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CSCNet: A Cross-Scale Coordination Siamese
Network for Building Change Detection

Yiyang Zhao , Xinyang Song , Jinjiang Li , and Yepeng Liu

Abstract—Remote sensing image change detection (CD) has wit-
nessed remarkable performance improvements with the guidance
of deep learning models, particularly convolutional neural net-
works and transformers. Current CD methods heavily rely on mul-
tilayered backbone structures, such as ResNet and Unet, for feature
extraction. However, these approaches exhibit limitations in coor-
dinating the utilization of local and global features across different
scales. In this article, we introduce a novel cross-scale coordinated
siamese (CSC) network to effectively integrate multiscale infor-
mation. We introduce a cross-scale coordination module (CSCM)
within the CSC network to coordinate internal features of the
local branch with cross-scale information from adjacent branches,
while simultaneously attending to both the local and global regions.
Furthermore, to comprehensively capture contextual information,
we propose a transformer aggregation module as a decoder to
harmonize the output features of CSCM. We extensively evaluate
our proposed CSC network on three datasets, namely, LEVIR-CD,
WHU-CD, and GZ-CD. The results demonstrate that our CSC
network outperforms other leading methods significantly in terms
of F1-score and intersection over union evaluation metrics.

Index Terms—Convolutional neural network (CNN), cross-scale
coordinated, remote sensing change detection (CD), transformer.

I. INTRODUCTION

CHANGE detection (CD) in remote sensing is a critical
research area that utilizes remote sensing techniques to

compare multiple temporal images of the earth’s surface, aiming
to detect changes in surface coverings. With the continuous
growth of the global population and rapid urbanization, human
activities drive constant changes in land use and land cover.

CD in remote sensing images can be successfully applied
in various scenarios, including urban management [1], damage
assessment [2], forest logging [3], environmental monitoring [4],
and agricultural changes [5], among others. Owing to the di-
versity of application scenarios and target features, the CD
task faces challenges arising from different data conditions and
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performances. The imaging conditions of multitemporal images
are also difficult to ensure complete consistency, which further
increases the difficulty of the CD task.

Early CD methods primarily employed pixel-based CD ap-
proaches, treating each pixel as the fundamental processing
unit. They extracted change information by comparing pixel
information differences between pre- and post-remote-sensing
images [6]. With the widespread application of machine learning
techniques, remote sensing image segmentation methods have
gradually been introduced into CD tasks. Traditional cluster-
ing [7] or threshold-based methods [8] can generate binary CD
images but often struggle with handling change information
within images. Principal component analysis (PCA) [7], [9]
and change vector analysis (CVA) [10] are long-used techniques
in CD methods to enhance the processing of change informa-
tion in images. These technologies have proven effective in a
variety of CD applications over the years, demonstrating their
enduring relevance in this field. Unlike traditional clustering and
threshold-based methods, PCA and CVA enhance the accurate
detection of change regions because they can better capture
image features and change information. Furthermore, they can
further extract and analyze change information by analyzing
image change vectors and principal components, thereby im-
proving the effectiveness and robustness of CD methods.

Convolutional-based CD methods have already achieved su-
perior performance in CD tasks compared to traditional methods.
However, as high-resolution remote sensing images continue
to advance, there is a growing need for more precise target
identification and CD methods to meet the demands of com-
plex and clear images. Owing to the limitations of receptive
fields (RFs) in pure convolutional methods, many researchers
have been working on enhancing global information extraction
for high-resolution images and have focused on more efficient
context modeling methods to identify changes more accurately
in regions of interest. To expand the RF, researchers have tried
various methods, including stacking more convolutional lay-
ers [11], [12], [13], [14] or employing dilated convolutions [13].
These methods aim to capture a broader range of information to
improve the accuracy of CD. With the emergence of attention
mechanisms, researchers have begun to view them as a new tool
for more effective context modeling to enhance the accuracy
of CD. Attention-based CD methods [11], [12], [15], [16], [17]
have to some extent improved the accuracy of CD, but they
typically rely on the feature extraction backbone of convolu-
tional layers. In recent years, the application of self-attention
mechanisms in the field of CD has gradually increased. Unlike
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Fig. 1. Fundamental structure of the CSCNet comprises three key components: the encoder part, CSCMs, and the TAM. Initially, the encoder is responsible for
extracting features at three different scales. Subsequently, these features pass through the CSCM to achieve cross-scale information coordination. This ensures
that both local details and global features are fully utilized while considering the correlations between adjacent features. Next, in the TAM, the context modeling
capabilities of the Transformer are employed to further optimize the fused features. Finally, a shallow CNN module is applied to generate feature masks. This entire
process aids CSCNet in better capturing multiscale information within the images and enhances the performance of remote sensing CD.

previous channel or spatial-based attention mechanisms, self-
attention mechanisms can better model relationships between
pixels. However, the computational efficiency and complexity
of self-attention mechanisms increase exponentially with the
number of parameters, which is one of the challenges that current
self-attention-based CD methods need to address.

In addition to its manifestation in the convolutional neural
network (CNN), deep learning has also produced other powerful
tools, such as generative adversarial networks [18], [19] and
recurrent neural networks [20], [21], which have been applied
to CD tasks. These deep-learning-based methods rely on their
excellent modeling and feature extraction capabilities and do
not require excessive design, making it possible to achieve the
recognition of high-level information features and end-to-end
CD of remote sensing data.

With the successful integration of Transformers into CD
tasks [22] for remote sensing images, their exceptional con-
textual modeling capabilities have filled the gaps left by tra-
ditional convolutional and attention mechanisms in capturing
long-range dense relationships. Remarkably improved results
can be achieved even when using shallow CNN backbones. Fur-
thermore, the CD field has witnessed the emergence of numerous
Transformer-based methods [23], [24], [25], demonstrating the
significant achievements of Transformers in the CD domain.

While many previous methods for CD in remote sensing
images have attempted to optimize differential features by lever-
aging multiscale information to achieve more comprehensive
feature representation, they have a limitation in how they in-
teract with multiscale information, making it challenging to
effectively relate information from different scales. Therefore,
in this article, we introduce a cross-scale coordinated siamese
network (CSCNet), as shown in Fig. 1. In the CSCNet, the

cross-scale coordination module (CSCM) is applied to three
stages of the encoder. In each CSCM, we parallelize convolution
layers with different kernel sizes to capture both local and global
content within a single feature level while relating features
from different levels to each other. This design helps better
capture the correlation information between features of different
scales, which is particularly beneficial for optimizing details and
determining the location of CD targets. In the decoder part, we
employ the transformer aggregation module (TAM) to extend
the RF of features, allowing for the capture of richer contextual
information. These changes and improvements are expected to
enhance the performance of CD methods in multiscale scenarios,
better meeting the processing requirements of complex image
data.

Our contributions can be summarized in the following points.
1) We improved the traditional codec architecture by intro-

ducing the CSCNet. We redesigned the ResNet structure
and adopted depthwise overparameterized convolutional
layer (DO-Conv) technology as the encoder for our net-
work. This improvement not only surpasses the original
ResNet in performance but also significantly reduces com-
putational complexity. The DO-Conv [26] technique com-
bines deep separable convolution and traditional convo-
lution, which can improve network performance without
increasing the amount of network inference calculation,
and has a faster convergence speed than traditional con-
volution. By adopting DO-Conv technology, we aim to
address some of the limitations of the existing work, such
as improving the convergence speed and performance of
the network, while reducing computational complexity,
making our network more efficient and reliable when
handling remote sensing image CD tasks.
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2) We introduced the CSCM to facilitate the interaction of
information within features and across multiple scales.
This aids in capturing local details and global information,
complementing each other through the decoder to achieve
cross-level contextual information exchange.

3) We introduced the Transformer structure into the decoder,
constructing the TAM. Simultaneously, we incorporated
multiscale information from the CSCM into various de-
coder stages to capture multiscale contextual information.

The rest of this article is organized as follows. Section II
provides background information and a review of traditional
CD methods and deep-learning-based CD methods. In Section
III, we delve into the detailed design and key components of
our approach. Section IV summarizes and analyzes the exten-
sive experimental results. Finally, Section V concludes this
article.

II. RELATED WORK

A. CNN-Based CD Method

CNNs have gained widespread application in various fields
due to their powerful feature representation capabilities, includ-
ing CD tasks in remote sensing imagery. In CD tasks, fully
convolutional neural network (FCN) methods [27] have made
significant advancements. However, traditional CNN methods
are constrained by their limited local RFs, making it challenging
to capture global information and restricting long-term model-
ing capabilities. To overcome this limitation, researchers, such
as Song et al. [28], proposed the use of dilated convolutions
and deformable convolutions as replacements for traditional
convolutions to increase the RF and enhance context modeling
capabilities.

Furthermore, attention mechanisms, as a crucial feature of
CNNs, have been extensively applied in CD tasks. For instance,
Li and Huo [29] improved the handling of feature difference
maps using attention mechanisms. With the continuous devel-
opment of attention mechanisms, innovative CD methods have
emerged. These methods include Fang et al.’s [30] Unet++-
based model, which uses channel attention to fuse information
from different scales.

To further enhance performance, some studies have started
to employ dense connections to fuse multiscale features or [30]
introduce deep supervision methods [16], rather than relying
solely on attention mechanisms. However, it is worth noting
that the fixed local RFs in the FCN framework limit its long-
term modeling capabilities. Therefore, there is a need to use
larger CNN backbones and introduce more attention modules
in deep convolutional stages, although this also increases the
overall network complexity.

In this article, our objective is to leverage the proposed
CSCM to its full extent for integrating multiscale contextual
information. In addition, we introduce the Transformer into the
decoder to extend the feature’s RF, enabling the capture of richer
contextual information. This is done to overcome the limitations
imposed by the local RF.

B. Transformer-Based CD Method

In the field of computer vision, the Transformer has demon-
strated significant potential and unique advantages compared to
traditional attention mechanisms. Transformers utilize nonlocal
attention mechanisms, which enable better modeling of global
feature correlations, allowing for long-range dependencies be-
tween image pixels to be established more effectively. Currently,
methods based on Transformers can be broadly categorized into
two classes: pure Transformer methods [23], [24], which employ
Transformers as the encoder, sharing parameters across multiple
layers to capture long-range dependencies but incurring higher
computational costs, and CNN-Transformer methods [5], [22],
[25], [31], which optimize contextual information on top of
the CNN, delivering improved performance while maintaining
lower computational overhead. The work of Chen et al. [22]
pioneered the use of Transformer and achieved excellent re-
sults when applied to shallow ResNet models, highlighting
the superiority of Transformers in spatiotemporal modeling.
Furthermore, some methods combine the Transformer with
the CNN to enhance the RF for improved performance. For
instance, Feng et al. [31] made full use of both the CNN and the
Transformer to extract local and global features. Liu et al. [32]
used ConvNets as the foundation to extract multiscale features
from raw image pairs and effectively model contextual infor-
mation in bitemporal images using attention and transformer
modules. Transformer-based CD methods leverage Trans-
former’s strengths in global feature modeling and long-range
dependencies, leading to significant improvements in accuracy
compared to traditional approaches. Therefore, Transformer-
based methods hold great promise in the field of remote
sensing CD.

III. METHODOLOGY

In this article, we propose a model called the CSCNet, and its
overall architecture is depicted in Fig. 1. Our model follows an
encoder–decoder structure.

1) Encoder stage: Bitemporal images, A and B, are passed
through a modified ResNet34 network with DO-Conv.
This results in three feature maps: FE_i

1 , FE_i
2 , and

FE_i
3 , i = {1, 2}, for each image.

2) Cross-scale coordination modules: To address the multi-
scale nature of our data, we use the CSCM. This module
takes the aforementioned feature maps and generates new
coordinated feature maps F1new, F2new, and F3new.

3) Feature fusion: This step combines the newly generated
feature maps using the CAT operation to provide a con-
solidated representation. Feature maps are further refined
using the TAM, which aggregates information across the
scales to generate FE_1_new, FE_1_new, and FE_1_new after
processing.

4) Head CNN: The final stage involves processing the TAM
output through a head CNN to produce the predicted
change mask, M.

These improvements made to the encoder introduce the tra-
ditional ResNet34 network with DO-Conv to slightly enhance
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Algorithm 1: Implementation Process of Our CSCNet
Model.

Input: A,B (bitemporal image)
Output: M(a prediction change mask)
// step1 : Encoder stage
FE_1

1 ,FE_2
1 ,FE_3

1 = ResNet_DOC(A)
FE_1

2 ,FE_2
2 ,FE_3

2 = ResNet_DOC(B)
// step2 : Cross− scale coordination module
for i = {1, 2} do

FE_1_new
i = CSCM_1(FE_1

i ,FE_2
i )

FE_2_new
i = CSCM_2(FE_1

i ,FE_2
i ,FE_3

i )

FE_3_new
i = CSCM_3(FE_2

i ,FE_3
i )

end
// step3 : Feature fusion
FE_1_new = CAT (FE_1_new

1 ,FE_1_new
2 )

FE_2_new = CAT (FE_2_new
1 ,FE_2_new

2 )
FE_3_new = CAT (FE_3_new

1 ,FE_3_new
2 )

// step4 : Transformer aggregation module
F3 = TAM_3(FE_3_new)
F2 = TAM_2(FE_2_new,F3)
F1 = TAM_1(FE_1_new,F2)
// step5 : Head CNN
M = Head(F1)

performance while significantly reducing computational com-
plexity. The CSCMs serve to integrate multiscale feature infor-
mation, and the decoder predominantly leverages the TAM. For
a comprehensive overview of our method’s inference process,
we have provided specifics in Algorithm 1.

A. Encoder Module

In the current deep learning landscape, CNNs are among the
most commonly used models. Among them, ResNet, as a classic
deep CNN, has found extensive applications in various domains,
including image classification and object detection. However,
the traditional ResNet may encounter bottlenecks when dealing
with complex images, leading to a decrease in performance, and
its performance gradually loses its advantage concerning com-
putational complexity. To address this issue, we have employed
DO-Conv [26] to enhance the convolutional layers in ResNet,
aiming to improve the model’s flexibility, feature representation
capacity, and reduce computational complexity.

DO-Conv is an improvement method for CNNs that combines
the characteristics of depthwise separable convolution and over-
parameterized convolution. Traditional convolution applies the
same convolutional kernel to all the channels when processing
images, while depthwise separable convolution divides the con-
volution operation into depthwise convolution and pointwise
convolution, allowing each channel to use different convolu-
tional kernels, thus better extracting features. Overparameter-
ized convolution, on the other hand, increases the number of
convolutional kernels while keeping the kernel size unchanged
to enhance the model’s flexibility and expressive power. These
improvements enable our model to better address challenges

when dealing with complex images, thereby enhancing its per-
formance.

DO-Conv has significant advantages over traditional CNNs
as it can enhance the model’s performance and accuracy while
reducing computational complexity. By applying DO-Conv to
ResNet, we have increased the model’s flexibility and feature
representation capabilities, enabling it to better handle complex
images and improve the performance of CD tasks.

In this article, we used the first three stages of ResNet as the
encoder, progressively reducing the feature size to 1/2, 1/4, and
1/8 of the original features. We also proposed two versions with
different channel configurations: CSC_S with channel numbers
of 64, 128, and 256, and CSC_L with channel numbers of
128, 256, and 512. In the actual implementation, we made
corresponding adjustments to the subsequent modules based
on the different channel numbers to ensure the effectiveness
and performance improvement of the entire method. These
improvements enable our model to better adapt to various task
requirements and achieve performance optimization.

B. Cross-Scale Coordination Module

Contextual information plays a crucial role in processing
high-resolution remote sensing images, and this information is
not only present within single-scale features but also exhibits
diverse characteristics at different scales. Within the same fea-
ture hierarchy, we first process single-scale features by using
convolutional layers with different convolution kernels to cap-
ture both internal details and global features. Subsequently, we
employ bidirectional attention mechanisms to extract feature
representations that aggregate information from different convo-
lutional kernel features. Between feature hierarchies at adjacent
levels, we utilize spatial scale information for cross-scale fea-
ture extraction to obtain cross-level contextual complementary
information. This approach allows high-level features to provide
fine-grained information, while low-level features offer global
cues, thereby coordinating the extraction of holistic features.
Cross-scale interaction and aggregation are highly effective for
refining details and determining target locations.

The CSCM is a crucial component bridging the encoder
and the decoder, and its detailed operations are illustrated in
Fig. 2. Taking into consideration the number of layers and
different scales in the encoder, we have designed three branches
of CSCM: the high-level feature branch, the low-level feature
branch, and the local branch. It is pivotal to mention that the
CSCMs processing Images A and B are identical in structure
and function. CSCM_1 comprises the local branch and the
low-level feature branch, CSCM_2 includes the local branch,
the high-level feature branch, and the low-level feature branch,
and CSCM_3 consists of the local branch and the high-level
feature branch. We represent the CSCM operation as “f ,” and
the description of the entire module is as follows:

F i
CSCM =

⎧⎪⎨
⎪⎩
f
(
F i
E , F

i+1
E

)
, i = 1

f
(
F i−1
E , F i

E , F
i+1
E

)
, i = 2

f
(
F i−1
E , F i

E

)
, i = 3

(1)
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Fig. 2. CSCM simultaneously utilizes high-level, low-level, and local features for feature extraction and coordination. First, low-level features extract low-level
detailed information through local convolution operations to form low-level feature maps. Second, high-level features extract high-level semantic information
through global convolution operations to form high-level feature maps. Finally, local features are used to transfer and fuse contextual information, and low- and
high-level feature maps are fused to form multiscale feature maps. This branch is designed to achieve the coordination and fusion of features at different scales to
improve the stability and robustness of feature extraction.

where F i
CSCM ∈ RCi×Hi×Wi represents the features output by

each stage of the CSCM, and Fi−1, Fi, and Fi−1 represents
high-level features, current features, and low-level features,
respectively.

1) Internal Feature Coordination: When dealing with re-
mote sensing images, it is often necessary to capture both local
and global feature information across multiple scales. To achieve
this objective, we employ an extended convolution method based
on DO-Conv, similar to what was mentioned earlier [33]. This
convolution method enlarges the RF by using different kernel
sizes and dilation rates to comprehensively capture contextual
information. These contextual pieces of information will be
decomposed into two 1-D feature encodings, followed by an
attention operation. We integrate the features in both the spatial
directions to simultaneously capture long-range dependencies
while preserving precise positional information.

For the local branch features F i
E , we first perform multiscale

operations using four dilated convolutions, defined as follows:

F i,j
DOC = DOC(F i

E ;K
i,j
3×3; r

j), j ∈ {1, 2, 3, 4} (2)

where F i,j
DOC ∈ RCi×Hi×Wi represents the output feature, i rep-

resents the stage of the encoder, and j represents the level of the
dilated convolution. The DOC operation includes the expanded
convolution of DO-Conv and the batch normalization (BN) and
ReLU activation functions. Ki,j

3×3 represents the kernel size of
3 × 3, and rj represents the expansion rate. Then, we perform
the concatenation operation of the four features in the channel
dimension, so that the output features have rich context clues and
continue to process with the DOC of r = 1, which is defined as
follows:

F i
C = DOC1(Concat(F i,1

DOC, F
i,2
DOC, F

i,3
DOC, F

i,4
DOC);K

i
3×3). (3)

However, the concatenated feature information may contain
redundant information. Therefore, we decompose the features
into two 1-D feature maps and perform attention in different
spatial dimensions. We adaptively adjust the feature weights of
each position based on the spatial coordinate information of each

position in the feature map, thereby allowing the model to focus
on different positions in a more adaptive manner to purify the
features F i

C .
To begin with, we use global pooling to transform it into a

pair of 1-D feature encodings. Specifically, for a given input
F i
C ∈ RCi×Hi×Wi , we first use pooling kernels of size (Hi, 1) or

(1, Wi) to encode each channel along the horizontal and vertical
coordinates, respectively. Therefore, the output of channel cwith
height h can be represented as

zhc (h) =
1

W

∑
0≤i<W

xc(h, i). (4)

Similarly, the output of the cth channel of widthw can be written
as

zwc (w) =
1

H

∑
0≤i<H

xc(j, w). (5)

These two transformations can be captured and preserved by
the attention module, which captures long-range dependencies
and precise spatial information along one spatial dimension.
This helps the network to more accurately locate the target of
interest.

Next, the two parts of transformed information are concate-
nated, and a convolutional transformation function is applied to
generate an intermediate feature map F ∈ RC/r×(H+W ) with
spatial information in the horizontal and vertical directions,
where r represents the reduction ratio. Then, the featureF is split
into two separate tensors Fh ∈ RC/r×H and Fw ∈ RC/r×H ,
which are transformed by two 1×1 convolutions fh and fw to
have the same number of channels as the input. The formula is
expressed as

gh = σ
(
Fh

(
fh

))
gw = σ (Fw (fw)) (6)

where σ represents the sigmoid function. gh and gw will be used
as attention weights to generate the final output F i,j

loc , defined as
follows:

yiloc(i, j) = F i
c(x, y)× ghc (x)× gwc (y). (7)
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Fig. 3. TAM is a module composed of multiple Transformer layers; each layer contains MSA and feedforward network (FFN) sublayers. Input features are
transformed through an MSA sublayer to generate a spatial attention map, and a weighted average is used to generate a new feature representation. The FFN
sublayer uses two fully connected layers and a ReLU activation function to process the input features, and then, the outputs of MSA and FFN are spliced together to
form the output features of this layer. Between each Transformer layer, the input features are skip-connected via residual connections. Finally, the output features
are processed through the MCA sublayer, and the attention weights are obtained by calculating the dot product between Q and K and using the softmax function
and then used to weight V to generate the final output features. The final output features are transformed through a fully connected layer to generate the final output.

2) Adjacent Feature Coordination: The operations on ad-
jacent branches are much simpler compared to those on the
local branch. We only use spatial attention to coordinate the
information of other scales with the local features. In the first
stage of operations, the coordination of features is performed
between the low-level branch and the local branch, which can
be expressed as

F 1
ad_u = SA

(
Up

(
F 2
E

))⊗ F 1
C (8)

where Up(·) implements a 2× upsampling method through a
bilinear interpolation method. Through this branch structure,
the location information of the target can be brought into the
feature information F i

C of the current branch.
Similarly, in the operation of the third stage, the advanced

branch and the local branch are used for feature coordination,
expressed as

F 1
ad_d = SA

(
Down

(
F 2
E

))⊗ F 3
C (9)

where Down(·) realizes 2× downsampling through maximum
pooling. Through this branch structure, more detailed alignment
information can be brought into the feature information of the
current branch.

In the second stage, we utilize the high-level features, low-
level features, and local features simultaneously to perform
feature coordination. This stage includes the operations of the
other two stages, and spatial attention is applied to both the high-
and low-level features. It can be represented as

F 2
ad_u = SA

(
Up

(
F 3
E

))⊗ F 2
C

F 2
ad_d = SA

(
Down

(
F 1
E

))⊗ F 2
C . (10)

3) Branch Integration: After the effective coordination
through internal and external feature fusion, we integrate the
output features of all the branches with the original features. It
can be represented as

F i
CSCM =

⎧⎪⎨
⎪⎩
F i

loc ⊕ F i
ad_d ⊕ F i

E , i = 1

F i
loc ⊕ (F i

ad_u ⊕ F i
ad_d)⊕ F i

E , i = 2

F i
loc ⊕ F i

ad_u ⊕ F i
E , i = 3

(11)

where ⊕ denotes elementwise summation. This cross-scale
coordination of different levels of F i

E can fully fuse global
information and local detail information, greatly improving the
stability and robustness of feature extraction.

C. Transformer Aggregation Module

The TAM is the basic unit of the decoder, as shown in
Fig. 3. The feature information processed by the CSCM is first
fed through a Transformer in the TAM to extract higher level
contextual information, and then, the current CSCM feature
information is aggregated with the TAM feature information
from the previous step to generate a new input F i

A for feature
inference in the current step. We define the TAM process asT (·),
and its formula is as follows:

F i
TAM =

{
T
(
F i
A

)
, i = 1, 2

T
(
F i

CSCM

)
, i = 3

F i
A = Concat

(
F i

CSCM,Deconv
(
F i−1

TAM

))
(12)

where F i
TAM is the output of the ith layer TAM and the input of

the aggregation, and Deconv(·)means that the image is enlarged
to a deconvolution layer with BN and ReLU of the same size.

The feature F i
A ∈ RCi×Hi×Wi from the CSCM is first sub-

jected to pointwise convolution for each pixel, followed by
softmax computation for spatial attention mapping, and finally,
the weighted average of the F i

A pixel values is calculated. The
input feature information is transformed into tokens T ∈ RL×C

containing high-level concepts, where L represents the vocabu-
lary size of the tokens, and is defined as follows:

T =
(
σ
(
φ
(
F i
A;W

)))T
F i
A, i ∈ {1, 2} (13)

where φ(·) represents the pointwise convolution of the learn-
able kernel W ∈ RC×L, and σ(·) normalizes for each semantic
group.

The obtained tokens T are passed into an NE-layered Trans-
former composed of normalization, multihead self-attention
(MSA), and multilayer perceptron (MLP). Here, MSA is the
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classic operation in the Transformer. After these operations, a
new set of tokens T new is obtained.

The optimized tokens T new will be projected back into the
pixel space of the input feature F i

A to obtain a better pixel-level
feature representation enriched with contextual information.
Compared to the Transformer, the decoding part has been mod-
ified by replacing MSA with multihead cross attention (MCA).
In MCA, the input feature F i

A serves as the query, while T new

serves as the key and value, which avoids excessive computa-
tions caused by dense relationships between pixels. This can be
represented as

MCA
(
FA
i , T new

)
= Concat (h1, h2, . . ., hn)W

0 (14)

where W 0 ∈ Rhd×C is a linear projection matrix and n is the
number of attention heads.

D. Other Network Details

1) Prediction Head: The final feature map we upsample by
bilinear interpolation to double its size to generate a 256 ×
256 feature map equal to the input size . Finally, two 3 × 3
convolution operations are performed to convert the channels
into a variation mask of size R2×H0×W0 .

2) Loss Function: In the CD method, its essence is similar
to the binary classification task of semantic segmentation, so we
optimize the model parameters by minimizing the cross-entropy
loss. The loss function is defined as follows:

L =
1

H0 ×W0

H,W∑
h=1,w=1

l (Phw, Yhw) (15)

where l(Phw, y) = − log(Phwy) is the cross-entropy loss, and
Phw and Yhw are the labels for the pixel at location (h,w).

IV. EXPERIMENTS

A. Datasets

We use three high-resolution building CD datasets, namely,
LEVIR-CD, WHU-CD, and GZ-CD.

1) LEVIR-CD [11] consists of 637 pairs of Google Earth
images with a high resolution of 0.5 m/pixel, and each
image has a size of 1024×1024 pixels. Our focus is
on building-related changes, and we consider multiple
types of buildings. To conduct experiments, we crop the
LEVIR-CD dataset into nonoverlapping image patches of
size 256×256 and divide them into training, validation,
and test sets, which contain 7120, 1024, and 2048 image
patches, respectively.

2) WHU-CD [34] is a large public CD dataset consisting of a
pair of high-resolution images (0.075 m/pixel) with a size
of 32 507×15 354 pixels. In the experiments, we cropped
the dataset into 256×256 samples for training, validation,
and testing, and the dataset size is 6096, 762, and 760,
respectively.

3) GZ-CD [35] is a dataset consisting of 19 pairs of high-
resolution (0.55 m/pixel) Google Earth images, includ-
ing 19 pairs of seasonal change images covering urban
changes in the suburbs of Guangzhou, China, over the past

decade. The dataset mainly focuses on changes related
to buildings, with image sizes ranging from 1006×1168
to 4936×5224. For experiments, we cropped the images
into nonoverlapping 256×256 blocks and set the sizes of
the training/validation/testing datasets to 2834/400/325,
respectively.

B. Experimental Setup

1) Evaluation Metrics: In order to better assess the effective-
ness of our method, we employ five metrics for the evaluation
of various approaches: precision, recall, F1-score, intersection
over union (IoU), and overall accuracy (OA). Among these, F1
and IoU are the primary evaluation metrics we focus on, where
larger values indicate better model performance. Specifically,
precision represents the ratio of true positive samples among
those predicted as positive, recall represents the ratio of correctly
predicted positive samples among the actual positives, and F1-
score is the weighted harmonic mean of precision and recall.
IoU represents the ratio between the intersection and union of
predicted results and ground truth, while OA is the proportion of
correctly classified samples. The expressions for these metrics
are as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − score = 2
Precision · Recall

Precision + Recall

Intersection over Union(IoU) =
TP

TP + FN + FP

Overall Accuracy(OA) =
TP + PN

TP + TN + FN + FP
(16)

where TP, TN, FP, and FN represent the number of true positive,
true negative, false positive, and false negative, respectively.

2) Implementation Details: Our deep learning model was
implemented using the PyTorch framework and trained in an
environment running the Ubuntu operating system, with acceler-
ation provided by a TITAN RTX GPU. We employed stochastic
gradient descent with momentum as the optimizer, setting the
momentum parameter to 0.99 and the weight decay to 0.0005.
For all three datasets, we used a uniform learning rate of 0.01.
During training, we performed performance validation using the
validation set at the end of each training epoch and saved the
model with the best performance. Subsequently, we evaluated
the performance of this best model using the test dataset.

C. Baselines

In this section, we compare the CSCNet with several state-
of-the-art methods, including three attention-based methods
(DSIFN [16], DTCDSCN [15], and SNUNet [30]) and four
transformer-based methods (BIT [22], ChangeFormer [23],
CropLand [5], and ICIF [31]). For those methods that expose
the training weights, we use the weights provided by the original
authors. For those methods that did not disclose the training
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TABLE I
COMPARISON RESULTS ON THREE CD TEST SETS

TABLE II
PARAMETER SETTINGS FOR CSCNET_S AND CSCNET_L

weights, we retrained the model according to the code and
guidelines provided by the original author. Especially, for the
LVEIR-CD method, we used the model provided by the original
author and obtained similar results on our test set as in the
original article. However, because the WHU and GZ datasets
were cropped by us, and the dataset settings were different for
each study group, we had to train these models ourselves to
ensure fair comparisons.

1) DTCDSCN [15] is an attention-based method that pro-
poses a twin CNN with a dual-task constraint. The network
includes a CD network and two semantic segmentation
networks, as well as a dual-attention module.

2) DSIFN [16] is a CD network that uses a multiscale feature
concatenation method. This article proposes a deep super-
vised image fusion CD network that uses a discriminative
network with deep supervision to achieve the integrity of
the graphic boundaries and density of the internal changes
and fuses multilevel deep features with image difference
features through an attention mechanism.

3) SNUNet [30] is a multilevel feature fusion method that
employs the NestedUNet architecture for CD. The model
uses dense connections and deep supervision to improve
the recognition ability of intermediate features and en-
hance the effectiveness of the final features.

4) MSCANet [5] is a feature difference-based method based
on the transformer architecture. It proposes a CNN-
transformer network with multiscale context aggregation
(MSCANet) that combines the advantages of CNN and
transformer to achieve efficient and effective CD.

5) BIT [22] is a feature-level difference method based on
transformers. It extracts tokens containing rich image fea-
tures by combining them with semantic tokens and then
uses transformers to enhance their contextual modeling
capabilities.

6) ChangeFormer [23] is a transformer-based method that
uses feature concatenation. The backbone of this method
consists entirely of Transformer encoders without the use
of CNNs. MLPs are used as decoders and are integrated
into the UNet architecture for CD.

7) AMTNet [32] is a multiscale transformer network. AMT-
Net based on the attention mechanism is proposed, which
is especially designed for remote sensing image CD. By
utilizing the attention mechanism and the multiscale fea-
ture fusion structure, image features at different scales
can be effectively captured and utilized to achieve more
accurate and robust CD. In particular, the network is able
to adaptively process features at multiple scales to gain a
deep understanding of changes in remotely sensed images.
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Fig. 4. (a)–(d) Visualization results on the LEVIR-CD dataset. Different colors represent different results, with white representing true positive, black representing
true negative, red representing false positive, and green representing false negative. The local detail maps of (a) and (c) are shown at the bottom.

Fig. 5. (a)–(d) Visualization results on the WHU-CD dataset. Different colors represent different results, where white represents true positives, black represents
true negatives, red represents false positives, and green represents false negatives. The local detail images of (b) and (d) are shown at the bottom.

8) ICIF [31] proposes a scale-invariant cross interaction and
scalewise feature fusion network (ICIF-Net) that com-
bines the advantages of both the CNN and the Transformer
for addressing the issue of modeling long-range dependen-
cies in remote sensing CD.

D. Comparison Results

In our comparative experiments, we used the publicly avail-
able codes provided by the authors and kept the default and

common parameters consistent to ensure fairness. In addition,
we set the training epochs to the same value to eliminate the
error differences caused by different parameter selections and
training rounds, thereby achieving a more accurate comparison
of the performance of different methods. Furthermore, this ap-
proach helps to avoid unnecessary interference factors during
the experiment, ensuring the reliability and reproducibility of
the experimental results.

1) Comparison Test Results: In Table I, we present the eval-
uation results for all the methods on the three datasets, with the
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Fig. 6. (a)–(d) Visualization results on the GZ-CD dataset. Different colors represent different results, where white represents true positives, black represents
true negatives, red represents false positives, and green represents false negatives. The local detail images of (a) and (d) are shown at the bottom.

highest values indicated in bold. In the comparative experiments,
we showcase two testing models, namely, CSC_S and CSC_L,
and their internal parameter settings are listed in Table II. By
comparing the results in the table, it can be observed that our
CSCNet outperforms significantly in most of the metrics. While
we may not achieve the highest precision, the comprehensive
criterion for evaluating methods is typically the F1-score, which
combines information from both precision and recall. In terms of
the F1-score metric, the CSCNet improves by 0.43%, 2.23%, and
0.07% compared to the second-best method on the three datasets,
respectively. In addition, CSC_L demonstrates improvements of
0.21%, 0.49%, and 0.18% over CSC_S. These results indicate
that our deep model exhibits significant performance advantages
in remote sensing CD tasks, particularly in key metrics such as
F1-score and IoU. These metrics are crucial for remote sensing
image CD, as they provide a comprehensive assessment of the
model’s performance, balancing precision and recall. Therefore,
our approach holds great potential for applications in remote
sensing image CD.

In the GZ-CD dataset, we noticed that the performance of
CSCNet was not as outstanding as on the other two datasets. This
could be attributed to differences in the labeling approach used
for the GZ-CD dataset compared with the other two datasets.
In the LEVIR-CD and WHU-CD datasets, labels were created
for each building as well as edge details, whereas in the GZ-
CD dataset, the labels treated the entire building cluster area as
a single target region and did not individually label the edges
of each building within the cluster. This difference in labeling
methodology may have resulted in the CSCNet not performing
as well in capturing details on the GZ-CD dataset compared with
the other datasets.

TABLE III
PARAMETER AND FLOP RESULTS FOR ALL THE METHODS ON THE THREE

DATASETS AND THE F1-SCORE AND IOU VALUES ON EACH DATASET

2) Visualization Results: In this section, we visualize the
results on the LEVIR-CD (see Fig. 4), WHU-CD (see Fig. 5), and
GZ-CD (see Fig. 6) datasets, using different colors to represent
true positives (TP—white), true negatives (TN—black), false
positives (FP—red), and false negatives (FN—green). This vi-
sualization allows for an intuitive comparison of the differences
between the CSCNet and other advanced methods. In LEVIR-
CD and WHU-CD, it is evident that our CSCNet performs better
in capturing edge details. Particularly, in WHU-CD, our method
excels in recognizing the completeness of targets, and it also
outperforms other methods in recognizing multiple targets. In
GZ-CD, our method exhibits fewer noise artifacts, as shown in
(c) and (d) in the images in Figs. 4–6. We also perform well in
building recognition, with fewer green areas indicating false neg-
atives compared to other methods. These visual results further
highlight the advantages of CSCNet in handling high-resolution
remote sensing image CD tasks.
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TABLE IV
IMPACT OF DIFFERENT MODULE COMBINATIONS ON MODEL PERFORMANCE ON THREE DIFFERENT BUILDING CD DATASETS (LEVIR-CD, WHU-CD, AND

GZ-CD)

3) Efficiency and Performance of the Model: To compare
the efficiency of various methods, we list the parameter count,
floating point operations (FLOPs), and test results on the datasets
for all the compared methods in Table III. In terms of the
parameter count, our CSC_S model has a lower parameter
count compared to recent Transformer-based methods and does
not significantly increase computational overhead. However,
our method achieves significant performance improvements on
various datasets. In the CSC_L model, we increase the parameter
count, but there is no significant increase in computational cost.
Despite the larger parameter count, the FLOP performance
remains good, and the increase in parameter count does not
lead to a substantial increase in computational overhead. In
addition, we use DO-Conv to improve ResNet, significantly
reducing computational complexity. The differences in ResNet
will be compared in detail in Section IV-E. These results indicate
that our method achieves significant performance improvements
while maintaining computational efficiency across various
datasets.

E. Ablation Experiments

In the ablation studies, we dissected three pivotal modules of
the CSC-S model, including the encoder module, the CSCM, and
the TAM. Initially, in the encoder ablation experiment, we con-
trasted the original ResNet with the enhanced ResNet equipped
with DO-Conv. Substantial performance enhancements were
realized across all three datasets. The experimental outcomes
are presented in Table IV.

In the ablation trials of the CSCM, its impact on model
performance was assessed by partial removal of the CSCM. The
findings illustrated that, across all three datasets, the absence of
the CSCM led to a notable performance decline. This further
accentuates the vital role of the CSCM in capturing multiscale
features and orchestrating feature relationships.

In the ablation tests of the TAM, we substituted the TAM
with convolution blocks, which resulted in a performance dip,

Fig. 7. Visualization results of the various stages of the CSCNet. It includes
the feature difference maps for each stage of the encoder, each stage of the
CSCM, and the TAM output.

particularly pronounced in the GZ-CD dataset. This signifies
the substantial contribution of the TAM in leveraging the Trans-
former for contextual modeling and its importance for model
performance.

Moreover, simultaneous ablation experiments were con-
ducted on both the CSCM and the TAM. The results demon-
strated a notable performance decline across all three datasets
when these two critical modules were removed or replaced. This
further underscores the critical role of the CSCM and the TAM
in the contextual modeling of the CSC method.

Overall, the results from the ablation experiments indicate
that both the CSCM and the TAM play crucial roles in the CSC-
Net method. They contribute to enhancing the model’s feature
representation and contextual modeling capabilities, thereby
ameliorating the performance of remote sensing image CD.
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In Table IV, we observed that the inclusion of TAM seemed to
lead to a performance drop in the experiments on the WHU-CD
dataset. Regarding this, the TAM aims to aggregate features
by leveraging the Transformer structure to capture long-term
dependencies and contextual information. However, on the
WHU-CD dataset, possibly due to the relatively simple spa-
tial relationships between targets or less pronounced long-term
dependencies, the TAM might not have provided much aid
and may even have introduced additional noise, thus affecting
performance. We plan to further investigate and optimize the
TAM in future work to ensure that it provides stable performance
improvements across different datasets and tasks.

F. Network Visualization

For a better visual interpretation of the crucial stages in our
CSCNet, we conducted visualizations of the intermediate layers
of our network, as displayed in Fig. 7. This figure illustrates
the visualization results of the CSCNet at various stages. It
encompasses the different phases of the encoder, each stage
of the CSCM, and the feature difference maps produced by
the TAM. From these visuals, it is evident that the model’s
attention varies across certain key feature regions, which are
highly relevant to the task at hand. Specifically, within the
CSCM and the TAM, we can intuitively observe how the model
processes and focuses on vital contextual information at different
stages, thereby achieving a richer and more precise feature repre-
sentation. These visualization outcomes not only offer us an in-
depth understanding of the working mechanism of CSCNet but
also attest to its efficiency and robustness in handling complex
tasks.

V. CONCLUSION

In this article, we introduced a deep learning model called
CSCNet. Our model improved upon the traditional ResNet by
employing the DO-Conv technique to reduce computational
complexity while enhancing model expressiveness. We also
introduced the CSCM, allowing features at various stages of
the encoder to interact locally and globally, adaptively focusing
on target features at different scales. In addition, we designed
the TAM as the decoder to better aggregate multiscale features
and establish stronger contextual connections. On three different
building CD datasets (LEVIR-CD, WHU-CD, and GZ-CD),
our CSCNet demonstrated significant advantages, achieving
F1-score evaluation metrics of 91.61%, 93.00%, and 85.16%,
respectively. This highlights CSCNet’s outstanding performance
and effectiveness in handling high-resolution remote sensing
image CD tasks. Despite some advancements our model made
in multiscale feature fusion and contextual modeling, there are
still some limitations. First, our model has not been rigor-
ously compared with already published methods that address
multilevel feature fusion, and its effectiveness may still need
further validation. Second, although our model has achieved
some success in reducing computational complexity, it may still
face challenges when dealing with large-scale or more complex
datasets. Moreover, our model mainly focuses on building CD
tasks and has not yet been validated on other remote sensing

image CD tasks. Compared to already published methods that
address multilevel feature fusion, our model attempts to realize
adaptive interaction and contextual association between features
through the CSCM and TAM components. This to some extent
solves the problems of fixed feature fusion strategies that tra-
ditional methods may encounter. However, further research is
needed in the future to better understand and optimize multiscale
feature interaction and contextual modeling strategies to further
improve the performance and effectiveness of remote sensing
image CD. Our research results offer a promising approach in the
field of remote sensing image CD and provide valuable insights
for further research applying deep learning to this domain. By
incorporating key components such as DO-Conv, CSCM, and
TAM, our model addresses challenges related to multiscale and
contextual modeling, providing a powerful tool for high-quality
building CD.
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