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Abstract—These days, extracting information from remote sens-
ing data has a great impact on various aspects of our lives, such
as infrastructure and urban planning, transportation and traffic
management, forecasting and tracking natural disasters, searching
for mineral resources, monitoring environmental changes, and nu-
merous other fields. One crucial application is extracting accurate
road information from aerial images, which has many practical
applications ranging from our daily lives to long-term planning
for transportation systems to autonomous vehicles. Deep learning
models have shown great promise in image-processing tasks, specif-
ically in accurately detecting and extracting roads from aerial im-
ages. In this study, various techniques were employed to achieve the
desired performance. The model is a UNet assisted with attention
blocks in the decoder part and trained with a patched, rotated, and
augmented dataset that has been extracted from the DeepGlobe
dataset. The preprocessing of the dataset included image and mask
patching, rotation, exclusion of background-only images, and ex-
cluding images with very little road surface. Both patching and
background exclusion in preprocessing as hard attention and atten-
tion blocks in the model as soft attention were deployed in order to
tackle the inherently biased nature of the dataset. This combination
of different techniques empowers the proposed model for superior
remote sensing image segmentation performance with an accuracy
level of 98.33%. In addition to achieve better performance by the
model, another objective is to find the issues that cause the model’s
performance degradation on some image samples. Therefore, a
comprehensive analysis of metrics, with a focus on precision and
recall as proper metrics for biased dataset analysis, was conducted
to identify potential shortcomings in the model or the dataset, and
based on the result, several proposals for future work and further
investigations were formulated.

Index Terms—Attention, deep learning, road extraction, satellite
images, UNet.
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I. INTRODUCTION

ROAD networks are integral components of urban infras-
tructure, serving as essential transportation arteries that

facilitate economic and societal activities [1], [2], [3]. Satellite
images are a very important source of remote sensing data, and
extracting information such as roads from them has garnered sig-
nificant attention due to its potential applications in urban plan-
ning, autonomous driving, disaster management, traffic analysis,
agriculture, environmental monitoring, and smart city construc-
tion [4], [5], [6], [7], [8]. However, road extraction from aerial
images is a very challenging task due to various reasons, in-
cluding diverse road types, occlusions, and complex background
features. Numerous approaches for extracting roads from remote
sensing images have been presented in recent years, and they
may be divided into two primary categories: traditional and deep
learning-based methods [9]. Traditional approaches primarily
rely on image-processing techniques and heuristic strategies to
identify road features [10]. These methods involve the recog-
nition of distinct characteristics, patterns, and morphological
features, along with the application of handcrafted features and
heuristic principles [11], [12]. These traditional approaches are
time-consuming, sensitive to variations in road appearance, and
often yield limited accuracy in detecting roads from remote sens-
ing images [13]. In recent years, the rapid advancements in satel-
lite imaging technology and the immense expansion of very high
resolution (VHR) image data have introduced fresh challenges
for road extraction. These challenges arise from the intricate
structure of roads and the diverse distribution of backgrounds.
Given these factors, traditional methods have shown a decline in
performance as they struggle to achieve effective generalization
and are constrained in expressing essential features. Considering
the large volume of images and the diverse patterns within
them, machine learning-based methods are more suitable for
their automatic nature and reduced reliance on subjective feature
selection [13]. Among the different machine learning methods,
deep learning techniques are preferred for road extraction tasks
because of their ability to automatically extract image features
from vast datasets and eliminate the need for manual feature
selection [14], [15], [16]. Deep learning techniques have recently
emerged as very powerful tools for a variety of tasks, including
road extraction tasks, leveraging the abundance of labeled data,
and the capacity of deep neural networks to learn discriminative
features automatically [9].

Convolutional neural networks (CNNs), as a branch of
deep learning, are the most suitable method with superior
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performance for road extraction and image-processing tasks.
Generally, CNNs are well-suited for array-like data, such as
images and time series [17], [18], [19], [20], [21], [22], [23].
For example, Zhong et al. [24] introduced a CNN model that
effectively combines low-level fine-grained features with high-
level semantic features, enabling the extraction of road and
building targets in satellite imagery. Patch-based convolutional
network, as an evolution of CNNs in the context of road ex-
traction, was implemented in 2010 [25]. Alshehhi et al. [26]
proposed a patch-based CNN model capable of simultaneously
extracting road and building components from remote sensing
imagery. Subsequently, the fully convolutional network (FCN)
[27] model-based road extraction method emerged. Varia et al.
[28] utilized the FCN-32, a deep learning technique, for extract-
ing road segments from extremely high-resolution unmanned
aerial vehicle (UAV) imagery. Building upon FCN, Kestur et al.
[29] presented the U-shaped FCN, tailored for road extraction
from UAV images. In another approach, Panboonyuen et al.
[30] utilized landscape metrics and the exponential linear unit
functions to extract road objects from remote sensing imagery.
Hong et al. [31] applied a block based on richer convolutional
features to segment roads from high-resolution remote sensing
imagery. Cheng et al. [32] proposed a cascaded end-to-end
CNN model for extracting road centerlines from remote sens-
ing imagery. The strength of CNN-based models lies in their
ability to automatically discern road characteristics, leveraging
strong generalization, arbitrary function fitting, and high sta-
bility. CNN-based models consistently demonstrated superior
performance compared to the traditional methods. However, it
is important to note that they heavily rely on an ample quantity of
images and the availability of remote sensing images is typically
limited.

In recent years, to segment roads with limited remote sensing
images, architectures inspired by the encoder–decoder model,
such as UNet, have gained prominence in road segmentation
tasks. Building upon the FCN [27] and encoder–decoder model
ideas, the UNet model was developed specifically for biomedical
image segmentation at first [33]. The UNet architecture takes
inspiration from FCNs and employs an encoder-decoder struc-
ture that enables the capture of both local and global contexts,
leading to effective segmentation [34]. Various extensions and
adaptations of UNet have been developed to address specific
challenges in road extraction, such as SegNet [35] and Res-UNet
[36], which is an enhancement of the UNet architecture achieved
by integrating a residual module [37]. Another innovation by
Zhou et al. [38] introduced the D-LinkNet34 model, which,
building upon the UNet, expanded the receptive field while
preserving resolution by simultaneously employing a dilated
convolution module [39].

Numerous other networks have also been devised and realized
employing the encoder–decoder architecture. In 2020, a road
segmentation network named global context-based automatic
road segmentation via dilated convolutional neural network em-
ployed dilated convolutions in an encoder–decoder architecture.
It adopted a structure akin to UNet, integrating three residual
dilated blocks within the encoder to expand the receptive field

[40]. The C-UNet, which was proposed by Hou et al. [41], incor-
porates a complement module for better feature representation in
road extraction from remote sensing images, despite increased
complexity. Recently, Yang et al. [42] presented SDUNet, a
model that suggests spatial enhancement and densely connected
blocks within the UNet framework to improve the precision of
road extraction.

Attention-based models have also been successful in improv-
ing road extraction accuracy. The attention module focuses on
important image parts for accurate results, leveraging patterns
and spatial relevance, and modifies CNN architectures by gener-
ating score matrices from intermediate feature maps, enhancing
relevant features and suppressing noise, leading to improved
classification across datasets [43], [44], [45]. A notable case
among attention-based models is the global and local attention
model based on U-Net and DenseNet. This model, based on the
UNet architecture, incorporates region-based and global atten-
tion methods in its design [46]. Ren et al. [47] DA-CapsUNet
combine capsule representations and attention mechanisms for
robust feature fusion in road region extraction. Dual-attention
network (DA-RoadNet), proposed by Wan et al., utilizes a shal-
low encoder–decoder network with densely connected blocks
to safeguard road structure information. It integrates a novel
attention mechanism and a hybrid loss function to address class
imbalance effectively [48]. Li et al. introduced Cascaded Atten-
tion DenseUNet (CADUNet), a model that incorporates global
and core attention modules within DenseUNet architecture. This
integration enhances road network connectivity and ensures
the preservation of the integrity of shaded road areas [49].
Li et al. [50] cascaded attention-enhanced architecture includes
spatial and channel attention for adaptive boundary refinement
in road extraction. Shao et al. presented a road extraction con-
volutional neural network with an embedded attention mecha-
nism (RENA), combining channel and spatial attention within
the U-Net framework. The network employs residual densely
connected blocks for improved feature reuse and information
flow, complemented by a residual dilated convolution module
for multiscale road network extraction [51].

Despite significant advancements facilitated by deep learning
methods and innovative techniques, achieving highly accurate
models for road extraction from remote sensing images remains
a challenge. The inherent bias in road extraction datasets ne-
cessitates solutions that address this issue effectively. Attention
mechanisms and the UNet architecture prove to be promising
solutions by focusing on crucial parts of the image and capturing
both local and global contexts, respectively. To further enhance
performance, we implemented a UNet model equipped with an
attention block as soft attention and used patching and back-
ground exclusion in preprocessing as hard attention to achieve
better performance. Additionally, we conduct a comprehensive
analysis, focusing on precision and recall as suitable metrics
for skewed datasets to gain deeper insights into the model’s
performance.

In the sections that follow, we will go into more detail about
our methodology, including the network architecture and strate-
gies we used, which are covered in Section II. The results and
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Fig. 1. Flowchart of the proposed method.

configurations utilized for result analysis are then thoroughly
discussed in Section III. Conclusions and recommendations for
additional research are provided in Section IV.

II. MATERIALS AND METHODS

The overall procedure of this work can be divided into three
parts: preprocessing of the dataset, model implementation, and
analysis of the result. These three steps and the considerations
in each step have been shown as a flowchart in Fig. 1. By
patching, background exclusion, and rotation in preprocess-
ing and deploying UNet and attention blocks in the model,
we have tried to overcome the biased dataset issue and achieve
better performance. Finally, in the result analysis step, we have
focused on precision and recall to have a better evaluation of
the performance and find out what the shortcomings are that
should be considered for future works.

The dataset for road extraction is inherently very skewed, as
only a small portion of the earth’s surface is covered by roads.
In the road extraction task, it is very important to overcome this
issue. We have considered it in all steps of the work, from data
preparation to result analysis. Attention as a technique to tackle
the skewed dataset issue and improve performance has been
deployed in both hard and soft attention types. In data reparation,
after patching the images, the background-only images were
excluded, which is a kind of hard attention and increases the
road portion in the training set. The attention blocks deployed
in the UNet model perform as soft attention, which learns to pay
attention to the areas covered by roads. The metrics, including
precision, recall, Intersection over Union (IOU), and F-Score,
were measured on the test set, and then deeper analysis of the re-
sult was done with a focus on precision and recall as these are the
proper metrics for biased dataset analysis. By these techniques
and considerations, the model achieved superior performance
compared to most of the models implemented based on UNet.

A. Dataset

In this study, we utilized the DeepGlobe dataset [52].
This dataset contains 6226 image–mask pairs with a size of
1024 × 1024 and a resolution of 0.5 m as a training set, covering
areas of Thailand, India, and Indonesia. The roads encompass
cement, asphalt, and mountain roads. The image format includes
RGB color images, which are characterized by multispectral or
hyperspectral bands, encompassing essential wavelengths such
as red, green, and blue. These spectral bands enhance feature
discrimination and analytical capabilities, crucial for tasks such
as road extraction. The DeepGlobe dataset comes with clear
limitations and potential biases. One major concern is class
imbalance, where the presence of significantly more nonroad
pixels compared to road pixels could divert the model’s attention
away from important road features during training. Another
potential issue is a geographic bias within the dataset, possibly
favoring regions with more abundant or easily accessible data.
This bias might limit the model’s ability to effectively generalize
across various geographical landscapes. Furthermore, variations
in image resolutions pose a challenge, especially in accurately
detecting smaller or less pronounced road features. In addition,
inconsistencies in annotation quality, including discrepancies or
inaccuracies in road markings, can adversely affect the model’s
training and overall performance. These identified limitations
underscore the critical need for careful consideration and the im-
plementation of suitable mitigation strategies when utilizing this
dataset for road extraction tasks. The website for the DeepGlobe
dataset can be found at: https://deepglobe.org/challenge.html.

The validation and test images of the DeepGlobe dataset are
not masked, so we kept 1726 image–mask pairs of the dataset
as a test set and used the remaining 4500 images as training
and validation images after some preparation and augmentations
described in the following.

In order to prepare the training set, each training image was
patched into nine overlapping 512 × 512 images. Patching the
images caused some of the new images to be completely laid
in the background area, with some of them including a negligi-
ble portion covered by road. These two categories contributed
almost 25% of the total patched images. Considering that the
learning process of deep neural networks primarily involves
identifying similarities and differences between the classes,
these images, which are mainly composed of one class, did not
contribute positively to the learning process and might even have
led to poor learning of the model. Excluding these images would
cause better learning of the model in addition to mitigating the
bias issue in the dataset. Omitting these 10 000 images from the
patched images, we finally applied rotations of 0°, 90°, 180°,
and 270° to the remaining images, resulting in a quadrupling
of the dataset. Subsequently, we split these augmented images
into a training set (105 000 images) and a validation set (15 000
images) to train the model.

B. Methodology

We implemented a UNet architecture assisted with attention
blocks in the decoder part to extract roads from the dataset
images by classifying pixels into two categories: road and

https://deepglobe.org/challenge.html
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background. This model has 2.07 million trainable parameters.
The input image size is 512 × 512 which halves through a
max-pooling layer after each convolutional block. Simultane-
ously, the depth of the feature map matches the number of filters
utilized in that specific convolutional block. Within the encoder
part, every convolutional block comprises two convolutional
layers. The filter count of each convolutional block compared to
the preceding block is doubled. Starting with 16 filters at the first
block and doubling at each block, at the model’s bottom layer, the
feature map reaches a depth of 512 with the size of 16× 16. After
each max-pooling layer, a dropout layer is considered which is
incorporated at a rate of 0.1 in the initial layer, with a gradual
increase to 0.5 at the deepest, bottleneck layer. This strategic
approach aims to counteroverfitting, enhance generalization by
introducing controlled noise during training, and prevent an
overly tailored fit to the training data [53].

Due to the substantial bias in our dataset, where the back-
ground area vastly outnumbered the road area, we incorporated
the Attention block to enhance the model’s focus on regions
containing roads. Spatial attention enhances accuracy by cap-
turing intricate input–output relationships, promoting scalability
across input sizes, and also improving interpretability by visual-
izing the attended input parts and their impact on output [54]. An
attention block is a component that filters out irrelevant features
for the current task. In the expansive path, each layer incor-
porates an attention gate, requiring features from the encoder
path to pass through it before concatenating with up-sampled
features [20], [55]. The attention block receives two inputs:
one from the deeper layer referred to as the “gating” signal
and one from the encoder part referred to as the “skip” signal.
Due to their different layer origins, their dimensions differ. Both
signals pass through a convolutional layer, and the gating signal
is up-sampled. The resulting equal-sized outputs are then added
together, incorporating deep feature map information from the
gating signal and spatial information from the skip signal. This
combinational feature map is passed through a ReLU activation
layer followed by a single filter convolutional layer and then a
sigmoid activation layer, resulting in a 2-D array of numbers that
can be considered as attention weights. This array multiplied by
the skip signal is used to weight the skip signal, signifying the
target areas that contain roads and attenuating other regions. At-
tention block applies a function that weights feature maps based
on class importance, allowing the network to prioritize specific
classes and focus on particular objects within an image. The
weighted skip signal is then concatenated with an up-sampled
gating signal to form the input for the subsequent convolutional
layer. Note that the number of filters to be convolved with skip
and gating signals is equal to the depth of the feature map of the
skip signal, which is different for each attention block.

The implemented model is shown in Fig. 2. Note that the
arrows representing convolution, down-sampling, up-sampling,
and skip connections are shown with different colors. The up-
sampling process involves a twofold approach. Initially, there is
an up-convolution, which enlarges the feature map by doubling
its width and height while reducing the channel count by half.
Following this, the enlarged feature map is merged with the
corresponding feature map from the contracting path (encoder)

Fig. 2. Proposed architecture of UNet with attention block.

Fig. 3. (a) Detailed schematic of implemented attention. (b) Attention block’s
position in the model.

through concatenation. This maintains the spatial information
and context. Consequently, the up-sampling operation not only
reinstates the resolution but also integrates the acquired low-
level and high-level features within the network [33]. Skip
connections address the vanishing gradient issue by preserving
gradient magnitude, encouraging flat minimizers, and stopping
the transition to chaotic behavior [54]. Moreover, they enhance
model accuracy by amalgamating low-level and high-level fea-
tures, enabling the capture of intricate patterns and improving
generalization to new data. In addition, skip-connections combat
overfitting by introducing noise to feature maps, thereby promot-
ing more resilient model architecture [56]. The attention block,
which is the main block of this model, is shown in Fig. 3. In the
attention block, the additional layer adds the gating signal and
skip signal, and the multiplication layer multiplies the attention
weights by the skip signal, resulting in the weighted feature map.

The additive attention block is described as follows:

qlatt = ψT
(
σ1

(
WT
x x

l
i +WT

g gi + bg
))

+ bψ (1)

αli = σ2
(
qlatt

(
xli, gi; Θatt

))
(2)

where xl is the feature from the contracting path and g is the
gating signal. Also, the termσ2(xi,c)= 1

1+exp(−xi,c)
corresponds

to the sigmoid activation function.
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Attention block is characterized by a set of parameters Θatt

containing linear transformations Wx � RFl×Fint , Wg �
RFg×Fint , ψ � RFint×1, and bias terms bψ � R, bg � RFint . The
input tensors’ channelwise 1 × 1 × 1 convolutions are used to
compute the linear transformations. The concatenated features
xl and g are linearly transferred to anRFint dimensional interme-
diate space [56], and this is known as vector concatenation-based
attention in other settings [45].

It is worth noting that for training the model, we employed
the Adam optimizer in conjunction with the binary cross-entropy
(BCE) loss function, which is suitable for binary classification
tasks and is frequently employed to quantify the difference
between two probability distributions. A one-hot encoded vector
that has the true class’s value set to 1 and the other class’s value
set to 0 is typically used to represent the true class in binary
classification [57], [58]

BC ELoss = − 1

N

N∑

i = 0

(yi log (pi) + (1− yi) log (1− Pi))

(3)
where p is the anticipated probability of the positive class and y is
the true class label (either 0 or 1). When the predicted probability
p equals the actual class label y, the loss function is minimized.
Numerous advantageous characteristics of the BCE loss include
its simplicity, differentiability, and ability to interpret the results
of the model in probabilistic terms. In addition, compared to
other loss functions, it offers a smooth optimization surface and
is less susceptible to outliers [58].

Also, in the output layer, the sigmoid function was used as
activation. Apart from the final layer, in each Attention block,
we also used a sigmoid activation layer to create the Attention
array [59]

Sigmoid activation function =
1

1 + e−x
. (4)

For the remaining layers, the ReLU activation function was
applied. The reason behind using the sigmoid activation func-
tion in the mentioned layers is its effectiveness in improving
class separation. In addition, the utilization of ReLU activation
in other layers aims to expedite parameter convergence, thus
accelerating the learning process.

The ReLU nonlinear function’s primary benefit is that it has a
stable derivative for all input values greater than zero. Network
learning is accelerated by this fixed derivative. Levels are pri-
marily utilized to extract important features that will be applied
to subsequent levels to carry out the classification process [52]

ReLU activation function = max (x, 0) . (5)

C. Accuracy Assessment

Despite the training step, where we divided each image into
nine overlapping smaller patches as an augmentation technique
and excluded the background-only images, in the evaluation
step, we considered full coverage of the image for analyzing
the model’s performance on the test set. The metrics precision,
recall, F1-score, and IOU were used to evaluate the trained model
on the test set. The threshold value of 0.5 is used to classify each

pixel of the output into the road or background class. Considering
that each pixel is labeled as road or background in the mask and
the same happens in the prediction, there are four types of pixels.
The road pixels of the mask, which are predicted as the road by
the model as well, are called true positive (TP). The road pixels
of the mask, which are predicted as background by the model, are
called false negative (FN). The same happens for the background
pixels of the mask. The background pixels predicted as negative
are called true negative (TN), and the remaining background
pixels predicted as positive are false positive (FP). By counting
the number of TP, TN, FP, and FN, the metrics are calculated.

Precision measures the proportion of correctly predicted road
pixels out of all the pixels predicted as road. Low precision
means that a significant portion of the pixels predicted as road
pixels are not really road pixels. In other words, low precision
means that the background pixels predicted as road are consid-
erable compared to the real road pixels predicted as road.

Precision =
TP

(TP + FP)
. (6)

Recall measures the proportion of correctly predicted road
pixels out of all actual road pixels. By actual road pixels, we
mean the road pixels of the mask. Recall is also known as
sensitivity or TP rate. Low recall means that a considerable
portion of actual road pixels are predicted as background.

Recall =
TP

(TP + FN)
. (7)

There is usually a tradeoff between precision and recall.
In order to achieve high precision, FPs should be minimized.
Minimizing FP means the model is cautious in labeling the pixels
as roads. Being very cautious, the model may even not label the
real road pixels as road, which would result in an FN increment
and hence low recall. The metric F-Score is usually used in order
to consider the precision-recall tradeoff.

F− Score =
2∗Precision ∗ Recall
(Precision + Recall)

. (8)

Another important metric evaluated on the test set is IOU,
which measures the intersection of actual and predicted road
pixels over all the actual and predicted road pixels.

IOU =
TP

(TP + FN + FP)
. (9)

All these metrics range from zero to one, with higher values
indicating better performance. Precision signifies the impact of
FPs, and recall signifies the consequences of FNs. The F-Score
and IOU include both FPs and FNs. In order to compare per-
formance considering a single metric, the F-Score and IOU
are proper metrics, but precision and recall usually should be
considered simultaneously, and considering both of them would
be useful for a more detailed analysis of performance.

III. RESULTS AND DISCUSSION

The model was trained on NVIDIA A100 GPU with 40 GB
GRAM on the Google Colab platform. In this work, we followed
two goals: 1) improve the performance of road extraction by the
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TABLE I
RESULT COMPARISON OF ROAD EXTRACTION METHODS PERFORMED ON

DEEPGLOBE DATASET

Fig. 4. Scatterplot of precision and recall for all images.

discussed method and 2) find out the shortcomings by analysis
of the result. In Table I, quantitative results achieved by our
model in comparison with nine distinct methods evaluated on
the DeepGlobe dataset are given. As outlined, our proposed ap-
proach demonstrated better performance across recall, F-Score,
and IOU than other models, and just for precision, the Res-UNet
model performed better. A key point is that this model achieved
good performance on both precision and recall, meaning that
both predicting actual road pixels as road and not predicting
the background as road have been done with high accuracy.
For the road extraction task, the road is the target class while
it contributes the minor part of the dataset, so the minor class
is the target class. Precision and recall are the metrics that are
best suited for biased datasets with minor target class. Ideally,
there should be as few false predictions as possible, including
both FPs and FNs. FPs and FNs are signified by the precision and
recall metrics, respectively. In other words, if there is an attribute
shared by samples with low precision, this attribute may be the
cause of a high number of FP.

In a similar vein, any shared attribute among samples with
low recall could be a potential cause of the high number of FNs.

In Fig. 4, the distribution of precision and recall of all test
images has been shown. The value of 0.75 is considered a
threshold for good precision and recall. With this threshold, the
images are divided into the following four categories:

1) Images with high precision and high recall (HPHR);
2) Images with high precision and low recall (HPLR);
3) Images with low precision and high recall (LPHR);
4) Images with low precision and low recall (LPLR).
The goal is to figure out the causes of erroneous predictions,

including FPs and FNs, by examining the model’s performance
on the test set. Precision and recall are affected negatively by FP
and FN, respectively. We aimed to determine the causes of the
model’s inaccurate predictions by categorizing the results and
comparing samples from various categories.

In Fig. 5, the accuracy, IOU, and F-Score distribution of
the four categories are presented. It is noteworthy that while
the distribution of IOU and F-Score differs for each category,
accuracy is consistent across the categories and centered around
the same value. The explanation for this is that accuracy mimics
true predictions, whereas IOU and F-Score represent false pre-
dictions. Precision, recall, F-Score, and IOU would all be zero
for a model that predicted no-road for the entire image, but it
may still achieve excellent accuracy if the road area is sufficiently
low. With these points in mind, comparing and analyzing image-
mask pairs from different categories provides a good insight
into the limiting factors of precision and recall metrics. In the
following part, we will dive into a deep analysis of the four
categories.

In Fig. 6, several sample images from each category are
shown. For each sample, the image, mask, and prediction of
the model have been displayed to be compared easily.

Let us assume that there is no masking issue in the dataset,
which means all the roads have been masked as roads, and
all the background areas are labeled as backgrounds. By this
assumption, FP means that the model has labeled the background
as roads, and FN means the model has predicted the background
as roads. By analyzing the results, we noticed that there are some
cases where a road is not masked as a road in the dataset, and even
in a few cases, nonroad areas were masked as roads. We call these
issues undermasking and overmasking, respectively. In the case
of overmasking, even if the model predicts the overmasked area
as background, which is really background, FNs will increase,
which would cause recall to decline. Furthermore, when the
dataset is overmasked, a high recall of the model means it has
predicted the overmasked areas as roads, which are not really
roads and just masked as roads erroneously. When the dataset
is undermasked, a high precision of the model means it has
predicted the undermasked areas as background which is not
background in reality. It means that when there is a masking
issue in the dataset, a high value of metrics does not mean that
the model extracts roads properly; it means the model predicts
the same result as masks, no matter if they are roads or not.
Therefore, it is very important to find out which issues are
related to masking issues and which are really due to the model’s
performance. The issues related to the dataset could not be solved
by model tuning and vice versa.

As expected, most of the predictions of our model are included
in Category 1, which has the best road extraction performance,
and the model’s predictions align more accurately with the
ground truth masks compared to other categories. Although
there is a slight difference between mask and prediction, it
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Fig. 5. Distribution of accuracy, F-score, and IOU for all images.

Fig. 6. Sample images of each category. (a) HPHR. (b) HPLR. (c) LPHR. (d) LPLR.
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TABLE II
NUMBER OF SAMPLES IN EACH CATEGORY

is far less than in other categories. In this category, we did
not find any considerable masking issues, which means the
shortcomings in performance are mainly related to the model
itself, and analyzing these images could shed light on the model’s
performance and the difficulties of road extraction tasks such as
occlusion. The main issue in this category is occlusion, which
causes interruptions to road continuity and some erroneous
island pixels detected as roads which seem that. One solution
could be postprocessing the model’s outputs with another model
or method to clean up the erroneous pixels and check the road
network continuity.

Category 2 includes images with HPLR. It means the main
issue is FNs, while FPs are not considerable. The primary
challenge in this category of images is that the model fails to
identify certain road segments. One main reason is occlusion as
shown in the sample pictures. In this category, there are cases
in which seem that the prediction is completely aligned with
the mask but precision is low due to the lower thickness of
the predicted road compared to the mask. This issue is mostly
observed for rural roads where the road edge is not clear and the
narrower width prediction causes FN to increase and recall to
decline. Another issue in this category which is observed in very
few cases is related to the overmasked images. For such cases,
although the model properly considered the overmasked area
as background, it is counted as FN, which affects recall metric
value. We can say that such samples cause unreal degradation
of recall performance.

Category 3 includes images with LPHR. In this category, FPs
are high, while FNs are not considerable. Three main issues
were observed in this category. One major issue is related to the
undermasked cases, for which the model has correctly detected
undermasked areas as roads, but as they are counted as FPs due
to the mask issue, the precision metric degrades. In Table II,
the number of samples in each category has been shown. The
samples in category 1 exceed the other categories significantly.
It means that the model succeeded to extract the road accurately
for most of the images.

It seems the dataset includes more undermasked cases than
overmasked cases, as low precision due to undermasking was
observed much more than low recall due to overmasking. The
likelihood of encountering this category in the undermasked
images is higher, and as a result, despite the model’s successful
performance, the metric values have diminished due to the
masking issue in the dataset. In this category, there are plenty
of samples for which modifying the mask would help enhance
the quality of the dataset and achieve better performance for the
models trained on it.

The other main issue observed in this category is related to the
road-like terrestrial objects, which cause the model to be fooled

and detect them as roads. There were some test images, including
road-like objects such as rivers, farmland borders, airstrips, and
industrial structures detected partially as roads.

It is frequently observed that narrower and less prominent
roads are not labeled in the mask, yet the model correctly
identifies them. It depends on the goal of the extraction task
to decide which roads should be extracted, but it is possible
to mitigate the fooled model issue by creating more detailed
datasets with different classes for different road types. This
requires a different type of dataset and also changes the problem
from binary segmentation to multiclass segmentation. With the
same solution, it is possible to prevent the model from predicting
road-like objects as roads. By including the road-like objects
in the mask with their own class, the model, in addition to
extracting more information from the image, would learn to
label road-like objects in their own class. The other types of
images that contributed to this category were those with very
small portions of the road. The reason could be that in such
cases, even if the entire road is accurately detected, identifying
a small fraction of the background as a road drastically reduces
precision.

In the category-4 images, the model exhibited poor per-
formance in both precision and recall metrics. Compared to
other categories, in this category, the model has identified a
significant portion of the background as a road and failed to
detect some parts of the actual road. Mainly, the reason for
poor performance in this category is a combination of all the
issues already discussed. All of the already-mentioned issues,
including model failures, dataset issues including under- and
overmasking, and false detection of road-like objects, were
observed in this category. These cases are not only the worst
predictions of the model but also the most complicated cases
to be analyzed or even improved in future models, as usually
the reason is a combination of multiple issues. Usually, this
occurrence is more prevalent in images that include dirt roads
in rural areas. Notably, the majority of images falling into this
category tend to be nonurban scenes and secondary roads, while
in the first category, urban images with organized road networks
had a significantly higher representation.

Categorizing the images based on the precision and recall
metrics and comparing samples of different categories led us
to detect different reasons causing these metrics degradation.
Occlusion, detecting road-like objects as road, undermasked
and overmasked cases, road edge detection issues in rural roads
affecting road width, and metric degradation for the samples with
low portion of road area are the main issues observed in different
categories and discussed. Among the issues, mask issues are
different from others as they are related to the dataset affecting
the metrics. In such cases, the metrics are not reliable to judge
the performance of the model and its predictions. As these issues
are mainly observed in categories 2 and 3, these categories are
the best candidates for dataset modification.

There are different reasons that make road extraction from
remote sensing images a challenging task. These challenges
can be related to the shortcomings of the model or the issues
of the dataset. Among the model-related factors, we can ad-
dress inappropriate model selection, improper model design,



1134 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

and inadequate choice of parameters and hyperparameters. Fur-
thermore, dataset deficiencies, such as low quality, insufficient
data volume for model training, limited diversity within the
dataset, and skewed dataset, can have a negative impact on model
performance. In addition to the mentioned factors, in supervised
learning algorithms, issues related to labeling and masking of
images pose significant challenges.

The overmasking and undermasking issues of the dataset
were addressed as one reason for low precision and recall,
respectively. As these metrics degradations were due to mask
issues and not model performance, we called it fake performance
degradation that does not resemble the real performance of the
model.

As the images in categories 2 and 3 were mainly affected by
these masking issues, they were suggested as good candidates
for dataset mask modification with some considerations. For the
issue of the fooled model where it predicts road-like objects as
road and the issue of different types of roads detection, it was
suggested that different types of datasets with multiclass targets
would achieve higher performance while adding difficulty to the
problem on the other hand.

IV. CONCLUSION

In our proposed model, we attempted to implement an ap-
propriate approach for road extraction from remote sensing
images using UNet architecture and techniques such as dataset
augmentation and deploying attention blocks in the model. This
was aimed at achieving better results in comparison to similar
models and finally resulted in an accuracy of 98.33% and higher
performance on Recall, IOU, F-Score. Finally, by analyzing the
model’s performance on the test set using various metrics, we
aimed to evaluate its effectiveness. Additionally, we endeavored
to identify factors influencing the model’s performance in road
extraction from each image in the test set. To achieve this, we fo-
cused on two crucial metrics: precision and recall. We examined
four distinct categories of images, which have been discussed
comprehensively in previous sections. This study also addresses
the intricate challenges of extracting information from remote
sensing images using deep learning. Through dataset prepara-
tion and model implementation, combining different techniques
such as attention-enhanced UNet models, patch-based attention
mechanisms, and rotation-based augmentation, coupled with
in-depth analysis of the results, we tried to achieve better results
than previous works and also provide suggestions and solutions
to the inherent complexities of road extraction from aerial
images. Looking ahead, these insights will pave the way for
refining datasets, enhancing model architectures, and propelling
advancements in the realm of remote sensing applications.
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