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Abstract—In recent years, the development of quantum anneal-
ers has enabled experimental demonstrations and has increased
research interest in applications of quantum annealing, such as
in quantum machine learning and in particular for the popu-
lar quantum support vector machine (SVM). Several versions of
the quantum SVM have been proposed, and quantum annealing
has been shown to be effective in them. Extensions to multiclass
problems have also been made, which consist of an ensemble of
multiple binary classifiers. This article proposes a novel quan-
tum SVM formulation for direct multiclass classification based on
quantum annealing, called quantum multiclass SVM (QMSVM).
The multiclass classification problem is formulated as a single
quadratic unconstrained binary optimization problem solved with
quantum annealing. The main objective of this article is to evaluate
the feasibility, accuracy, and time performance of this approach.
Experiments have been performed on the D-Wave Advantage quan-
tum annealer for a classification problem on remote sensing data.
Results indicate that, despite the memory demands of the quantum
annealer, QMSVM can achieve an accuracy that is comparable to
standard SVM methods, such as the one-versus-one (OVO), de-
pending on the dataset (compared to OVO: 0.8663 versus 0.8598 on
Toulouse, 0.8123 versus 0.8521 on Potsdam). More importantly, it
scales much more efficiently with the number of training examples,
resulting in nearly constant time (compared to OVO: 85.72 versus
248.02 s on Toulouse, 58.89 versus 580.17 s on Potsdam). This article
shows an approach for bringing together classical and quantum
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computation, solving practical problems in remote sensing with
current hardware.

Index Terms—Classification, quantum annealing (QA),
quantum computing (QC), remote sensing (RS), support vector
machine (SVM).

NOMENCLATURE

AQC Adiabatic quantum computation.
BDSD Band-dependent spatial detail.
CS Crammer–Singer.
DAG Directed acyclic graph.
DSM Digital surface model.
EO Earth observation.
ML Machine learning.
OVA One-versus-all.
OVO One-versus-one.
QA Quantum annealing.
QC Quantum computing.
QML Quantum machine learning.
QMSVM Quantum multiclass support vector machine.
QSVM Quantum support vector machine.
QUBO Quadratic unconstrained binary optimization.
RS Remote sensing.
SVM Support vector machine.

I. INTRODUCTION

IN THE context of EO [1], there is a growing availability of
data acquired by heterogeneous RS sources . Many applica-

tions are currently benefitting from RS data, e.g., agriculture,
green energy development, and urban monitoring. The devices
and software for data processing have to match this trend in
order to extract information from the collected data in a timely
manner.

QC [2], a computational paradigm based on the postulates and
laws of quantum mechanics, has proved the potential to reach an
exponential algorithmic speedup with respect to classical com-
putation under certain assumptions [3], [4]. Among the quantum
computational models defined in the literature, two broadly em-
ployed models can be identified. The quantum circuit model [5],
similarly to the classical circuit model, is based on circuits, gates,
and measurements applied to qubits (quantum bits). AQC [6],
[7] aims at solving optimization problems by exploiting the time
evolution of a quantum system satisfying the requirements of the
adiabatic theorem [8]. Despite their differences, the two models
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have been proven to be computationally equivalent [9]. The
focus of this work is QA [10], [11], a heuristic search approach
based on AQC, since commercially ready quantum annealers
are available for analyzing the disruptive potential of QC.

QML [12], [13] is a research area working on QC algorithms
applied to ML tasks, with the purpose of obtaining a computa-
tional speedup or a prediction accuracy increase. QML methods
based on QA have proven to outperform classical ML in selected
applications with limited training examples, for example, in
computational biology [14]. Recent studies have analyzed how
QML can be integrated into EO tasks. In [15], [16], [17], and
[18], circuit-based quantum neural networks have been trained
for multispectral image classification. The work of Otgonbaatar
and Datcu has covered different aspects of circuit-based QML
for EO, e.g., natural data embedding [19], parameterized quan-
tum gates [20], and transfer learning [21]. Circuit-based quan-
tum kernels have been applied to binary [22], [23], [24] and mul-
ticlass [25] RS image classification. QA has also found a place
in EO for solving specific optimization problems. In synthetic
aperture radar imaging, problems related to system design [26]
and phase ambiguity [27] have been addressed. In the context of
QML, a feature selection method for hyperspectral images has
been proposed [28], and a QA-based QSVM method has been
successfully used for the binary classification of multispectral
images [29], [30].

The SVM is an efficient and theoretically grounded algorith-
mic approach in statistical learning theory. Different versions
and formulations of the SVM can be found in the literature
for a variety of tasks and applications, e.g., pattern recognition,
computer vision, image analysis, and business intelligence [31].
The SVM has also been proven to be effective in EO pixelwise
image classification [32].

Defining an SVM framework for multiclass classification is a
nontrivial task. Two different approaches can be followed [33].
The multiple-step (or indirect) approach reframes the problem
by defining an ensemble of multiple binary SVM classifiers and
multiple classification outputs. The most common methods are
the OVO, OVA, and the DAG SVM. In the OVO method, each
pair of classes defines an SVM classifier. The outcomes of each
classifier are usually combined with a “max wins” strategy,
which determines the final prediction. Similarly, in the OVA
method, a classifier for each class versus the remaining classes is
defined, and the class with highest score is assigned. The QSVM
algorithms for multiclass classification available in the litera-
ture, e.g., [34], [35], [36], follow the multistep approach. They
are defined as ensembles of binary QSVM classifiers, which
can be full quantum [37], [38], quantum-kernel-based [39] and
QA-based [40] formulations.

The single-step (or direct) approach for multiclass classifica-
tion defines a single optimization step on the whole training
set, which finds boundaries between all classes in one pass.
The CS SVM, proposed in [41], is an example of single-step
approach. It showed a comparable to better performance on
benchmark datasets with respect to OVO, OVA, and the Weston–
Watkins [42] multiclass SVM [43]. However, a limitation of
this method is the complexity of the training phase, due to
the high number of optimization variables, which makes this

approach impractical. In the same work, simplified formulations
are proposed, which reduce the problem size and enable better
performances, although at the cost of optimality.

The main objective of this article is to propose a novel
approach, specifically QMSVM, by reframing the original for-
mulation of the CS SVM, thus enabling the optimization step
to be performed using a QA algorithm. This article studies
the computational capability offered by the available quantum
annealers and assesses the feasibility of a QA-based single-step
SVM approach. Experiments are performed on a real quantum
annealer, i.e., D-Wave Advantage [44], [45], in order to validate
the algorithm on current hardware. As quantum annealers are
a rapidly evolving technology, it is important to analyze their
current status and their potential, understanding how they can
be used to solve real problems in RS. For this purpose, it is
reasonable to consider the CS SVM implementation in our work,
as it is a computationally intensive task that would benefit from
an enhanced performance. The performance is evaluated both in
terms of accuracy and execution time, both relevant aspects in
practice. The code repository of the algorithm is made available
for reproducibility.1

The rest of this article is structured as follows. In Section
II, the theoretical background related to QA is summarized. In
Section III, the mathematical formulation of QMSVM is pre-
sented. In Section IV, the algorithm validation setup is described
and the results are shown. In Section V, the main findings are
discussed. Finally, Section VI concludes this article.

II. BACKGROUND

A. Quantum Annealing and QUBO

To understand the underlying working principles of D-Wave
quantum annealers, a brief introduction is needed. In AQC [6],
[7], the forces acting in a quantum system are described by a
time-varying HamiltonianH(t). The time evolution of the state
of a quantum system |ϕ(t)〉 is described by the Schrödinger’s
equation

i�
∂|ϕ(t)〉

∂t
= H(t)|ϕ(t)〉 (1)

where i is the imaginary unit and � is the reduced Planck
constant. During the adiabatic evolution, the Hamiltonian grad-
ually transitions from the initial Hamiltonian HI to the final
HamiltonianHF

H(t) = s(t)HI + (1− s(t))HF (2)

where s(t) is a function modeling the transition, such that
s(0) = 1 and s(tf ) = 0 after a certain elapsed time tf . Given
the assumptions of the adiabatic theorem [8], during the time
evolution, the quantum system remains at ground state, i.e., the
state with lowest energy associated with the Hamiltonian. The
idea in AQC is to encode the desired result as the ground state
of the final HamiltonianHF .

QA falls into the category of AQC algorithms. More precisely,
it is a heuristic approach for solving combinatorial optimization

1[Online]. Available: https://gitlab.jsc.fz-juelich.de/sdlrs/qmsvm

https://gitlab.jsc.fz-juelich.de/sdlrs/qmsvm
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Fig. 1. Graphical representation of the minor embedding step. In the graph shown in (a), each node represents a binary variable, and each edge represents a
logical connection between two variables of the QUBO problem. In (b), each color represents the corresponding variable embedded into a qubit chain. (a) QUBO
graph. (b) Embedding of the QUBO graph on a Pegasus architecture. Source: [6].

problems. In this case, the Hamiltonian of the system is defined
as

H(t) = HF + Γ(t)HD (3)

where HF is the final Hamiltonian, Γ(t) is the transverse field
coefficient as a function of time t, andHD is the transverse field
Hamiltonian (also called disorder Hamiltonian). HF encodes
the objective function, and its ground state is the solution of the
optimization problem. Γ(t) is a decreasing function, equal to 0
for t = tf . It controls the contribution of HD, which enables
traversability of the solution space, making the optimization
process escape local minima. As for this aspect, QA presents a
similarity with simulated annealing [46], where the temperature
parameter T resembles the role of Γ(t). In this framework, the
assumptions of the adiabatic theorem are relaxed, i.e., there is no
requirement for the quantum system to be closed and to operate
in the ground state. The implementation of QA provided by D-
Wave quantum annealers enables the solution of a specific type
of optimization problems, called QUBO problems. A QUBO
problem is defined as

minimize
∑
i<j

aiQijaj (4)

where ai ∈ {0, 1} are the binary variables of the problem and
Q an upper-triangular matrix called QUBO matrix.

B. Minor Embedding

The hardware architecture of D-Wave quantum annealers
poses a limitation on the QUBO problems that can be solved.
The most relevant specifications are the number of qubits, the
number of couplers (i.e., the physical connections between pairs
of qubits), and the qubit connectivity (i.e., the average number
of couplers connected to a qubit). D-Wave Advantage is based
on the Pegasus architecture and has approximately 5000 qubits,

35 000 couplers, and a qubit connectivity of 15 [45]. When
the QUBO problem is submitted to a quantum annealer, a step
called minor embedding [47] is performed, in which each binary
variable of the problem ai is embedded into a qubit chain. The
main requirement is maintaining the logical structure of the
problem, described by Q. Each element of the QUBO matrix
Qij represents a logical relation between the variables ai and aj .
The coefficients Qij are mapped to the strength of the couplers
connecting the qubit chains assigned to the variables ai and
aj . The existence of such an embedding is a requirement for
a problem to be solved by the annealer, i.e., constraints on the
dimension and the structure of the QUBO problem need to be
satisfied. In Fig. 1, the embedding of a QUBO problem in graph
form is shown.

III. QMSVM FORMULATION

In this section, a novel algorithm called QMSVM is de-
scribed. It is based on a reformulation of the CS SVM [41]
as a QUBO problem. The followed steps are adapted from the
QSVM proposed in [40], with the addition of a solution combi-
nation method. As a starting point, the CS SVM formulation is
described in the following.

A. Crammer–Singer Multiclass SVM

In a supervised multiclass classification problem, let N be the
number of training examples, C be the number of classes, X tr =
{xn} be the feature vectors of dimension F , and Y tr = {yn} be
the labels. The training consists in the solution of the following
quadratic program:

minimize F (T ) =
1

2

N−1∑
n1,n2=0

K(xn1
,xn2

)

C−1∑
c=0

τn1cτn2c
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Fig. 2. Flowchart of the QMSVM algorithm. A training set X tr is given as input to the QA step, which obtains a set of S solutions to the training problem. The
solutions are then combined with a weighted average based on the accuracy performance on a validation set Xval of the classifiers obtained by the single solutions.
The final classifier is then used to generate classification maps of test images.

− β
N−1∑
n=0

C−1∑
c=0

δcyn
τnc (5)

subject to
C−1∑
c=0

τnc = 0 ∀n, τnc ≤ 0 ∀n, ∀c �= yn (6)

whereT = [τnc] is the matrix of theNC problem variables, with
n = 0, . . ., N − 1, c = 0, . . ., C − 1, and τnc ∈ [−1, 1], δij is
the Kronecker delta, and β a regularization parameter.

D-Wave Advantage is unable to directly solve (5) and (6).
Therefore, a reformulation of (5) and (6) as a QUBO problem is
necessary. The followed steps are: choosing a binary encoding
(see Section III-B), defining the penalty terms (see Section
III-C), deriving the QUBO matrix including the results of the
previous steps in the cost function (see Section III-D), and
defining a solution combination method (see Section III-E).

B. Binary Encoding

The first step consists in defining the binary variables ai of the
QUBO problem. In the CS formulation, the problem variables
τnc are real numbers. The idea is to discretize the solution space
using uniform sampling and represent each value as a set of
B binary variables. First, the following intermediate variable is
defined:

σnc =

B−1∑
b=0

2banCB+cB+b. (7)

σnc is an integer value in [0, 2B − 1] represented by the binary
encoding {anCB+cB+b}, b = 0, . . . , B − 1. Then, the problem
variables τnc can be defined from σnc as

τnc = −1 + 2

2B − 1
σnc = −1 + 2

2B − 1

B−1∑
b=0

2banCB+cB+b.

(8)

Fig. 3. Representation of the chosen variable sampling and encoding for
B = 2.

With this definition, it can be proven that each value of τnc lies
in [−1, 1] and the interval is uniformly sampled.

Fig. 3 shows the sampling of (8) for B = 2, i.e., in the case,
each sample of τnc is represented by two binary variables,
indicated above each sample. Since the total number of problem
variables is NC (each variable is associated with an example
and a class), the whole optimization space can be represented
by a set of NCB binary variables {a0, a1, . . ., aNCB−1}.

C. Penalty Terms

Another requirement is to include the constraints of (6), as
no constraints can be directly enforced in a QUBO problem.
A possibility is to add the constraints to the QUBO matrix as
weighted positive penalty terms. For the first constraint, the
penalty term needs to increase in the case the difference between
the value of the sum and 0 increases. In addition, a penalty term
needs to be associated with each training example and with the
same weight. Since a quadratic polynomial term is required, the
following penalty term is chosen:

P 1
n =

(
C−1∑
c=0

τn,c

)2

. (9)
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For the second constraint, which is an inequality, it is sufficient
to directly consider τnc as the penalty term associated with
each training sample and each class. A coefficient (1− δcyn

)
is attached to account for the case c = yn, in which the penalty
is zero

P 2
nc = (1− δcyn

)τn,c. (10)

The final penalty term can be written as

P =
N−1∑
n=0

P 1
n +

N−1∑
n=0

C−1∑
c=0

P 2
nc

=

N−1∑
n=0

(
C−1∑
c=0

τn,c

)2

+

N−1∑
n=0

(
C−1∑
c=0

(1− δcyn
)τn,c

)
. (11)

Note that P 1
n and P 2

nc are included with the same weight. The
following reasons behind this choice can be listed.

1) Considering two different weights would increase the
number of hyperparameters of the optimization problem
and the already high complexity of the tuning phase.

2) The two constraints have to be both equally satisfied.
3) The two penalty terms have approximately the same order

of magnitude, as τnc ∈ [−1, 1], so there is no imbalance
in values.

D. QUBO Matrix

The QUBO problem can now be written by adding to (5) the
penalty term in (11) multiplied by a weight μ and substituting
τi,j with the encoding in (8). The energy function E can be
written in the following form:2

E = F + μP =
∑

n1n2c1c2b1b2

an1CB+c1B+b1

Q̃n1CB+c1B+b1,n2CB+c2B+b2an2CB+c2B+b2 . (12)

Q̃ is a symmetric matrix of size NCB ×NCB. It can be
analytically derived by neglecting the terms not depending on
the binary variables and is equal to

Q̃n1CB+c1B+b1,n2CB+c2B+b2

= δn1n2
δc1c2δb1b2

2b1+1

2B − 1

(
−
∑
i

K(xn1
,xi)

− δc1yn1
(β + μ)− 2Cμ+ μ

)

+ δc1c2
2b1+b2+1

(2B − 1)2
K(xn1

,xn2
) + δn1n2

2b1+b2+2μ

(2B − 1)2
. (13)

2In this formulation, a simplified notation for the sums is used, as the range
of the indices is unaltered and redundant.

The upper-triangular QUBO matrix Q can be computed from Q̃
as

Qij =

⎧⎪⎨⎪⎩
Q̃ij , for i = j

Q̃ij + Q̃ji, for i < j

0, otherwise

. (14)

E. Solution Combination

Once the QUBO matrix is defined, the problem can submitted
to the quantum annealer, assuming the existence of an embed-
ding. As the annealing process is performed multiple times,
depending on the value of num_reads, the obtained output is
a set of num_reads solutions. The best S solutions are selected,
i.e., Ti = [τnc]i, i = 0, . . . , S − 1, ranked by the value of the
energy function E(Ti). During the experiments, it has been no-
ticed that there is no perfect correlation between solutions with
lower energy and better classification accuracy of the obtained
classifier. Note also that the solution space investigated by the
QA algorithm is discrete, due to the variable sampling, so the ob-
tained individual solutions are likely to be suboptimal. For these
reasons, a solution combination is performed in order to obtain
an optimal final solution. A weighted average is performed,
where the weights ws for each solution s are set according to the
prediction accuracy of the obtained classifiers on a validation
set {Xval, Y val}. In particular, the solutions above a certain
threshold accuracy are selected, and their weight is computed
applying the softmax function to multiplier · accuracys, where
multiplier is a real value and accuracys is the accuracy of the
classifier defined by the sth solution on the whole training set.
The rest of the weights are set to 0. The combined solution is
computed as

T̄ =
1

S

S−1∑
s=0

wsTs. (15)

The resulting variables τ̄nc are then used to classify new
examples

H(x) = argmax
c

{
N−1∑
n=0

τ̄ncK(x,xn)

}
. (16)

Algorithm 1 summarizes the implemented computational steps
required for the training. Fig. 2 visually represents the flowchart
of the algorithm for training and testing.

IV. ALGORITHM VALIDATION

A. Experimental Setup

The QMSVM algorithm has been validated on a semantic
segmentation problem applied to multispectral RS images. Two
different datasets are considered, i.e., SemCity Toulouse [48]
(hereafter “Toulouse”) and ISPRS Potsdam [49] (hereafter
“Potsdam”). Table I describes the selected datasets. While both
represent urban areas, the two datasets differ in the features
and the ground resolution. Toulouse is based on eight-band
Worldview-2 data. We chose the 50-cm multispectral images
obtained through pansharpening of the 2-m multispectral data
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Algorithm 1: Quantum Multiclass SVM.

Input:X tr, Y tr, Xval, Y val, C,B, β, μ, γ, S,multiplier
Output:T̄

QUBO matrix initialization, (13), (14)
1: Q← QUBO_MATRIX(Xtr, Y tr, C,B, β, μ, γ)

Run annealing step and sample num_reads solutions
2: T ← QUANTUM_ANNEALING(Q)

Evaluate classifier on validation set, (16)
3: for s = 1 to S do
4: Ŷ val[s]← H(Xval, Y val, T )
5: accuracy[s]← ACCURACY(Ŷ val[s], Y val)
6: end for

Weights calculation
7: threshold← THRESHOLD(accuracy)
8: for s = 1 to S do
9: if accuracy[s] < threshold then

10: accuracy[s]← 0
11: end if
12: end for
13: W ← SOFTMAX(multiplier · accuracy)

Solution combination, eq. (15)
14: T̄ ← COMBINE(T,W )
15: return T̄

with 50-cm panchromatic images using the BDSD algorithm.
Potsdam is based on aerial data collection and, on top of four
spectral bands, a DSM is provided, which is used as a feature.
The complete ground truths are obtained by expert annotators.
For each dataset, five training sets of N examples are randomly
initialized, from the training tiles indicated in Table I.

The experiments have been performed on a real quantum
device, JUPSI [50], a D-Wave Advantage quantum annealer
located at Forschungszentrum Jülich. To access the machine,
the Advantage_system5.4 cloud solver has been used. Given the
memory and connectivity limitation of the machine, the training
set {X tr, Y tr} defined in Section III-A is initialized as a subset
of M examples from the total number of training examples N .
The training subset is computed through an example selection
step. Two selection methods have been tested.

1) Random selection: M random examples are selected from
the whole training set. It is a fast and straightforward
method, enforcing no selection criterion.

2) K-means selection: k-means clustering [51] is applied to
each of the C classes, with k = M

C , and the obtained M
centroids are used as selected examples. It is inspired
by undersampling techniques in imbalanced classifica-
tion [52]. In principle, the method is designed to select
meaningful examples, covering the whole feature domain.

The whole training set is then used as the validation
set {Xval, Y val} for the solution combination, introduced in
Section III-E.3 The threshold accuracy, which determines which

3Note that the training sets are named differently here. In the formulation, the
general terms “training set” and “validation set” are used, coherently with ML
literature. Here, the terms “training subset” and “training set” are used, respec-
tively, coherently with our training setup, which is far from being universal.

Fig. 4. Training setup. The OVO and CS methods have been trained on a
training set ofN examples. For QMSVM, a subset ofM examples is selected and
used by the annealing algorithm, while the solution combination is performed
based on the accuracy obtained on the whole training set.

solutions are discarded in the combination, has been computed
as

threshold = 0.2 ·min(accuracy) + 0.8 ·max(accuracy).
(17)

The results are compared with three standard implementations of
the multiclass SVM, i.e., the OVO and OVA implementation in
Scikit-learn [53] and a CS SVM implementation in C++ [54]. A
Gaussian kernel with parameter γ is chosen. The training setup
is depicted in Fig. 4.

B. Parameters

In Table II, the parameters of the problem are described. The
parameters β, μ, and γ are set through a simple grid search
optimization, training the model on a smaller training subset of
20 examples and validating it on the whole training set. Different
values of N are chosen in order to analyze the performance of
the method by varying the number of available examples. The
highest tested value isN = 20000 for Toulouse andN = 15000
for Potsdam. The parameters B, M , and max_min_ratio are
related to the main limitation of the QA, i.e., the number of
qubits and couplers. As previously discussed, finding an embed-
ding on the given qubit architecture is required for solving the
QUBO problem. This is achieved in case Q is sufficiently small,
sufficiently sparse, or both. Using only the selected training
subset, the dimension of Q is MCB. Thus, M is limited,
which is the reason why the QA is unable to use an arbitrarily
large training set and example selection is performed in the
first place. To maximize the number of examples fitting in the
QA, the remaining parameters are kept low, i.e., C = 3 and
B = 2. Considering a higher number of classes, i.e., C > 3,
would require using a lower number of examples M , which
degrades the overall performance. Regarding sparsity, a straight-
forward operation is performed, i.e., pruning the values of Q
below the threshold defined by max_min_ratio, chosen empiri-
cally. This simplification is acceptable, as relatively low values
would be mapped to relatively low strengths in the QA, which
mildly affect the annealing process. The parameters num_reads,
chain_strength, and annealing_time are related to the annealer
setup. Their values are chosen empirically, finding a tradeoff
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TABLE I
DATASETS USED IN THE EXPERIMENTS

Fig. 5. Toulouse—ground truth and predicted land cover maps on an 800× 800 selected area from tile 8 for OVO, OVA, CS, and QMSVM using N = 20000
training examples. The considered classes are “building” (orange), “pervious surface” (green), and “water” (blue). (a) Ground truth. (b) OVO. (c) OVA. (d) CS. (e)
QMSVM.

Fig. 6. Potsdam—ground truth and predicted land cover maps on a 1000× 1000 selected area from tile 6_10 for OVO, OVA, CS, and QMSVM using N = 15000
training examples. The considered classes are “building” (blue), “low vegetation” (light blue), and “tree” (green). (a) Ground truth. (b) OVO. (c) OVA. (d) CS. (e)
QMSVM.

Fig. 7. Toulouse—test accuracy and execution time for QMSVM, OVO, OVA, and CS SVM with respect to training set size N . (a) Test accuracy versus training
set size N . (b) Execution time versus training set size N .

between total run time and quality of the solutions on the small
validation set, testing a range of values that have been considered
valid in previous work, e.g., in [55]. The remaining parameters
are set arbitrarily. Table II summarizes the chosen parameter
values.

C. Results

In the test phase, the methods are evaluated on a three-class
classification problem on a selected area taken from the dataset.
For Toulouse, an 800× 800 test area from tile 8 has been
selected, and the classes “building,” “pervious surface,” and
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Fig. 8. Potsdam—test accuracy and execution time for QMSVM, OVO, OVA, and CS SVM with respect to training set size N . (a) Test accuracy versus training
set size N . (b) Execution time versus training set size N .

TABLE II
PARAMETERS OF THE SETUP

“water” have been considered. For Potsdam, a 1000× 1000 test
area from tile 6_10 has been selected, and the classes “building,”
“low vegetation,” and “tree” have been considered.

The method is evaluated according to both test accuracy
and execution time. For OVO, OVA, and CS, training and
inference are considered. For QMSVM, the time measurement
includes preprocessing (example selection), training (anneal-
ing), postprocessing (solution combination), and inference time.
Figs. 5 and 6 show the ground truth of the selected area and
the ground maps obtained by OVO, CS, and QMSVM. In
Figs. 7–10, the performance of the analyzed methods on the
Toulouse and Potsdam datasets is shown in terms of both test
accuracy and execution time, and for both example selection
methods, i.e., random and k-means selection. Table III sum-
marizes the best obtained results in terms of test accuracy,
along with the respective F1 score. Accuracy and F1 score are
computed as

accuracy =
correct predictions
no. of predictions

, F1 = averagec(F1c). (18)

TABLE III
RESULTS OF ACCURACY, F1 SCORE, AND EXECUTION TIME FOR OVO AND

QMSVM

F1c is the F1 score computed for each class c with respect to the
remaining classes

F1c =
TPc

TPc +
1
2 (FNc + FPc)

(19)
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where TP (true positive), FN (false negative), and FP (false
positive) predictions are referred to the class c. For each method,
the average results on the five training sets are plotted and
the space between the best and the worst obtained results is
highlighted. For CS, experiments on only one training set have
been performed, due to the slow training.

V. DISCUSSION

A. QMSVM on D-Wave Advantage

Running the proposed algorithm on the D-Wave Advantage
quantum annealer requires particular attention to its functioning.
First of all, a QUBO formulation needs to be derived from the
original problem, which is not always possible. The analyti-
cal derivation we provided successfully reframed the problem,
although with some inevitable changes and arbitrary choices,
e.g., on the optimization variable domain and the constraint
satisfaction. Then, as previously mentioned, the main limitation
of quantum annealers is in the maximum problem size that
can be submitted. We tackle this limitation by using only a
small subset of the training set and then refining the obtained
solutions using the whole training set. Understanding how many
examples we should consider and how sparse the QUBO matrix
should be requires some experience given by trial and error. The
parameters provided can be used as a reference for future work.

B. Test Accuracy

The results show that QMSVM can reach a comparable
or higher classification accuracy with respect to its classical
counterpart, i.e., CS SVM. This is a promising result, given
the limitations discussed in Section V-A, in particular the small
number of training examples M that QMSVM can handle in the
optimization step. The reason is that the solution combination
using N examples is able to improve the quality of the final
solution on average by increasing N , as seen in the accuracy
plots. However, the prediction accuracy of OVO and OVA is
slightly higher on average than both CS and QMSVM for
higher N . An even worse performance of QMSVM can be
clearly seen on the more complex Potsdam dataset. The random
selection method consistently outperforms k-means selection
on Toulouse, while performing slightly better on Potsdam. This
shows that k-means is inconsistent in practice and leaves an open
question on the path to follow for an optimal example selection
method. A high variance in accuracy with respect to the chosen
training set should also be mentioned, which makes QMSVM
more unstable than the compared standard SVM methods.

C. Time Complexity

The most remarkable result is that the execution time of
QMSVM for a high number of training examples N is lower
than the execution time of the classical methods considered in
the comparison. The different steps included in the measurement
of the execution time are shown in detail in Figs. 9 and 10. It
can be seen that the most demanding step in the QMSVM is the
annealing step. The main reason is the high time complexity of
the minor embedding algorithm [47] required to run the QUBO

Fig. 9. Toulouse—execution time of each performed step, for QMSVM,
OVO, OVA, and CS SVM, with respect to training set size N . (a) QMSVM
(selection, annealing)—execution time versus training set size N . (b) QMSVM
(combination, inference)—execution time versus training set size N . (c) OVO,
OVA, CS—execution time versus training set size N .

problem on the quantum annealer. The interesting results are
the linear time increase for the solution combination and the
constant time for inference with respect to N . A theoretical
explanation supporting the experimental results is summarized
as follows.

In the solution combination step, the single solutions obtained
by the annealer define S decision functions as in (16). The
decision functions are evaluated on N examples and require
the computation of the kernel values K(x, xm) with the M
examples of the training subset. The evaluation is repeated forC
classes and the class with highest value is chosen. For evaluating
all the S classifiers, O(SCMN) operations are needed, leading
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Fig. 10. Potsdam—execution time of each performed step, for QMSVM,
OVO, OVA, and CS SVM, with respect to training set size N . (a) QMSVM
(selection, annealing)—execution time versus training set size N . (b) QMSVM
(combination, inference)—execution time versus training set size N . (c) OVO,
OVA, CS—execution time versus training set size N .

to a linear time complexity with respect to the training set
size. Similarly, the classifier used in the inference computes
the kernel distances between the I test examples and the M
training subset examples and it requires O(CMI) operations,
i.e., it is independent from N . It is worth mentioning that the
speedup of QMSVM is not strictly a quantum speedup. Instead,
it is an algorithmic speedup related to the postprocessing of the
annealing solutions. The outcomes for OVO and OVA are also
coherent with theory: the training complexity of the Scikit-learn
SVM implementation is O(N3), whereas the inference time is
linearly dependent on N [56].

These results clearly show that QMSVM is a much more scal-
able algorithm with respect to the considered training examples
N compared to standard multiclass SVM methods. Given that
the annealing step, which is a fixed step unrelated to N , has the
largest impact in terms of time, the overall execution time can
be regarded as near constant.

VI. CONCLUSION

QMSVM serves as a preliminary framework for applying QA
to a single-step multiclass SVM algorithm, successfully lever-
aging the D-Wave Advantage quantum annealer in the training
step. Although the results show that the prediction accuracy is
not always higher than standard multiclass SVM algorithms
trained on the same training set, especially using the more
complex Potsdam dataset (compared to OVO: 0.8663 versus
0.8598 on Toulouse, 0.8123 versus 0.8521 on Potsdam), the
improved scalability allows the usage of large-scale datasets,
due to the lower total execution time (compared to OVO: 85.72
versus 248.02 s on Toulouse, 58.89 versus 580.17 s on Potsdam).
Further research has to be conducted, in light of the promising
achieved results. Time and accuracy analysis can be performed
on different datasets, better assessing the impact of N and the
model parameters on the prediction accuracy. A deeper analysis
of different selection methods based on dataset representative-
ness, on top of the k-means method, can improve the quality
of the solutions obtained by the QA. An improvement in per-
formance for QMSVM is expected with the future development
of QA, as a higher memory and qubit connectivity allows the
usage of a larger training subset and enhances the quality of the
obtained solutions.
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