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HOFA-Net: A High-Order Feature Association
Network for Dense Object Detection
in Remote Sensing

YunPeng Xu, Member, IEEE, Xin Wu
Zhengyu Shao

Abstract—In the remote sensing field, deep learning-based meth-
ods have become mainstream for remote sensing image object
detection in recent years. However, traditional methods, such as
convolutional neural networks (CNNs), mainly ignore the depen-
dencies between features, failing to capture the spatial relationships
and relative positions of objects, which affects the detection perfor-
mance of dense objects, especially small-size objects. To this end,
a high-order feature association network (HOFA-Net) for dense
object detection in remote sensing has been proposed to better
capture the interdependencies between features of channel and
spatial dimensions, yielding more distinguishable features. First,
we employ CNNs to learn high-level but low-resolution features of
objects. To capture feature interdependencies while retaining cru-
cial information, we design a feature association module based on
size adaptation nonlocal. This module partitions the low-resolution
and high-level features into local regions and utilizes nonlocal
residual connections to capture the local contextual information of
objects. In addition, we introduce a high-order feature association
(HFA) module designed to learn nonlinear feature correlations and
interdependencies within the features. In addition, a covariance
normalization acceleration strategy is introduced to accelerate
computation. Experimental results on two public remote sensing
datasets, including the DOTA dataset and the Tiny Person dataset,
demonstrate the superiority and effectiveness of the proposed
method through comparative experiments.

Index Terms—Convolutional neural networks (CNNs),
covariance normalization, high-order feature association, object
detection, remote sensing.

Manuscript received 28 May 2023; revised 15 September 2023; accepted 7
November 2023. Date of publication 28 November 2023; date of current version
15 December 2023. This work was supported in part by the National Natural
Science Foundation of China under Grant 62101045, Grant 62171054, and Grant
62201071, in part by the National Key Research and Development Program of
China under Grant 2020YFC1511801, in part by the Natural Science Foundation
of Beijing Municipality under Grant L.222041, in part by the Fundamental
Research Funds for the Central Universities under Grant 24820232023YQTDOI,
and Grant 2023RC96, and in part by the Double First-Class Interdisciplinary
Team Project Funds under Grant 2023SYLTDO6. (Corresponding author: Xin
Wu.)

The authors are with the School of Computer Science (National
Pilot Software Engineering School), Beijing University of Posts and
Telecommunications, Beijing 100876, China (e-mail: xuyunpeng@ 188.com;
040251522wuxin@163.com; liwang @bupt.edu.cn; xulianming @bupt.edu.cn;
2437886958 @qq.com; 475208092 @qq.com).

Digital Object Identifier 10.1109/JSTARS.2023.3335288

, Senior Member, IEEE, i Wang

, Senior Member, IEEE, Lianming Xu,
, and Aiguo Fei

1. INTRODUCTION

EMOTE sensing image object detection, as a key issue in

R remote sensing image interpretation, has been widely in-
vestigated and applied in various civilian and military tasks, such
as geological disaster detection [1], remote precision strikes [2],
[3], and aerospace and maritime defense [4]. Its objective is to
determine whether a given aerial or satellite image contains one
or more objects belonging to the interested category and to locate
the position of each predicted object in the image. In recent years,
more and more researchers are continuously trying to utilize
data-driven deep learning methods to improve the accuracy and
robustness of remote sensing image object detection, and are
constantly pushing the development of remote sensing image
object detection by introducing the aid techniques, such as super-
resolution, attention mechanism, and multiscale fusion [5], [6].
In general, remote sensing image object detection can be
categorized based on the density of the arrangement of objects.
It can be divided into different types, such as dense object
detection and sparse object detection. Dense object detection
typically involves detecting numerous object instances in the
image, whereas sparse object detection focuses on detecting only
a few object instances in the image. In addition, dense objects
are often difficult to distinguish from the background due to their
high density and multiscale size, especially small or tiny size.
Moreover, objects often appear in close proximity to each other
with high similarity, making them prone to mutual occlusion
and interference, thus increasing the difficulty of detection.
Current densely-packed object detection methods in remote
sensing imagery can be roughly categorized into four types: two-
stage detectors, single-stage detectors, multiscale feature fusion
methods, and attention-based methods. Specifically, two-stage
detectors, such as region proposals convolutional neural network
(RCNN) [7], Fast-RCNN [8], and Faster-RCNN [9], were the
earliest detection methods applied in remote sensing images.
Although they have high detection accuracy, their detection
speed is slow, which makes them hard to handle large-scale
remote sensing images in real-time. Single-stage detectors, such
as You Only Look Once (YOLO) [10], Single Shot MultiBox De-
tector (SSD) [11], and RetinaNet [12], are currently mainstream
detection networks, but they often focus on the background
information and ignore objects themselves, so their detection
performance is limited. Despite continuous updates in recent
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Fig. 1. Comparative of feature visualization between the baseline method and
HOFA-Net using an example image with dense object.

years for single-stage models, such as YOLOvVS, which has
made improvements and optimizations in network architecture,
model size, accuracy, and training methods. Fig. 1 shows the
feature visualization of YOLOVS for dense object detection,
which indicates that there is still room for improvement in dense
and even small-size object detection [13].

The imaging mechanism of remote sensing images often
results in the presence of specific viewing angles, complex back-
grounds, and diverse scales for objects within the images [14].
One effective approach to addressing these issues is the uti-
lization of multiscale feature fusion methods. They can obtain
multiscale information by introducing pyramid structure or mul-
tiscale feature fusion methods, such as FPN [15] and PAN [16].
Attention-based methods have shown significant advantages
for object detection in remote sensing, as they can effectively
capture contextual information and dependencies. They also
allow the model to better focus on the location and features
of objects, such as residual channel attention networks [17] and
scale-aware networks [18] have been proven to perform well in
small object detection in remote sensing images.

The attention mechanism can be traced back to neural sci-
ence research in the 1980 s. Bahdanau et al. [19] first intro-
duced the attention mechanism into machine translation tasks,
proposing a neural machine translation model, now known
as “attention-based neural machine translation.” In 2015, the
paper “Faster R-CNN: toward real-time object detection with
region proposal networks (RPN)” proposed an RPN based on
the attention mechanism [9], which was first applied to object
detection and improved detection performance. Since then, the
attention mechanisms are commonly used in object detection,
and various forms have emerged, such as squeeze-and-excitation
networks (SENet) [20], convolutional Block attention modules
(CBAM) [21], and selective kernel networks (SKNets) [22], all
of which have achieved good results and brought significant per-
formance improvements to remote sensing object detection. For
example, SENet [20] adaptively readjusts the channel weights
of the feature maps by learning channel attention coefficients to
enhance the response of useful features. The CBAM [21] based
on spatial and channel attention mechanisms can capture spatial
and channel correlations in the feature maps. The SKNet [22]
attention mechanism proposed by the team at Tsinghua Uni-
versity could adaptively select different sizes of convolutional
kernels to extract features. The nonlocal networks [23] proposed
by the team at Nanjing University can learn the correlations
between different positions and the cross-channel correlations.
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The global context network module [24] proposed at CVPR 2019
can learn global contextual information to improve object detec-
tion performance. Composite backbone network [25] calculates
the weights of the channels as learnable parameters. However,
most attention mechanism methods are used for high-resolution
remote sensing images, which leads to complex models and large
computational costs.

To this end, a high-order feature association network (HOFA-
Det) for dense object detection in remote sensing has been
proposed, shorted for HOFA-Det. The HOFA-Det network aims
to better capture the interdependencies between features of
channel and spatial dimensions, resulting in more distinctive and
discriminative features. Specifically, HOFA-Det first learns the
high-level features of the objects through convolutional neural
networks (CNNs). To capture interdependencies between fea-
tures without losing discriminative information from high-level
but low-resolution features, we have designed a feature asso-
ciation module based on size adaptation nonlocal (SANL) and
a high-order channel-wise attention (HCFA) module. It starts
by partitioning the low-resolution features into local regions
and employing nonlocal residual connections to capture the
local contextual information of the objects. Behind it, the HFA
module learns the interdependencies of features, while improv-
ing feature resolution. In addition, a covariance normalization
acceleration strategy is introduced to accelerate computation.
In detail, our contributions to this article can be summarized as
follows.

1) A high-order feature association network (HOFA-Det)
for dense object detection in remote sensing has been
proposed. By improving feature resolution and gener-
ating more distinguishable features, our network effec-
tively captures the interdependencies between features of
channel and spatial dimensions to compensate the repre-
sentation capability of single-level features, which helps
to improve the model’s detection performance for dense
objects.

2) A SANL module has been developed to acquire size-
adaptive nonlocal high-order features. This allows us to
capture the interdependencies between features of channel
and spatial dimensions, enhancing contextual information
modeling while mitigating computational complexity. In
addition, we have introduced a HFA module aimed at cap-
turing nonlinear feature correlations. This module helps us
establish the object distribution within the feature space,
ultimately boosting the accuracy of dense object detection.

3) We evaluate the detection performance of the proposed
HOFA-Det on two public remote sensing object detection
datasets, i.e., DOTA and TinyPerson datasets, yielding sig-
nificant advantages compared to several existing methods.

The rest of this article is organized as follows. In Section II,
we provide a detailed introduction to the proposed HOFA-Det
framework. This framework encompasses high-level feature
learning, SANL learning, high-order feature association learn-
ing, as well as its associated loss function. Section III delves into
the quantitative and visual analytics conducted on two public
remote sensing object detection datasets, namely, the DOTA and
TinyPerson datasets. We highlight the substantial advantages
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of HOFA-Net compared with several existing methods. Finally,
Section IV concludes this article and discuss the future prospects
of the HOFA-Det.

II. METHODOLOGY

Fig. 2 illustrates the network architecture of the proposed
HOFA-Det. In detail, HOFA-Det is a detection network specifi-
cally developed for dense objects in remote sensing, especially
suited for small-size objects. We first use CSPDarknet53 to learn
high-level features with more details. Then, the generated feature
is sent to the SANL module to establish long-range dependencies
while reducing the computational burden. To further capture the
nonlinear feature correlation and enhance model expressiveness,
we introduced a HCFA module with its corresponding covari-
ance normalization acceleration strategy.

A. Feature Learning

The cross-stage partial (CSP) structure first proposed is to re-
duce computational burden and enhance gradient performance.
CSPDarknet53, as a representative of the CSP-Net series, con-
sists of multiple layers of convolutions and residual blocks
to capture image details, textures, and semantic information.
CSPDarknet53 also enhances feature reuse and information
flow within the network. This design offers several potential
advantages. 1) CSPDarknet53 efficiently reuses features across
different stages of the network, allowing for better exploitation
of hierarchical features. This can be particularly beneficial when
detecting dense objects with various scales and complexities,
as it helps in capturing both low-level and high-level features
effectively. 2) Enhanced information flow: The CSP connections

Flowchart of the proposed HOFA-Det for dense object detection in RS images.

facilitate the flow of information between different parts of the
network, reducing information loss and improving the network’s
ability to handle dense and intricate object arrangements.

Given X as the input data and F as the learned features.
At the beginning stage of feature learning, we involve a series
of operations, such as convolution layers, pooling layers, and
residual blocks, to learn high-level features F' while preserving
details and textures information. Following it, the CSP module
splits the feature maps F into two paths: the main branch and
the cross branch, that is F(z) = [F/(z), F"(x)]

Fy =wi * [Fo"F1--- ,Fi_4]
Fr=wr«[Fo"Fp--- [ Fy]
FO = WO * [F()/FT]

ey

where Fy,, Fr, and F are the dense layer, transition layer, and
output layer, respectively.

B. SANL Module

CNNs primarily focus on local region features when process-
ing images, but neglecting the long-range dependencies among
features. By incorporating nonlocal operations, we can effec-
tively capture these relationships between features, improving
the modeling of contextual information. However, the global-
level nonlocal operations impose an impractical computational
burden, particularly when dealing with large feature sizes. Dense
objects are also influenced by their surrounding context. To
address this, we partition the feature map into a grid of regions,
with each k x k region-based nonlocal operation. The choice of
k depends on the size of the feature map for that layer with the
SANL module added. Assuming the size of the size adaptation
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feature map is denoted as F'p € R FX % the size adaptation

factor & is exemplified as follows:
k = max(M/r,N/r, L) )

where 7 is an empirical value and L is the smallest among the
values of k. In this article, r and k are set to 20 and 2, respectively.

The SANL operation ¥’y (i) for specified position can be
formulated as follows:

Fuli) = 5 2 S(Fo(). Fola(Fol) G
vj

where the index ¢ is the specified position and j represents the
index of all possible positions. The function f is the pairing
computation function, which calculates the correlation between
the ith position and all other positions j. g is a unary input
function designed for information transformation, we use a
1 x 1 convolution, representing linear embedding. C(x) is a
normalization function that ensures the overall information to
remain unchanged before and after the transformation.

The final output Fy; of the SANL module is the matrix
splicing of k2 F',;. The size adaption nonlocal module not only
reduces the computational burden but also enables the capture
of contextual information within and between local blocks. This
enhancement improves the understanding and representation
capacity of feature maps of varying sizes.

C. HCFA Module

To better capture nonlinear feature correlations, enhance
model expressiveness, and further mitigate the risk of overfitting,
this section introduces a HCFA module.

First, multiple simplified residual blocks are stacked together
to achieve feature association because this stacking allows for
the progressive refinement of features and the extraction of
increasingly abstract and complex patterns from the input data.
Assuming the stacking quantity is M, the generated dense
residual blocks can be defined as

Fnl,m = Hm (Fnl,m71> (4)

where H,,(-) is the function of the mth residual units, and
Fuim—1, Fn n are the corresponding inputs and outputs.

In addition, we incorporate the high-order feature trans-
former [26] to capture nonlinear feature correlations effectively.
This method indirectly allows us to obtain the object distribution
in the feature space, leading to enhanced accuracy and precision
in object detection [27], [28].

Taking into account that the size of Fy,,
we reshape it to @@ x C, where Q = M x N. The resulting
normalized covariance matrix of F\; ,,, serves as the high-order
nonlinear correlated feature. The covariance matrix is calculated
as follows:

is RMXNXC,

Foim > PP =Fy , IF &)

nl,m

where T = 5( — %11T), T is the @ x @ identity matrix, 1 =
[1,...,1]7 is a Q-dimensional vector, and T stands for matrix

transpose. The sample covariance matrix P is symmetric and
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positive semidefinite. It can be decomposed into eigenvalues as
follows:

P (U,A),P = UAUT (6)

where A = diag(Aq,...,A¢) is a diagonal matrix, A;,7 =
1,...,C are eigenvalues arranged in nondecreasing order, and
U = [uy, ..., uc¢]isanorthogonal matrix, where the u; column
corresponds to the eigenvector associated with A;. By using
eigenvalue decomposition (EIG), the covariance normalization
can be transformed into the power of eigenvalues

(U,A)~Y,Y 2 P = UF(A)U” )

where « is a positive real number, F(A) = diag(f(r1), ...,
f(re)), £(1;) = 1% Inspired by the technique of element-wise

power normalization technique [27], [29], [30], we set a« = % in
this article.
Let Y = [y1,...,yc], and the channel-wise statistics z €

RE*! can be obtained by squeezing the dimensions of Y. Then,

the cth dimension of z is computed as

1 C
=735 Z:YC@‘) (8)

To exploit the interdependencies between features of channel
and spatial dimensions from squeezing information, we intro-
duce the adaptive recalibration A

A = o(B(W2(B(W12)))) ©

where o(-),d(+),and B(-) are the sigmoid function, rectified
linear unit (ReLLU), and batch normalization, respectively. W €
RY1*% and Wy € RM1%C stands for weight, respectively.
The final high-order feature is F = A - Fy ..

Considering that covariance normalization relies heavily on
eigenvalue decomposition, and the GPU platform requires a
large number of iterations, which leads to low training efficiency.
To address this issue, we introduce a fast matrix normalization
method based on Newton—Schulz iteration [31], [32], [33], [34]
to achieve an approximate solution with fewer iterations, thus
accelerating the normalization process.

D. Loss Function

We employ three loss functions for network optimization and
updating. These consist of an object classification loss L, a
location loss Lioc, and an objectness loss L.

L is the binary cross-entropy loss, quantifying the disparity
between the prediction box’s class and the ground truth box’s
class. Lqp; is also the binary cross-entropy loss, determining
whether there are targets within the prediction box

N

L=— ZO [yi logp; + (1 — y;) log (1 — p;)]

(10)

where p; is the predicted probability of the ith sample, between
0 and 1, y; is the true label of the ith sample, either O or 1.

The location loss assesses the disparity between the position
and shape of the prediction box and the ground truth box. It
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utilizes a complete intersection over union (CloU) metric [35]

2 gt
LCIOU:1710U+%+QU
|[ANB
TIoU =
T AuB|
v
a=—
1—-IoU+w
4 gt ?
v = = <arctan % — arctan 1;:) (11D

where Loy is the loss value of CIoU. A is the forecast box. B is
the actual box. p is the Euclidean distance. p is the center point
of the prediction box. p9! is the center point of the target box.
c is the diagonal distance of the minimum bounding rectangle
between the boxes. « is the weight function. Intersection over
Union (IoU) is the intersection ratio of the prediction box to the
actual box. v is the aspect ratio metric function. w9t is the width
of the target box. h9' is the height of the target box. w is the
width of the prediction box. & is the height of the prediction
box.
The total loss is

N
1 S oc i
Lol = 7 ; (hy - LSS 4 dg - LI 4 g - LO™) (12)
where NN is the sample number and A3 is an adjustable weight.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. Data Description

In this section, we construct two multimodal object detection
benchmark datasets in remote sensing that focus on the prop-
erties of dense and irregular parking, similar appearance, and
similar color.

1) DOTA Dataset': DOTA 1.0 dataset containing 2806 aerial
images from 800 x 800 pixels to 4000 x 4000 pixels, in which
more than 188282 objects falling into 15 categories are anno-
tated. To fit the network, the inputimages in the DOTA 1.0 dataset
were cropped into one size: 1024 x 1024 pixels, with a 200 pixel
overlap to maximize object information. The categories of the
objects in DOTA are plane (PL), baseball diamond (BD), bridge
(BR), ground track field (GTF), small vehicle (SV), large vehi-
cle (LV), ship (SH), tennis court (TC), basketball court (BC),
storage tank (ST), soccer-ball field (SBF), roundabout (RA),
harbor (HA), swimming pool (SP), and helicopter (HC). In the
experiment, the training set to the testing set data ratio for the
network is 3:1.

2) Tiny Person®: TinyPerson [36] is a dataset specially pre-
pared for small object detection recently launched by the Uni-
versity of the Chinese Academy of Sciences. The images in
TinyPerson are mainly from the Web. The researchers collect

'[Online]. Available: http://www?2.isprs.org/commissions/comm3/wg4/2d-
sem-label-potsdam.html.

2[Online].  Available:
person/dataset/1.

https://universe.roboflow.com/chris-d-dbyby/tiny
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high-definition videos from various websites (images were col-
lected every 50 frames). Duplicate images are removed. Finally,
a total of 72651 object enclosures are manually marked. The
dataset contains two tags, sea_person, and dust_person, which
are very small in absolute size. According to Tiny Benchmark,
focusing on the person detection task, the earth_person and
sea_person are both treated as person, and the size range of
them are divided: tiny [2, 20], small [20, 32], and all [2, inf].
The tiny [2, 20] is further divided into 3 intervals: tiny1 [2, 8],
tiny 2[8, 12], and tiny3 [12, 20].

To fit the network, since most of the images in the TinyPerson
dataset are quite large, the input images are cropped into subim-
ages (512 x 640 or 640 x 512 pixels) with overlapping during
training and test. The training set to the testing set data ratio for
the network is 1:1.

B. Experimental Setup

All the experiments were implemented on a computer with
a 13th Gen Intel Core i7-13700 K, 64 GB of memory, and two
NVIDIA GeForce RTX 3090 GPUs (2 x 24 GB). For the DOTA
1.0 experiment, we utilized a stochastic gradient descent (SGD)
optimizer with an initial learning rate of 1 x 10~ 2, which decays
to 1 x 10 3. The total training round is 150 epochs, and the
batch size is 16. The threshold of confidence and the threshold
of nonmaximum suppression are 0.25, and 0.45, respectively.
For the Tinyperson experiment, all experiments were the same,
except we used an SGD optimizer that decayed to 2 x 1073,
and the total training round is 200 epochs.

C. Evaluation Metrics

The common object detection evaluation criteria AP is used
for quantitative analysis. AP is a global indicator and can
fairly be used to compare various detection methods. In the
experiment, we utilized AP25, AP50, and APT5 to calculate
the AP at the ToU threshold of 0.25, 0.5, and 0.75, respectively

AP = i P(k)AR(k)

k=1

(13)

where k is the threshold., P(k) is the precision at the kth thresh-
old. AR(k) = R(k) — R(k — 1) stands for the differences in

precision and recall.

D. Comparison With State-of-the-Art MVD Models

In the experiment, several state-of-the-art methods related
to object detection of RS images are selected for quantitative
and qualitative comparisons, namely, learning Rol transformer
(ROI Trans.) [37], rotation sensitivity detector (RSDet) [38],
small, cluttered, and rotated detector (SCRDet) [39], refined
single-stage rotation detector (R>Det) [40], gliding vertex [41],
oriented objects detection network (O2-DNet) [42], box bound-
ary aware vectors (BBAVectors) [43], dynamic refinement net-
work (DRN) [44], circular smooth label (CSL) [45], critical


http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
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TABLE I

COMPARATIVE EXPERIMENTS ON THE DOTA DATASET

DOTA Dataset

CSPDarknet53 | SANL | HFA | Anchor mAP
v AF 74.65
v v AF 73.91
v v AF 75.39
v v v AF 75.53
Tiny Person Dataset
CSPDarknet53 | SANL | HFA [ Anchor [ APIRYT [ APIY”  API — APIW — Apymal
v AF 25.45 45.80 53.86 42.57 58.08
v v AF 26.34 46.09 54.52 43.70 58.22
v v AF 26.05 46.55 54.38 43.54 58.41
v v v AF 26.44 47.10 54.16 43.71 58.96
The best results are shown in bold.
TABLE II

COMPARATIVE EXPERIMENTS ON THE DOTA DATASET

Methods Year| Backbone [Anchorf PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP S(I;;S)d
ROI Tran. [37] |2019| ResNet101 AB |88.53 77.91 37.63 74.08 66.53 62.97 66.57 90.50 79.46 76.75 59.04 56.73 62.54 61.29 55.56|67.74| 7.80
RSDet [38] 2019] ResNetl01 AB  |89.80 82.90 48.60 65.20 69.50 70.10 70.20 90.50 85.60 83.40 62.50 63.90 65.60 67.20 68.00|72.20| -
SCRDet [39] 2019| ResNetl01 AB [89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21|72.61| 9.51
R3Det [40] 2019| ResNetl52 AB [89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.67 62.68 67.53 78.56 72.62|76.47|10.53
Gliding Vertex [41] |2019| ResNetl01 AB |89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32|75.02|13.10
O2-DNet [42] 2020|Hourglass-104| AF |89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03(71.04| -
BBAVectors [43] {2020| ResNetl01 AF [88.35 79.96 50.69 62.18 78.43 78.98 87.94 90.85 83.58 84.35 54.13 60.24 65.22 64.28 55.70(72.32|18.37
DRN [44] 2020{Hourglass-104| AF |89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48|73.23| -
CSL [45] 2020 ResNetl52 AB |90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93|76.17| -
CFC-Net [46] 2021| ResNet50 AB |89.08 80.41 52.41 70.02 76.28 78.11 87.21 90.89 84.47 85.64 60.51 61.52 67.82 68.02 50.09|73.50|17.81
RIL [47] 2021| ResNetl01 AB |88.94 78.45 46.87 72.63 77.63 80.68 88.18 90.55 81.33 83.61 64.85 63.72 73.09 73.13 56.87|74.70|13.36
RetinaNet-GWD [48]|2021| ResNet152 AB |86.14 81.59 55.33 75.57 74.20 67.34 81.75 87.48 82.80 85.46 69.47 67.20 70.97 70.91 74.07|75.35|11.65
GGHL [49] 2021| DarkNet53 AF [89.74 85.63 44.50 77.48 76.72 80.45 86.16 90.83 88.18 86.25 67.07 69.40 73.38 68.45 70.14|76.95|42.30
ARSD [53] 2022| ResNetl01 AB |86.90 69.64 46.38 56.85 80.60 66.96 78.96 90.76 72.15 78.96 39.67 61.27 72.23 72.39 50.64|68.28|43.00
HOFA-Net - |CSPDarknet53| AF |90.42 76.64 47.57 59.01 73.41 85.64 89.29 90.76 73.30 89.44 71.15 69.39 75.16 67.05 74.77|75.53|44.14

The best results are shown in bold.

feature capturing network (CFC-Net) [46], representation in-
variance loss (RIL) [47], RetinaNet-Gaussian wasserstein dis-
tance (RetinaNet-GWD) [48], general gaussian heatmap label
(GGHL) [49], fully convolutional one-stage object detec-
tor (FCOS) [50], RetinaNetS [12], dual shot face detector
(DSFD) [51], adaptive freeAnchor [52], and adaptive reinforce-
ment supervision distillation (ARSD) [53]. To avoid over-fitting,
data preprocessing, and augmentation are performed on all
images, and the CSP-Darknet53 serves as the backbone network
for all datasets.

E. Ablation Study

To validate the increment of each module, in this section, we
conducted ablation experiments to evaluate the contribution of
different modules, including the SANL module and the HFA
module, as given in Table I. It can be observed that when
the SANL module is used independently, there is a slight
decrease in performance on the DOTA dataset. However, the
performance on tiny and small objects in the tiny person dataset
improves. One possible reason for this is that using SANL alone
is more favorable for small objects by partitioning the k x k
region. Building upon this, the HFA module, with its capacity
to capture nonlinear feature correlations and enhance model
expressiveness, leads to a 1% improvement.

F. Results and Analysis on the DOTA Data

Table II gives the quantitative results of 14 widely used
methods and the proposed method on the DOTA dataset. It

can be observed that the proposed method shows significant
improvements for densely packed objects, such as PL, LV, SH,
ST, SBF, HA, and HC. However, its performance is relatively
weaker for large-scale or elongated objects, such as BDs, ground
field tracks, BRs, BCs, and SP. Specifically, methods, such as
ROI Trans. RSDet, R3Det, Gliding vertex, O?-DNet, BBAVec-
tors, CSL, RIL, and RetinaNet-GWD, focus specifically on
detecting rotated objects and employ different strategies to im-
prove detection accuracy. These strategies include deforming the
region of interest, using specific loss functions, rotating anchor
boxes, determining the number of anchor points, implementing
multilevel and multiscale designs, and so on. However, these
methods often lack an effective strategy to separate densely
packed objects, particularly small or tiny ones.

SCRDet addresses this limitation by adapting the size of the
receptive field based on the density information around the ob-
jects. Inaddition, it incorporates adaptive attention-based feature
fusion methods to enhance the representation of small objects.
Nevertheless, challenges remain in recovering and enhancing
fine details. RIL and RetinaNet-GWD enhance the accuracy of
detecting rotated objects through the use of representation invari-
ance loss, Gaussian Wasserstein distance, etc. GGHL improves
the detection performance of dense small objects by utilizing a
Gaussian distribution-based heatmap label assignment method.
However, improper parameter settings may result in inaccurate
localization or missed detection. CFC-Net and ARSD introduce
an adaptive receptive field mechanism and a multiscale core
features imitation (MCFI) module to adapt to objects of different
scales and sizes, enabling the network to perceive better and
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Fig. 3.

capture the features of objects at various scales. However, it does
not effectively address the challenges posed by low-density and
crowded objects.

Overall, these existing methods face difficulties in detecting
dense objects, especially tiny objects that are densely over-
lapping. The depth of the network often significantly reduces
the resolution of small objects. Although some methods, such
as DRN, gradually improve the accuracy and robustness of
detecting densely packed objects through multilevel refinement
modules, they still struggle to effectively detect densely packed
small objects with low resolution and indistinct texture features.
The proposed method addresses these challenges by designing
SANL feature learning and high-order feature association, en-
hancing the correlation between channel and spatial features,
indirectly improving the resolution of dense and even small
objects, and achieving the best results.

Fig. 3 shows the visual results of the proposed method on
some example images in DOTA data. We can observe that the
quantitative (see Table II) and qualitative (see Fig. 3) results are
generally consistent. It is worth noting that the proposed method
demonstrates good separability in detecting densely packed
objects. The performance of detecting SV is not very good,
one possible reason for this could be that the discriminability
between different vehicle sizes has not been effectively learned.
However, for SH in the port, the complexity of detection is
increased due to the various types and sizes of vessels. The

Visualization results of the proposed HOFA on part example images in DOTA dataset.

surrounding environment of the port is typically complex, which
contributes to a higher proportion of false detection and missed
detection.

G. Results and Analysis on the Tinyperson Data

Table III gives the quantitative results of four comparative
methods and the proposed HOFA-Net on the Tinyperson dataset.
It shows that the proposed HOFA-Net demonstrates significant
enhancements in detecting dense and even occluded small ob-
jects. As expected, the classic fully convolutional FCOS net-
work exhibits the lowest detection performance. RetinaNetS and
DSFD methods utilize a multiscale feature pyramid network and
an adaptive downsampling strategy to extract features of varying
scales from different levels of feature maps, effectively adapting
to objects of different sizes. FreeAnchor enables multiple anchor
boxes to be matched with each target and determines the best
match through learning. However, these methods have limita-
tions in detecting tiny objects in high-level semantic feature
maps with low resolutions. HOFA-Net effectively enhances
high-level feature map resolution through SANL and high-order
feature association, thereby improving the performance of de-
tecting tiny objects.

Fig. 4 shows the visual results of the proposed method on some
example images in tiny data. It shows that the proposed method
demonstrates better results in detecting objects in challenging
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TABLE IIT
COMPARATIVE EXPERIMENTS ON THE TINYPERSON DATASET
Methods Year Backbone ‘ Anchor APg‘ayl Angyz AP §3y3 APg‘ay APg‘(‘)""ll APéiS”y AP%”y
RetinaNetS [12] | 2017 ResNet50 AB 11.80 37.14 44.12 31.65 44.19 58.10 2.95
FCOS [50] 2019 - AB 3.74 13.03 30.18 17.53 36.64 41.38 1.52
DSFD [51] 2019 | ResNet-50 AB 14.55 35.89 47.23 31.72 52.56 60.37 2.23
FreeAnchor [52] | 2019 ResNet50 AB 25.34 48.62 52.13 42.15 54.24 64.69 4.37
HOFA-Net - DarkNet53 AF 26.44 47.10 54.16 43.71 58.96 61.76 6.22
The best results are shown in bold.
Fig. 4.  Visualization results of the proposed HOFA on part example images in tiny person dataset.

scenarios, such as low-resolution images, small individuals with
low signal-to-noise ratios, and subjects exhibiting noticeable
scale variations. Nonetheless, there is still potential for enhanc-
ing the accuracy of detection, particularly when dealing with
small individuals in low-light conditions where instances over-
lap and occlusion occurs. Furthermore, the dataset comprises
a wide range of deformations and poses, including individuals
standing, lying down, swimming, and sitting in diverse scenes
like beaches and waterfronts. Consequently, these deformations
introduce a notable number of missed detections. Improving the
precise detection performance in these demanding scenarios is
an area of focus for future research endeavors.

IV. CONCLUSION

In this article, we propose a high-order feature association
(HOFA) network for dense object detection in remote sensing,
yielding capturing of the interdependencies between features
of channel and spatial dimensions. In HOFA-Net, CNNs are
utilized to generate high-level but low-resolution features. To

capture long-range dependencies of local features, a SANL
learning module has been proposed. The high-order correlation
feature association is then employed to capture interdependen-
cies within channel and spatial features while incorporating a co-
variance normalization acceleration strategy. Although the pro-
posed method significantly improves the detection performance
of dense objects, there is still potential for further improvement.
In the future, we will mainly focus on the wide range of de-
formations and pose object detection, including individuals in
various positions such as standing, lying down, swimming, and
sitting, within diverse scenes, such as beaches and waterfronts.
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