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Active–Passive Remote Sensing Identification of
Underground Coal Fire Zones With Joint Constraints
of Temperature and Surface Deformation Time Series

Yu Chen , Zhihui Suo , Jie Li , Jun Wei , Fei Cao , Huahai Sun , Huaizhan Li , Yandong Gao ,
Qian Li , Yinglong Yue , and Kaimin Xu

Abstract—Coal fire is a geological disaster that causes resource
waste and environmental pollution globally. Accurate identification
of the spatial location of coal fires is critical for effective coal fire
governance. However, existing methods for identifying coal fire
zones have problems, such as a high omission and misclassification
ratio and insufficient consideration of the temporal variation
in temperature. Therefore, this article proposed a temporal
temperature anomaly extraction algorithm based on adaptive
windows (TTAE-AW) to extract temporal temperature anomaly
information. Moreover, the spatial coverage of deformation
monitoring points was improved using distributed scatterer
interferometric synthetic aperture radar (DS-InSAR), and then
a double-threshold two-stage filter method (DTTF) was proposed
to accurately identify the spatial location of coal fire zones. The
Rujigou mining area in Ningxia (China) was chosen as the region of
study. Results showed that the temperature anomalies extracted us-
ing the TTAE-AW method are more concentrated in coal fire zones
and that the amount in different seasons is more stable. The average
accuracy and Kappa coefficient were improved by 15.5% and 0.345,
respectively, over those of the conventional method. Compared
with the small baselines subset InSAR approach, the DS-InSAR
technique has 158% higher spatial coverage for monitoring coal fire
zones. Compared with in situ observations of coal fire points, the
accuracy and Kappa coefficient of the spatial location of fire zones
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obtained using the DTTF method were 91% and 0.77, respectively,
demonstrating that the proposed method can provide reliable
technical support for coal fire monitoring and management.

Index Terms—Collaborative analysis, distributed scatterer
interferometric synthetic aperture radar (DS-InSAR), surface
deformation, thermal infrared (TIR) remote sensing, time-series
temperature anomaly extraction (TAE), underground coal fire
identification.

I. INTRODUCTION

UNDERGROUND coal fires are characterized as large-
scale coalfield fires that develop over time due to either

human factors or spontaneous ignition of a coal seam [1], [2],
[3]. Currently, there are approximately 10 000 underground coal
fire zones globally. The situation is most critical in China, USA,
India, and Australia, but also in other countries and regions with
abundant coal reserves. The long-term burning of underground
coal fires causes serious resource loss, atmospheric pollution,
and increases global warming. In addition, it can result in ground
settlement, surface cracks, and geological disasters [4], [5], [6].
Therefore, it is important to accurately identify and dynamically
monitor coal fire zones to support the extinguishing and warning
of coal fire disasters.

Currently, the five main approaches for monitoring and de-
tecting underground coal fires comprise physical, chemical,
thermal, drilling, and remote sensing methods [7], [8], [9],
[10], [11], [12]. Although the first four are commonly used
and considered effective, the required field research is time
consuming and expensive. Moreover, it is difficult to monitor
zones with large fires. Remote sensing has the advantages of
large-area synchronous observation, traceability, and economy,
and it has gradually become one of the mainstream methods
for coal fire detection in recent years [13], [14], [15], [16].
Heat from combustion is transferred to the surface resulting in
higher surface temperatures in coal fire zones than in noncoal fire
zones [17], [18]. Consequently, thermal infrared (TIR) imagery
can be used to invert surface temperatures, extract temperature
anomaly zones, and identify the spatial extent of fire zones.
Although this is the main approach when using remote sens-
ing technology to detect coal fire zones, choosing a suitable
temperature threshold is a difficult but fundamental part of the
process [19], [20], [21], [22]. Methods commonly used for
temperature anomaly extraction (TAE) can be divided into two

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-3014-9012
https://orcid.org/0009-0008-2824-8856
https://orcid.org/0000-0002-5560-4202
https://orcid.org/0009-0005-0175-0895
https://orcid.org/0009-0007-2268-5337
https://orcid.org/0009-0000-9969-3035
https://orcid.org/0000-0001-7860-0960
https://orcid.org/0000-0002-6224-5711
https://orcid.org/0009-0001-4714-0030
https://orcid.org/0009-0002-6318-2967
https://orcid.org/0009-0005-9762-7882
mailto:chenyu@cumt.edu.cn
mailto:suozh@cumt.edu.cn
mailto:yunhuili@cumt.edu.cn
mailto:lihuaizhan@cumt.edu.cn
mailto:ydgao@cumt.edu.cn
mailto:li_qian@cumt.edu.cn
mailto:weijunwxx@163.com
mailto:figo6507804@163.com
mailto:297228108@qq.com
mailto:yueying52013140@126.com
mailto:380974681@qq.com


CHEN et al.: ACTIVE–PASSIVE REMOTE SENSING IDENTIFICATION OF UNDERGROUND COAL FIRE ZONES 895

main categories: single-threshold algorithms and multithreshold
algorithms. Single-threshold algorithms mainly include the fixed
threshold algorithm (FTA) [23], gradient threshold algorithm
[24], adaptive gradient threshold algorithm [25], and spatiotem-
poral temperature-based thresholding algorithm [26]. The main
multithreshold algorithm is the TAE algorithm [27]. Single-
threshold algorithms select a fixed threshold for the entire image
to extract temperature anomalies. This method is convenient and
widely applied, but it can be subjective and lead to omission and
misclassification of temperature anomalies. The TAE method
utilizes local threshold selection to extract temperature anomaly
zones, leading to reduction in false detection rates and enhance-
ment in detection accuracy. This approach effectively addresses
the limitations of single-threshold algorithms, but it does lack
stability. For example, the TAE results are greatly affected by
window size, and the single criterion used for selecting tem-
perature anomaly pixels within the window affects recognition
accuracy. In addition, the existing algorithms use independent
images to identify temperature anomalies and do not consider
the fact that coal combustion is a continuous process temporally.
Thus, the accuracy of temperature anomaly identification in fire
zones is reduced. To address the above problems, this article
developed a temporal TAE algorithm based on adaptive windows
(TTAE-AW). The algorithm was designed with an AW and mul-
tiple filtering criteria within the window. Moreover, the method
also considers the temporal continuity of coal fire combustion.
Ultimately, the time parameter is used to obtain temporal tem-
perature anomaly information via time-series analysis.

Because of the influence of solar radiation and the poor spatial
resolution of TIR remote sensing images, temperature anomaly
information is often insufficient for accurate identification of fire
zones [28]. Therefore, some studies considered surface deforma-
tion information to identify coal fire zones using the feature that
underground coal fires trigger surface deformation [12], [23],
[24], [26], [29], [30]. However, surface deformation in coal fire
zones is complex and often accompanied by different degrees of
decoherence. Traditional time-series interferometric synthetic
aperture radar (InSAR) techniques sometimes fail to obtain
comprehensive deformation information [12], [24], [26]. There-
fore, this article adopted the distributed scatterer (DS)-InSAR
technique to improve the coherent point density by means of
homogeneous point identification and phase optimization. Then,
the line-of-sight (LOS) surface deformation rate was solved and
the surface deformation anomaly information extracted.

Currently, the main techniques used for identification of coal
fire zones that combine temperature and deformation anomaly
information are the overlay analysis (OA) [23], [31] and the
two-stage bandpass filter methods [24], [26]. The OA method is
dependent on the intersection of temperature and deformation
anomalies to obtain the coal fire zones. The algorithm is simple
but its accuracy is low. In the two-stage bandpass filter method,
the temperature and deformation anomaly information intersect
on the window and the loss ratio of the temperature anomaly
data is solved. Then, the loss ratio threshold is used to filter
the temperature anomaly pixels and the retained temperature
anomaly pixels represent the identified fire zones. However,

this method utilizes a single artificially formulated loss ratio
threshold, which leads to unstable results in fire zone identifica-
tion. Therefore, this article proposed using a double-threshold
two-stage filter (DTTF) method, which includes OA and double
loss ratio threshold filtering to identify fire zones. Meanwhile,
to reduce human intervention, statistical methods were used to
determine the double loss ratio thresholds.

This article focused on the Rujigou mine in the Ningxia Hui
Autonomous Region of China, which is a typical mining area
with a history of coal fire burning that extends over 300 years.
Overall, 29 Landsat-8 satellite optical remote sensing images
and 35 C-band Sentinel-1A SAR images were combined to
verify the applicability of the method.

The rest of this article is organized as follows. Section II pro-
vides details of the active–passive remote sensing identification
method for underground coal fire zones with joint constraints
of temperature anomaly and surface deformation time series,
including the temperature inversion method, the TTAE-AW, the
surface deformation anomaly extraction method, and the DTTF
fire zone identification method. Section III describes the study
area and the datasets used. Section IV provides analysis of the
study results. Section V discusses the selection of temporal
temperature thresholds and the filtering of suspected fire zones.
Finally, Section VI concludes this article.

II. METHODOLOGY

This article proposed an active–passive remote sensing
method for identification of underground coal fire zones. It
includes the joint constraints of temperature anomaly and sur-
face deformation time series to resolve the problems of single-
threshold selection, solidification of window size, strong subjec-
tivity of parameter setting, and failure to consider the temporal
continuity of coal fire combustion in current methods used for
TAE and fire zone identification. First, the single-window algo-
rithm was employed to invert the ground temperature. Then, the
temporal temperature anomaly information was extracted using
the TTAE-AW method. The DS-InSAR technique was utilized
to acquire the LOS surface deformation rate and to extract
surface deformation anomaly information. Finally, the DTTF
method was applied to combine the information of time-series
temperature anomalies and surface deformation anomalies to
identify the location of underground coal fires in the Rujigou
mine. The workflow of the proposed method is illustrated in
Fig. 1.

A. Surface Temperature Inversion

Radiometric calibration and atmospheric correction were ap-
plied to multitemporal Landsat-8 images, and then the single-
window algorithm of Qin et al. [32] was used for surface
temperature inversion (Fig. 1).

The core formulas are expressed as follows:

TS = [a× (1− C −D) + (b× (1− C −D)

+ C +D)× T6 −D × Ta]/C (1)
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Fig. 1. Workflow of the proposed method.

T6 = K2/ ln(K1/B(TS) + 1) (2)

C = ε× τ (3)

D = (1− t)× (1 + (1− ε)× τ) (4)

where TS is the surface temperature; a and b are constants with
values of −67.355351 and 0.458606, respectively; Ta is the
average atmospheric action temperature, which is obtained from
a linear relationship with the near-surface temperature during
satellite transit; T6 is the brightness temperature of Landsat-8
band 10; and C and D are intermediate variables, calculated
using (3) and (4). In (2), K1 and K2 are constants preset
before the launch of Landsat-8 satellite with values of 607.76
and 1260.56, respectively, and B(TS) is the radiation intensity

received by the satellite sensor. In (3) and (4), ε is the land surface
emissivity, which is obtained by calculating the normalized
difference vegetation index with vegetation coverage; and τ
is the atmospheric transmittance obtained by calculating the
atmospheric profile parameters from the website provided by
NASA (https://atmcorr.gsfc.nasa.gov/).

B. Temporal Temperature Anomaly Extraction Algorithm
Based on Adaptive Windows (TTAE-AW)

This article proposed the TTAE-AW method to overcome the
problems of current TAE algorithms, such as the single threshold
value, influence of window size, and failure to consider the
combustion continuity of coal fires (Fig. 2). The method consists
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Fig. 2. Schematic of the TTAE-AW algorithm flow.

of TAE algorithm based on the AW (TAE-AW) and a time-series
processing method.

1) TAE-AW Algorithm:
1) Step1: The mean value m of the entire image surface

temperature is calculated.
2) Step2: Running Step2_1 (Fig. 2). The starting window

size is chosen as 4 × 4. Then, the mean value m0, the
threshold t1 (standard deviation plus mean value), and
t2 (double standard deviation plus mean value) of the
pixels within the window are calculated. The number of

times (N ) that pixels are sampled within the window is
calculated (whenever a pixel is sampled, the original value
of N is increased by 1). Then, the relationship between
the window mean m0 and the entire image mean m is
determined. Ifm0 ≤ m, the window is no longer expanded
and Step3 is run directly (Fig. 2). If m0 > m, Step2_2 is
run (Fig. 2), and the window is spread around in steps of
1. The mean value mn, the threshold t1 and t2, and the
number of samples N of the pixels in the new window are
calculated. Then, Step3 is run (Fig. 2).
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Fig. 3. Flow chart of the DTTF algorithm. Temperature anomaly image (a) and deformation anomaly image (b) are extracted based on the land surface temperature
image and deformation image, respectively. The window size is set to 4 × 4 as in the four parts divided by the red line segment in image (a). The corresponding
pixels of images (a) and (b) are intersected to obtain image (c). Assuming that the solved double thresholds T1 and T2 are 0.3 and 0.7, respectively, then image (d)
is obtained for the four window pixels of image (c) according to the threshold condition. Finally, the independent pixels are removed to obtain the final fire zone
identification image (e).

Fig. 4. Geographical overview of Rujigou. (a) Study area location and the DEM. The blue triangle in the figure marks the Rujigou mine. (b) Schematic of coal
fire zones in the Rujigou area.

3) Step3: Running Step3. The number of times a pixel is
selected as a temperature anomaly pixel is calculated (M ).
If the pixel value γvalue ≤ t1, it is considered that the pixel
is not a temperature anomaly pixel and the value of M
remains unchanged. If t1 < γvalue ≤ t2, the pixel is consid-
ered a low-frequency temperature anomaly pixel and the
original value of M is increased by 0.5. If γvalue > t2, the
pixel is considered a high-frequency temperature anomaly
pixel and the original value of M is increased by 1.

4) Step4: The value of mn is determined (Fig. 2, Step4).
If mn = 0, it means that the window is not expanded.
At this time, it is necessary to determine whether the
entire image has finished processing; if not, the window is
slid and Step2_1 is run again. If mn! = 0, the window is
expanded. Ifmn > m0, then Step2_2 is run. Ifmn ≤ m0,
it is necessary to determine whether the entire image has
finished running; if not, the window is slid and Step2_1
is run again. After running the entire image, M/N is
calculated on a pixel-by-pixel basis. When M/N > 0.7,
the pixel is selected as a temperature anomaly pixel. A

temperature anomaly image is composed of temperature
anomaly pixels.

This method extracts temperature anomaly information with-
out determining the size of the sliding window. The window will
change adaptively according to the mean of the pixel compared
with the threshold value. At the same time, multiple thresholds
are used to filter temperature anomaly pixels to avoid omission
and misclassification of temperature anomaly zones.

2) Temperature Anomaly of Time-Series Extraction Method:
Currently, the information of combined temperature anomalies
and surface deformation used to identify fire zones often suffers
from large numbers of omissions and misclassifications of coal
fire zones [24], [26]. This is because the temperature anomaly
information is obtained only for a certain moment, whereas coal
fire burning is a continuous process temporally. Therefore, the
extracted temperature anomaly information is processed as a
time series. First, a time parameter is introduced to count the
time frequency of the corresponding pixels for all temperature
anomaly images. Then, the time frequency is analyzed and the
time frequency threshold (Tf ) is determined. Pixels with time
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Fig. 5. (a) Results of surface temperature inversion using single-window algorithm for certain periods in the study area.
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Fig. 5. (Continued.) (b) Results of surface temperature inversion using atmospheric correction algorithm for certain periods in the study area.
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Fig. 6. Determining time-frequency thresholds. (a) Total time-frequency diagram. (b) Counting the number of pixels corresponding to different time frequencies
and calculating the mean and standard deviation of the time frequencies. (c) Time-frequency image of Tf = 13.

Fig. 7. Comparison of temperature anomalies extracted using different algorithms with coal fire point.
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Fig. 8. Seasonal stability analysis. The number of temperature anomaly pixels and the corresponding standard deviation of the pixel numbers extracted for all
images using the TTAE-AW, TAE-AW, TAE, and FTA methods.

frequencies of >Tf are marked and such pixels are considered
to be in coal fire zones. Pixels with time frequency of <Tf do
not conform to the coal fire burning time continuity law. Thus,
they are considered not to belong to coal fire zones. Finally,
through the steps of filtering the temperature anomaly images,
retaining the location and temperature anomaly information
of the marked pixels, and removing the unmarked pixels, the
temporal temperature anomaly information is obtained (Fig. 2,
Step5).

C. Method for Extracting Surface Deformation Anomalies

Time-series InSAR techniques, such as the persistent scat-
terer, small baseline (SB), and DS methods, can acquire high-
precision, high-resolution, and wide-ranging surface deforma-
tion information, and they have been used widely in many fields
[33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43],
[44]. Compared with the persistent scatterer and SB techniques,
the DS-InSAR technique can extract more coherent observation
points by identifying statistically homogeneous pixels (SHPs)
and estimating the optimal phase. In some low-coherence zones,
such as coal mining zones and coal fire zones, the DS-InSAR
technique has achieved favorable monitoring results due to
its unique advantages [8], [12], [23], [24], [45], [46], [47].
Therefore, it was considered necessary in this article to use the
DS-InSAR technique to extract surface deformation informa-
tion. The main processes of the surface deformation anomaly
extraction method include the following.

1) Generating Interferograms: The super master image
is selected by overall correlation coefficient analysis. All
auxiliary images are registered based on the super master
image, and then they are resampled. Under the premise of
ensuring no isolated points in the spatiotemporal baseline
network, SB interferograms are constructed by setting vertical
baseline and temporal baseline thresholds. Topographic
contributions are simulated and removed using a digital
elevation model (DEM).

2) Identifying Statistically Homogeneous Pixels (SHPs):
SHP identification is one of the core algorithms of the DS-InSAR
technique. SHP identification determines the degree of similarity
between adjacent image elements and central image elements
through statistical inference. The identification accuracy of the
algorithm directly affects the accuracy of subsequently esti-
mated parameters. In this article, the hypothesis test of confi-
dence interval method proposed by Jiang et al. [48] was used to
identify SHPs.

This method combines the merits of the fast statistical ho-
mogeneous pixel selection and the likelihood ratio test, and the
unbiased estimate of the latter is used as the truth value of the
reference pixels. At a preset confidence level, if the time-average
intensity values of adjacent pixels fall into the truth-constructed
interval, they are considered homogeneous samples of the refer-
ence pixels, which simultaneously guarantee the accuracy and
speed of identifying statistically homogeneous points.

3) Estimating the Optimal Phase: The resolution cell of the
DS is composed of multiple independent scatterers, which can
cause decorrelation. Thus, to improve the density of points and
the signal-to-noise ratio of the interferometric phase, an interfer-
ometric phase-optimization process is necessary after identifica-
tion of SHPs. In this article, we adopted the eigendecomposition-
based maximum likelihood estimator of the interferometric
phase optimization algorithm proposed by Ansari et al. [49]. The
method considers the high accuracy of the maximum likelihood
method for estimating the covariance matrix, adopts the high
efficiency of the eigenvalue decomposition solution strategy, and
uses the coherence matrix as a weighting factor to suppress the
effect of low-coherence interference pairs.

4) Selecting DS Points: The goodness of fit (γTC) between
the original interference phase and the optimized phase, which
is used as the evaluation index, can be expressed as follows:

γTC =
2

N(N + 1)
Re

N∑

m=1

N∑

n=m+1

ejϕm,ne−j(θm−θn) (5)
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Fig. 9. Results of surface deformation monitoring of the Rujigou mining area. (a) Results of surface deformation rate in the LOS direction extracted using the
DS-InSAR technique. (b) Results of surface deformation rate in the LOS direction extracted using the SB-InSAR technique. (c) Correlation coefficients of the two
methods. (d) Histogram of deformation rate difference. (e) Results of surface deformation anomalies. (f) Results of overlaid analysis of time series temperature
and deformation anomaly zones.
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Fig. 10. Coal fire zone identification with combined temperature and deformation constraints. (a), (b), and (c) show the fire zone identification results obtained
by the TTAE-AW +DS, TAE+DS, and FTA+DS methods, respectively.

where γTC is the goodness of fit index, N is the number of
images, ϕm,n represents the initial interferometric phase of the
mth and nth SAR images, and θm and θn are the optimized
phases of the reconstruction. Points with γTC values of >0.5 are
selected as DS points.

5) Inverting the Surface Deformation Rate: The extracted
DS points undergo three-dimensional phase unwrapping using
StaMPS software. Then, the orbital residual errors, atmospheric
delay errors, and DEM errors are evaluated and corrected. Fi-
nally, the surface deformation rate information of the DS points
is solved using least squares estimation.

6) Extracting Surface Deformation Anomalies: The average
surface deformation rate meanLOS and its standard deviation
σLOS are combined to extract the deformation anomaly

ValueLOS ≤ meanLOS − k × |σLOS| (6)

where ValueLOS is the deformation anomaly value and k is
a positive number. Yu et al. [30] analyzed the influence of
variation in the value ofk on the extraction results of deformation
anomalies. In this article, the best results were obtained for a
value of k = 2.

D. Double-Threshold Two-Stage Filter (DTTF) Method

Based on the above extracted temperature and surface defor-
mation time-series anomaly information, the DTTF algorithm
is used to identify coal fire zones. The specific workflow of the
algorithm is as follows (Fig. 3).

1) Overlaying Analysis: A window of suitable size (e.g., 4
× 4) is selected. The corresponding pixels of a temperature
anomaly image [Fig. 3(a)] and a surface deformation anomaly
image [Fig. 3(b)] are intersected by the window to obtain the
intersection image [first-level filtering, Fig. 3(c)].
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Fig. 11. Overview of the location of time-series feature points: D1, D2, and D3 are large deformation points; T1, T2, and T3 are high temperature points; and
C1, C2, and C3 are coal fire points.

Fig. 12. Feature point time-series analysis.
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Fig. 13. Time-frequency images extracted with different time-frequency thresholds.

Fig. 14. Pixel reduction rate for different time-frequency thresholds.

2) Calculating the Loss Ratio (LR) and Determining the
Double-Threshold Value: The loss ratio of a window is the ratio
of the number of pixels lost by temperature anomalies after OA to
the number of pixels lost by the original temperature anomalies.
The mean and standard deviation of all window loss ratios are
calculated, and the mean is used as the first threshold T1 and the
mean plus standard deviation is used as the second threshold T2.

3) Identifying the Fire Zones: When LR ≤ T1 for a window,
the temperature anomaly is considered to match the deforma-
tion anomaly information and the intersection pixels within
the window are retained. When LR ≥ T2 for a window, the
temperature anomaly is considered a mismatch with the defor-
mation anomaly information and all image pixels in the window
are discarded. When T1 < LR < T2, it is considered that the
temperature anomaly and deformation anomaly information
match and therefore, the pixels in the corresponding window
of the temperature anomaly image [Fig. 3(a)] are retained. Of
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Fig. 15. Overview map of the location of time-series feature points in the suspected coal fire.

course, this rule was developed under the assumption that surface
temperature is generally considered a more intuitive feature of
coal fire burning than surface deformation among the multiple
pixels that identify the fire zones. Finally, the fire zone identi-
fication image with the double-threshold constraint is obtained
[Fig. 3(d)].

4) Filtering Independent Pixels: After applying the double-
threshold constraint, a certain proportion of independent pix-
els will exist. Therefore, neighborhood analysis is performed
to filter out pixels with fewer than three pixels in the eight-
neighborhood range to obtain the final fire zone identification
image [Fig. 3(e)].

III. STUDY AREA AND DATASETS

A. Study Area

The Rujigou coal mining area is in the northern part of the
Helan Mountains (average elevation: approximately 2000 m)
in the Ningxia Hui Autonomous Region of China. It is one of
the important bases of the coal mining industry in China. The
main geological structure is a complex oblique belt consisting of
several northeast-trending fractures and interphase back-slopes
formed at the end of the Late Jurassic and Early Cretaceous
[Fig. 4(a)]. The complex geological environment yields high-
quality anthracite coal (Taixi coal), which is known as the king
of coal globally. The coal fires in the Rujigou area began in the
Ming and Qing dynasties. In the 1990s, large numbers of small-
and medium-sized coal kilns were illegally mined leading to
rapid spread of old coal fire zones and the creation of new coal
fire zones. As of 2021, there were 25 coal fire zones caused by
spontaneous combustion in coal seams and coal gangues in the

Rujigou mining area [Fig. 4(b)] [50]. The total area affected is
approximately 300 ha, with an annual loss of approximately 1.15
million tons of coal and direct economic losses of approximately
1 billion RMB. According to broad prediction, 311 million tons
of high-quality anthracite coal in the Rujigou mining area will
be lost in 50 years [50], [51].

B. Datasets

Overall, 29 Landsat-8 satellite images with <10% obscura-
tion by cloud acquired from October 2017 to December 2019
were used to extract temperature anomaly information. Their
spatial resolutions were 30 and 100 m in the visible (bands 1–7
and 9) and TIRs (bands 10 and 11), respectively (Table I).

The 35 C-band SAR images acquired by the Sentinel-1A
satellite, launched by the Copernicus program of the European
Space Agency, were used to extract surface deformation infor-
mation. The images were acquired in the interferometric wide
mode and the study period covered October 2017 to January
2020 (Table I).

The DEM, based on 30-m spatial resolution SRTM data mea-
sured jointly by NASA and the National Imagery and Mapping
Agency, was used to remove the topographic phase from the time
series differential interferometry. The European Space Agency
provided precision orbital data.

IV. RESULTS AND ANALYSIS

A. Surface Temperature Inversion Results

The results of the partial surface temperature inversion of
the study area using the single-window algorithm are shown
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Fig. 16. Time-series analysis of the feature points in the suspected coal fire zones.

TABLE I
LANDSAT-8 AND SENTINEL-1A DATA

in Fig. 5(a). The results show that the temperature varied sub-
stantially both with season and with topographic undulation.
The surface temperatures in the coal fire zones are noticeably
higher than those in the surrounding zones in most periods. The
noncoal fire zones in the northwest of the study area during
individual periods (e.g., 20 180 824 and 20 190 405) have the
same magnitude of temperature as the fire zones [as shown

in the black rectangular box in Fig. 5(a)]. Thus, it is evident
that the accuracy of relying only on temperature anomalies to
identify fire zones is limited. To validate the reliability of the
single-window algorithm, surface temperature inversion was
carried out on the same datasets using the atmospheric correction
method, and the results are shown in Fig. 5(b). The comparative
analysis reveals that the temperature inversions of both methods
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TABLE II
AVERAGE CONFUSION MATRIX OF OVERLAP BETWEEN TEMPERATURE ANOMALY EXTRACTION RESULTS AND COAL FIRE POINTS

are consistent in terms of magnitude and spatial distribution.
The largest temperature difference of the same image inversion
is 2.7 °C, and the root mean square error is 0.9 °C. Therefore,
temperature anomaly information can be extracted using the
results of the inversion of the single-window algorithm.

B. Time-Series Temperature Anomaly Extraction Results

The TAE and FTA methods were selected for comparison
and analysis with the TTAE-AW and TAE-AW TAE algorithms
proposed in this article. The TAE method uses windows of
11 × 11, 17 × 17, 29 × 29, and 35 × 35, and the window
threshold is the first local minimum after the maximum value of
the statistical histogram of temperature pixel values [27]. The
window threshold selected by the FTA method is mean + 2σ
[14], and the window thresholds chosen for the TTAE-AW and
TAE-AW methods are mean + σand mean + 2σ, respectively.
To determine the time-frequency threshold Tf for the TTAE-
AW method, the total time frequency of each pixel in the 29
temperature anomaly images extracted by the TAE-AW method
was counted, and the total time-frequency diagram [Fig. 6(a)]
and its histogram [Fig. 6(b)] were obtained. The average value
of the total time frequency plus the standard deviation is used
as Tf (Tf = 13). Then, the image with time frequency of
>13 in the TAE-AW temperature anomaly map is retained [the
pixel’s position is as shown in Fig. 6(c)] to obtain the time-series
temperature anomaly image.

Fig. 7 shows the results of the temperature anomalies
extracted by the four methods for different periods (i.e.,
20 180 324, 20 180 605, and 20 180 916). Fig. 8 shows the
number of temperature anomaly pixels extracted by the

four algorithms in all images and their standard deviations.
Comprehensive analysis of Figs. 7 and 8 reveals that the number
of temperature anomaly pixels extracted by the TAE method is
much higher than that of the other methods. In terms of the spatial
distribution, in addition to the temperature anomalies extracted
in the fire zones, the temperature anomalies in the noncoal
fire zones in other areas (northwest) were also extracted.
This leads to the low accuracy of fire zone identification,
especially the user accuracy (average user accuracy of fire zone
identification for the 29 periods is 42.86%, Table II). The TAE
method has the largest fluctuations in the spatial distribution
and number of temperature anomalies in different seasons
(standard deviation of the number of pixels is 2089, Fig. 8).
This might be caused by the fixed window size and unstable
temperature threshold. When the window is completely in the
coal fire zones, it will lead to missed detection of temperature
anomaly information. When the window is in the noncoal fire
zones, it will lead to too much extracted temperature anomaly
information owing to the instability of the threshold value. Thus,
it is evident that the applicability of the TAE method is poor
for the extraction of temperature anomalies in coal fire zones.
The FTA method extracts the fewest temperature anomaly
pixels. In terms of spatial distribution, this method is poor in
extracting low-temperature anomaly zones at the edge of the fire
zones and thus large numbers of fire zones will be missed. Its
overall accuracy is moderate (mean value: 0.75) but the kappa
coefficient is low (mean value: 0.29, Table II), which indicate
that the mean + 2σ threshold of this method is not appropriate
for this study area. In terms of seasonal stability, the FTA method
is more stable than the TAE method and less stable than both
the TTAE-AW method and the TAE-AW method (Fig. 8) The



910 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TAE-AW method extracts temperature anomaly pixels using
AWs and double thresholding. The TAE-AW method extracts
fewer pixels than the TAE method but more than the FTA and
TTAE-AW methods. Moreover, it is superior to the TAE and FTA
methods in terms of accuracy and Kappa coefficient, and second
only to the TTAE-AW method (Table II). It is also better than
the TAE and FTA methods in terms of seasonal stability (Fig. 8).
However, it also fails to consider the temporal continuity of coal
fire combustion, resulting in the output containing more pixels
of isolated temperature anomalies at specific points in time.
The number of temperature anomaly pixels extracted by the
TTAE-AW method is lower than that of the TAE-AW method
and higher than that of the FTA method. The accuracy and kappa
coefficient of identification of the TTAE-AW method were the
highest among the four methods, i.e., 0.86 and 0.67, respectively
(Table II), indicating that it is a more suitable extraction method
for identifying temperature anomalies in fire zones because
it filters stable temperature anomalies based on temporal
continuity.

C. Surface Deformation and Anomaly Extraction Results

Fig. 9(a) shows the DS-InSAR monitoring results of sur-
face deformation in the Rujigou mining area. To verify the
reliability of DS-InSAR deformation monitoring results, the
cross-validation approach was adopted using the SB-InSAR
technique in StaMPS [Fig. 9(b)].

The SB-InSAR technique is configured with threshold pa-
rameters set at 60 days temporally and 200 m spatially. The
results show that the number of coherent pixels extracted by the
DS-InSAR technique is 608 896 and that the spatial coverage of
the points is 158% better than that of the SB-InSAR technique.

The surface deformation obtained by DS-InSAR technique
and SB-InSAR technique is dominated by subsidence, with max-
imum values of −146 and −150 mm/a and mean values of 2.63
and 1.26 mm/a, respectively. The spatial distribution of deforma-
tion rates is highly consistent. The selected 52 683 homonymous
points were analyzed for correlation and differences. The results
showed that the correlation coefficient was 0.89 [Fig. 9(c)]. The
mean and standard deviation of deformation difference values
are −1.73 and 3.66 mm/a, respectively [Fig. 9(d)], verifying the
reliability and accuracy of the results.

Based on the results of DS-InSAR surface deformation mon-
itoring, the deformation anomalies in the Rujigou mining area
were extracted using the surface deformation anomaly informa-
tion extraction method described in Section II-C. The result is
shown in Fig. 9(e). Comparison of the temperature anomaly and
the deformation anomaly [Fig. 9(f)] reveals clear intersection in
the spatial distribution, but the deformation anomaly zones are
more widely distributed than the temperature anomaly zones.
The main reason is that both coal mining and spontaneous
combustion of coal fires cause surface deformation; therefore,
it is often impossible to accurately identify fire zones based on
surface deformation alone. However, it can be used as a joint
constraint with temperature anomaly information to identify
fire zones, which can effectively weaken the misclassification
phenomenon caused by the influence of solar radiation.

D. Results of Coal Fire Zone Identification

The DTTF method is used to identify fire zones by combining
the temperature anomaly information extracted by the three
methods of TTAE-AW, TAE, and FTA, and surface deformation
anomaly information extracted as described in Section IV-D.
To ensure the comparability of different algorithms, the tem-
perature anomalies obtained by the TAE and FTA methods
are processed as time series. The results were named TTAE-
AW+DS, TAE+DS, and FTA+DS (Fig. 10). The resolution
cell for the temperature anomaly image, surface deformation
anomaly image, and the final intersection image are all 30 m ×
30 m. The results show that the TAE+DS method identifies the
largest range of fire zones and that the misclassification zones
are largest [yellow area in Fig. 10(b)]. It has the lowest user
accuracy of 62.86% in identifying fire zones (Table III).

The FTA+DS method is influenced by the FTA TAE results
and it extracts the smallest and most scattered range of fire zones,
although the user accuracy is higher (75%) and the misclassi-
fication rate is lower. However, the method misses too many
fire zones, thereby resulting in the lowest producer accuracy of
23.08% [Fig. 10(c) and Table III]. Both the accuracy and the
Kappa coefficient of the TTAE-AW method in identifying fire
zones are the highest (i.e., 0.91 and 0.77, respectively), indicat-
ing that the extracted fire zones coincide with the locations of
coal fire points [Fig. 10(a) and Table III].

According to Fig. 10(a), regions A, B, C, D, E, and F are
tentatively identified as suspected coal fire zones. Combining a
priori knowledge of the mining area and interpretation of Google
images, it is evident that regions D and E are open-pit coal
mines, whereas regions A, B, C, and F cannot be accurately
identified in terms of their geographical profile. Region E is
adjacent to the Rujigou coal mine, which was initially considered
as a misjudged coal fire zone. Owing to the presence of both the
large deformation and the long time series of high-temperature
conditions in regions A, B, C, D, and F, it is impossible to de-
termine whether these regions are misclassified coal fire zones.
Therefore, it is necessary to select points in these regions to
analyze the spatiotemporal characteristics of temperature and
deformation (refer to Section V-B).

E. Time-Series Analysis of Feature Points for Joint Surface
Temperature and Deformation

Three deformation feature points (D1, D2, and D3), three
high-temperature points (T1, T2, and T3), and three underground
coal fire points (C1, C2, and C3) in the study area were selected
for time-series analysis (Figs. 11 and 12). Coal mining has
caused subsidence at points D1 and D2, and the subsidence
shows a linear relationship with time, whereas the deformation
rate remains broadly constant. Point D3 is located on a road,
which has subsided because of coal mining transportation. This
subsidence also shows a linear relationship with time. However,
because there are no high temperatures in this area, it is easy to
rule it out based on temperature anomaly information. Because
the fire zones of Rujigou have been under treatment, it can
be observed that the predeformation rate is relatively fast and
that the cumulative deformation volume is large at the coal fire
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TABLE III
CONFUSION MATRIX OF FIRE ZONE IDENTIFICATION RESULTS AND COAL FIRE POINT OVERLAP BY DIFFERENT METHODS

TABLE IV
PIXEL REDUCTION RATE STATISTICS FOR EACH INTERVAL

points C1, C2, and C3. The deformation rate is reduced after
fire zone treatment. It is evident from Fig. 12 that the temporal
temperatures of the T1, T2, and T3 points are higher than the
temperatures of the three deformation points, but that there is no
substantial subsidence in these areas and that the accumulated
subsidence shows an irregular state. Therefore, assessment of
the temporal deformation information can effectively remove
such areas.

V. DISCUSSION

A. Time-Frequency Threshold Analysis

The selection of a suitable time-frequency threshold is crucial
for accurate extraction of temporal temperature information.

Therefore, a time-frequency diagram [Fig. 6(a)] was cal-
culated to obtain values of the meanLOS = 6.07 and std =
6.81, and a time-frequency range of 7 ≤ Tf ≤ 29 was selected
(Fig. 13). Then, the time frequencies were divided into three

ranges: 7 ≤ Tf < 13 (mean ≤ Tf < mean + std), 13 ≤ Tf <
20 (mean + std ≤ Tf < mean + 2× std), and Tf ≥ 20 (Tf ≥
mean + 2× std). The temperature anomaly pixels show sharp
reduction in the first range, followed by gradual decline in
the second range, and further slower reduction in the third
range. (Fig. 13). Fig. 14 and Table IV show the trend of pixel
change under different time-frequency threshold intervals. It is
evident that the rate of pixel reduction slows in each interval
as the time-frequency increases. This is because the number
of pixels falls as the time frequency increases. Therefore, it is
not desirable to select the time-frequency threshold based on
only one time-frequency threshold interval. First, the average
pixel reduction rate of 22 time-frequency threshold intervals was
calculated,Meanofreductionrate = 538.5. When the reduction
rate is >538.5, it is the interval of a faster reduction rate, and
when the reduction rate is <538.5, it is the interval of a slower
reduction rate. When the time frequency is in the interval of a
slower reduction rate. When the time frequency is in the interval
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13–14 (Table IV), the pixel reduction rate broadly matches the
average pixel reduction rate, and the results also match the
range delineated in Fig. 13. Therefore Tf = 13 was considered
an appropriate time-frequency threshold. The comprehensive
analysis above is summarized as follows.

1) The time-frequency threshold cannot be selected based
on a single time-frequency threshold interval because the
selected threshold might be too high or too low, which
would result in missing information on coal fire zones or
retaining too many noncoal fire high-temperature zones.

2) As the time-frequency threshold increases, the tempera-
ture anomaly pixels decrease within a certain range at a
faster rate and then at a slower rate. When the temporal
frequency is in a low range, there will be large numbers
of temporally irrelevant pixels. As the temporal frequency
increases, large numbers of pixels will be removed and
a smaller number of temporally relevant pixels will be
retained. When the temporal frequency is in a high range,
the rate of pixel reduction is slowed owing to the small
base number of pixels associated with time. Therefore, the
junction point where the pixel reduction rate is first fast
and then slow is considered an appropriate time-frequency
threshold.

B. Joint Time-Series Analysis of Surface Temperature and
Deformation in Suspected Coal Fire Zones

To more accurately identify misclassified fire zones, nine
feature points were selected in six regions (i.e., A, B, C, D, E, and
F) for time-series analysis (Figs. 15 and 16). Analysis of points
S1 and S9 in regions A and F reveals that the temperature data of
these two points are low, i.e., the maximum temperature is 45 °C
and 43 °C, respectively, which is different from the temperature
of the underground coal fire zones. Therefore, it is judged that
regions A and F are misjudged fire zones. Points S2, S3, S4, S5,
and S6 have high temperature conditions and large deformation
conditions that prevent accurate judgment. Therefore, regions B,
C, and D are considered suspected coal fire regions and require
caution. Points S7 and S8 in region E can be excluded based
on interpretation of the Google images even though they have
high-temperature conditions and large deformation conditions.

VI. CONCLUSION

In response to the problems of existing methods used for
identification of coal fire zones, such as a high omission and
misclassification ratio and lack of consideration of the time-
series variation in surface temperature, this article proposed the
TTAE-AW algorithm and DTTF method. Overall, 29 Landsat-8
images and 35 Sentinel-1A images were used to extract time-
series information on temperature and deformation anomalies
to realize identification of underground coal fire zones in the
Rujigou mining area. The following conclusions were derived.

1) Compared with the TAE and FTA methods, the temper-
ature anomaly zones extracted by the TTAE-AW method
are more concentrated in the underground coal fire zones,
and the number of temperature anomaly pixels extracted
is more stable in different seasons. The average accuracy

and Kappa coefficient of the TTAE-AW method were im-
proved by 15.5% and 0.345 over the conventional method,
respectively, indicating that the TTAE-AW method is more
appropriate for extraction of temperature anomalies in
underground coal fire zones.

2) Compared with the SB-InSAR approach, the DS-InSAR
technique improves the spatial coverage of surface de-
formation monitoring points in coal fire zones by 158%,
which is more helpful for identification of coal fire zones.

3) The accuracy and Kappa coefficient of the DTTF method
combined with information of time-series temperature and
deformation anomalies for identification of fire zones were
0.91 and 0.77, respectively, representing improvements of
5% and 0.1, respectively, compared with the results of
the fire zone identification method relying on temperature
anomaly information alone (i.e., the TTAE-AW method).

In summary, the active–passive remote sensing method pro-
posed in this article for identification of underground coal fire
zones with joint constraints of temperature and surface de-
formation time series can effectively identify and extract fire
zones, thereby providing reliable technical support for coal fire
monitoring and management.
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