deformation rate during
the summer of 2021 is greater than that observed during the
summer of 2020 [see Fig. 7(f) and (k)]. The results obtained
from MUSEnet provide an explanation for this phenomenon
[see Fig. 7(j)]. However, it is worth noting that the results
obtained from the KF and its derived methods still display
significant magnitudes of deformation on July 8 (Fig. 7(g), (h),
and (i)]. Furthermore, the application of the KF method leads
to subsequent error propagation [see Fig. 7(g)]. The evaluation
of the estimation effect for the two heavy precipitation events
demonstrates that the traditional one-to-one mapping estimation
model is not appropriate. In contrast, MUSEnet proves to be a
more advanced and sophisticated method for accurately estimat-
ing the deformation caused by these events.

In March 2021, the reservoir initiated a gradual water release.
Subsequently, the water level in the reservoir experienced a
rapid decline from May to June. From June to August, the water
level remained consistently at its lowest point without significant
fluctuations [see Fig. 8(f)]. During the period from May to June,
the InSAR deformation rate remained stable at −0.3 mm/day.
However, there was almost no deformation observed from June
to August, with the deformation rate during this period being
approximately 0 [see Fig. 8(f)]. Importantly, the deformation rate
estimated by MUSEnet aligns closely with the measurements
obtained through InSAR monitoring [see Fig. 8(e)]. On the



1494 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 6. (a), (b) EDSL results at GPS-1 and GPS-2. (c), (d) Gradient of deformation is less than 2 mm. (e), (f) Gradient of deformation is greater than 2 mm and
less than 4 mm. (g), (h) Gradient of deformation is greater than 8 mm.

other hand, the estimation results of alternative methods failed
to reveal any correlation between deformation and the reservoir
water level. However, a notable discrepancy emerged on July
8, 2021, which could potentially be attributed to the influence
of rainfall data [see Fig. 8(b), (c), and (d)]. In late August, the
reservoir water level started to recover, and the deformation near
the reservoir bank moved along the LOS direction toward the
satellite direction. This deformation remained stable following
the rise in the reservoir water level [see Fig. 8(k)]. Regarding
the estimation results obtained from the KF and its derivative

methods, they showed significant noise. These methods failed
to observe a clear correlation between the reservoir water level
and the deformation [see Fig. 8(g), (h), and (i)]. It is possible that
the presence of rainfall data may have affected these estimation
results. The evaluation of the estimation effect of reservoir water
release and storage events reveals that the traditional model is
highly vulnerable to the influence of rainfall events. This obser-
vation further highlights that in traditional methods, incorrect
weight allocation between rainfall and reservoir level data can
result in estimation errors.
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Fig. 7. Performance of four methods in two heavy rainfall events. (a) Rainfall and reservoir water level maps for the full time period. (b)–(e) and (g)–(j) HTF
estimation results and instantaneous deformation rates of four methods. (f) and (k) Rainfall amount and instantaneous deformation rate of InSAR displacement for
the corresponding time period.

V. DISCUSSION

The landslides occurring in the Yangtze River basin are in-
fluenced by rainfall and reservoir water levels. During rainfall
events, loose rocks and soils on the slope may dislodge, leading
to deformation that typically occurs along the ridge of the slope.
On the other hand, fluctuations in the reservoir water level can
cause displacement of the landslide due to changes in pore water
pressure and the dragging effect of water, resulting in defor-
mation primarily distributed at the foot of the slope. However,
accurately assigning weight factors using traditional methods
is challenging, and this can hinder the effective utilization of
rainfall and reservoir water level data in deformation estimation.
To explore the potential improvement in estimation performance
of slope foot and ridge deformation using MUSEnet and hydro-
logical data, as well as the automatic optimization of weight
allocation for multiple hydrological factors, we conducted a
correlation analysis between Xinpu XET landslide deformation

and rainfall, as well as reservoir water level. By selecting feature
points P1 and P2 located at the ridge and foot of the slope,
respectively [see Fig. 3(a)], we evaluated MUSEnet’s estimation
performance by applying different hydrological factors individ-
ually and in combination.

To assess the correlation and independence between reservoir
water level, rainfall, and surface deformation, we employed
a chi-square test. This test assumes independence between
hydrological observations and deformation, with a predefined
significance level of 0.05. The results of the squareroot test
indicated that 82.6% of the monitoring points did not align
with the hypothesis of independence between reservoir water
level and surface deformation. In addition, for 93.5% of the
monitoring points, the P-value was lower than the significance
level, suggesting that rainfall and surface deformation are not
independent. These findings indicate a high correlation between
reservoir water level, rainfall, and Xinpu landslide deformation.
We identified specific points on the landslide surface that exhibit
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Fig. 8. Performance of four methods in reservoir water level fluctuations. (a) Rainfall and reservoir water level maps for the full time period. (b)–(e) and (g)–(j)
HTF estimation results and instantaneous deformation rates of four methods. (f) and (k) Reservoir water level and instantaneous deformation rate of InSAR
displacement for the corresponding time period.

a correlation between hydrological observations and surface
deformation. The Chi-square statistic was subsequently normal-
ized to consider the degree of correlation across various regions.
Within the entire landslide area, we observed that the correlation
between rainfall and slope top deformation is the strongest [see
Fig. 9(a)]. Similarly, the correlation between reservoir water
level and slope foot deformation is also the highest [see Fig.
9(b)].

The impact factors of the three datasets are precipitation (IFP,
circle), reservoir water level (IFW, square), and precipitation and
reservoir water level (IFPW, triangle), respectively. The basic
information of the datasets are described as follows.

1) Dataset S1 (IFP): The dataset has 1090 groups of data,
each group of data consists of 30 historical precipitation and 30
InSAR historical deformation and their year, month, and day,
the dimension of the dataset is [1090, 60, 4].

2) Dataset S2 (IFW): The dataset has 1090 groups of data,
each group of data consists of 30 historical reservoir water level

and 30 InSAR historical deformation and their year, month, and
day, the dimension of the dataset is [1090, 60, 4].

3) Dataset S3 (IFPW): The dataset has 1090 groups of data,
each group of data consists of 30 historical precipitation, 30
historical reservoir water level, and 30 InSAR historical defor-
mation and their year, month, and day, the dimension of the
dataset is [1090, 90, 4].

Based on the results of the KF and KF-derived methods, it
has been observed that at location P1 [Fig. 3(a)], the RMSE of
the IFP is smaller compared to the IFW [Fig. 10(a), (b), and
(c)]. This implies that the influence of rainfall on deformation
estimation is greater than that of the reservoir water level at P1.
The reason behind this observation is that P1 is situated on a
ridge, where deformation is primarily caused by rain erosion
and is less impacted by the fluctuations in the reservoir water
level. On the other hand, P2 is located at the foot of the mountain
[see Fig. 3(a)], where the deformation is mainly affected by the
rise and fall of the reservoir water level, and is less influenced



GUO et al.: MUSENET : HIGH TEMPORAL-FREQUENCY ESTIMATION OF LANDSLIDE DEFORMATION FIELD THROUGH JOINT INSAR 1497

Fig. 9. Correlation analysis between hydrological observations and surface deformation based on chi-square statistics.

Fig. 10. Comparison of estimation effects at the ridge point P1 and the foot point P2. Combining IFP, IFW, and IFPW datasets with four estimation methods:
Analysis of 12 estimation results.

by rainfall. Consequently, the RMSE of the IFW is smaller
than that of the IFP due to the stronger auxiliary effect of the
reservoir water level data on estimating the deformation at P2
[see Fig. 10(f), (g), and (h)]. In the collaborative prediction
of reservoir water level and rainfall, it is observed that the

prediction accuracy can be reduced when incorporating data
with low correlation. On the other hand, the estimation accuracy
of MUSEnet, a specific method, is improved when supported by
both hydrological observations. This improvement suggests that
MUSEnet has the capability to intelligently adjust the weights of
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the two hydrological observations, resulting in higher accuracy
predictions.

By taking into account multiple sources of data, such as
reservoir water level and rainfall, MUSEnet can effectively
leverage their combined information to enhance the accuracy
of predictions. The intelligent adjustment of weights allows
MUSEnet to assign higher importance or influence to the hy-
drological observations that contribute more significantly to the
prediction task, while de-emphasizing or disregarding less rele-
vant or poorly correlated data. This ability to adaptively assign
weights based on the data’s importance or correlation enables
MUSEnet to achieve improved estimation accuracy compared
to other methods that do not possess this capability.

VI. CONCLUSION

InSAR technology has been widely used as an effective
monitoring method for landslide deformation. However, the
deformation derived from InSAR is not considered to be the main
data source for landslide hazard warning. This limitation comes
from the temporal resolution of InSAR-derived deformation,
which is usually between 11 and 24 days and does not meet
the requirements of early warning. To solve this problem, we
propose a deep learning framework that uses InSAR data for
daily deformation estimation. Our framework combines HTF
hydrological observations to improve the accuracy and temporal
resolution of deformation estimates. This algorithm is used to
estimate the landslide deformation of Xinpu landslide in the
Three Gorges Reservoir area of China in daily terms. The
resulting time series deformation shows that there is no simple
one-to-one correspondence between hydrological observation
and landslide deformation. Our study can use hydrological
observations to more accurately predict the HTF deformation
of reservoir landslides. This method provides a cost-effective
way to provide a detailed deformation field before a landslide
disaster occurs, thus helping to protect the lives and property of
local residents.
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