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Robust Multiscale Spectral-Spatial Regularized
Sparse Unmixing for Hyperspectral Imagery

Ke Wang ", Lei Zhong ", Jiajun Zheng

Jingjing Cao

Abstract—With the aid of endmember spectral libraries, sparse
unmixing plays a critical role in interpreting hyperspectral remote
sensing data. Integrating spatial clues from hyperspectral data into
sparse unmixing frameworks is pivotal for enhancing unmixing
capabilities. As such, extracting and harnessing spatial signatures
from imagery has emerged as a prevalent tactic to optimize unmix-
ing. In real-world scenarios, hyperspectral images are susceptible
to noise, which poses great challenges to the separability of ground
objects. As a result, most sparse unmixing models are ill-equipped
to handle this issue properly, facing risks of failure. To tackle
this challenge, we proposed a sparse unmixing technique with
robust multiscale spectral-spatial regularization (RMSR). In the
proposed RMSR model, an abundance estimation error reduction
regularizer and a spectral-spatial weighted sparse regularizer are
consolidated into a unified framework, which excavates the spatial
information of the image from multiple perspectives. Specifically,
in the first part, the abundance estimation error is defined as
the difference between the precomputed abundance maps at the
superpixel level and the expected abundances calculated from the
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original data. Then, the £, ; norm is applied to it as a regular-
ization term, which enhances the robustness of the model against
image noise and outliers. In the second part, image level spectral
weighting coefficients and local spatial weighting terms are lever-
aged to individually enhance the sparsity of the abundance maps
and their piecewise smoothness. The experimental results reveal
the algorithm’s considerable capabilities in noise immunity and
improved unmixing abilities.

Index Terms—Abundance estimation error, multiscale,
sparse hyperspectral unmixing, spatial information, spatial
regularization.

1. INTRODUCTION

YPERSPECTRAL remote sensing uniquely combines
H spectral and spatial data, revealing detailed spectral sig-
natures of surface materials absent in traditional broadband
imagery [1]. This fusion of spectroscopic and imaging capabil-
ities enables fine-grained identification and characterization of
ground components, which is critical for advanced analysis [2],
[3]. Hyperspectral remote sensing has found diverse applica-
tions across domains, including mineral exploration [4], crop
analytics [5], ecological surveying [6], seafloor mapping [7],
and defense reconnaissance [8], [9]. Hyperspectral sensors often
have inherent resolution limitations that lead to mixed pixels
in the imagery, where the measured spectrum represents an
aggregate of multiple ground components [10]. The ubiquity
of these mixed pixels hinders detailed analysis and practical
use cases of hyperspectral data by obscuring the pure spectral
signatures of interest [11]. Spectral unmixing provides a useful
approach for tackling mixed pixels in hyperspectral data [12]. It
seeks to unmix the mixed spectrum of each pixel into its pure
endmember spectra and quantify the fractional abundance of
each endmember in that pixel [13].

With its simple formulation and intuitive interpretability, the
linear mixture model (LMM) has gained popularity in hyper-
spectral imaging analysis [14]. Under LMM, the composite
spectrum of a mixed pixel is modeled as a linear summation
of the constituent endmember signatures present within that
pixel [15]. Unsupervised spectral unmixing techniques have
emerged as a result of advancements built upon the LMM.
These techniques encompass geometric-based [16], [17], [18],
statistical-based [19], [20], [21], and nonnegative matrix fac-
torization (NMF) [22], [23], [24] methods. A potential draw-
back of these pure data-driven unmixing approaches is that
they may extract endmembers that lack physical meaning from
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the scene [25], [26]. By deriving endmember signatures solely
from the available mixed hyperspectral pixels, the extracted
spectral profiles may not correspond to actual materials present
in the image. This can lead to virtual endmembers that are
mathematical abstractions without real-world counterparts [27].
Driven by growing spectral libraries and progress in sparse
modeling [28], [29], sparse unmixing has become a prevalent
semisupervised technique for hyperspectral analysis [30]. It
aims to select the most representative endmember signatures
from a large preexisting library to accurately model each mixed
pixel [31]. By leveraging sparsity to reconstruct mixed spectra,
this approach provides a promising solution to limitations of
previous methods.

In reality, each mixed pixel is composed of only a small
subset of endmembers from the full spectral library, which is
sparse relative to the full spectral library containing numer-
ous endmember signatures [32]. This intrinsic sparsity induces
sparse abundance vectors during unmixing. Capitalizing on the
intrinsic sparsity, some sparse unmixing techniques dedicate
efforts to promoting and leveraging the inherent sparse structure
within the estimated abundance matrix. For instance, the ¢;
norm readily quantifies sparsity levels of the abundances [30].
Meanwhile, the /5 ; norm enforces joint sparsity to yield row-
sparse solutions that align with the endmembers present [33].
In addition, nonconvex regularizers, such as ¢, for 0 < p < 1,
strengthen sparse induction during optimization [34]. By in-
corporating such sparsity-driving constraints and priors, these
methods produce abundancies with enhanced sparsity consistent
with the true endmember composition. Moreover, weighted
sparse unmixing approaches represent the prevailing techniques
that induce markedly elevated sparsity in estimated abundancies
through diverse weighting schemes [35], [36]. Examples include
double reweighted sparse unmixing (DRSU) that impose twin
weighting factors [37], as well as dual weighted low-rank sparse
unmixing that concurrently leverage both weighted and low-rank
priors [38]. By integrating multiple complementary sparsity-
promoting regularizers in a joint optimization framework, these
weighted sparse unmixing methods can effectively tease out the
intrinsic sparse structures within hyperspectral data.

Incorporating the abundant spatial context of hyperspectral
imagery into conventional sparse unmixing frameworks, as
substantiated by prior arts, allows more precise direction of
abundancy estimation and holds promise for performance en-
hancement [39], [40], [41], [42]. To illustrate, the renowned total
variation (TV) regularization is applied to enhance the spatial
continuity of estimated abundance maps [43], [44]. Superpixel
segmentation methods are adopted to construct more precise
adaptive spatial contexts [45]. Sparse graph regularization effec-
tively encodes the interrelatedness between data points by con-
structing a sparse graph structure of nodes, retaining important
structural information [46], [47], [48]. The NLSU method retains
the nonlocal spatial structures in the abundances by leveraging
the nonlocal similarity existing in the image [49]. The multi-
scale spatial regularization unmixing method is proposed, which
captures spatial and spectral contextual information through
multiscale domain transformation techniques to achieve fast
unmixing [50]. Moreover, spectral and spatial weighting terms
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are incorporated into the /1 unmixing model to strengthen spatial
coherency [51].

Nonetheless, the preceding approaches struggle to attain ad-
equate unmixing fidelity under scenarios where hyperspectral
imagery is polluted by excessive noise contamination. To rem-
edy this predicament, a robust self-supervised deep unmixing
network model has been introduced [52]. By exploiting deep
autoencoders, it curtails the detrimental impact of Gaussian
and sparse noise on unmixing performance, thereby boosting
unmixing capabilities. To mitigate the effects of noise, a robust
sparse unmixing approach with dual spatial weighting based on
superpixels has been presented [53]. By employing dual spatial
weighting coefficients, it successfully relieves the interference
of noise with unmixing and attains commendable performance.
The SSNPNMF unmixing model is proposed, which adopts a
spatial graph regularization approach to smooth the hyperspec-
tral image for reducing noise interference [54].

Motivated by filtering-based image denoising approaches, we
have introduced a novel robust multiscale spectral-spatial regu-
larization technique for sparse hyperspectral unmixing (RMSR).
This is aimed at enhancing the unmixing performance on heav-
ily noise-contaminated hyperspectral imagery. The proposed
RMSR unmixing model incorporates abundance estimation er-
ror mitigation and spatial-spectral weighted sparse unmixing
into a cohesive framework that extracts the spatial details of
the imagery through various approaches. To begin with, the
hyperspectral image is partitioned into superpixels by leveraging
the renowned simple linear iterative clustering (SLIC) algo-
rithm [45]. Subsequently, the pixels enclosed in each superpixel
are averaged, and the superpixel is endowed with the resulting
new mean value, thereby reconstituting a new hyperspectral
image. This procedure bears similarity to mean filtering, thereby
capable of substantially mitigating noise. Subsequently, opti-
mization algorithms are employed to deduce the abundance
details at the superpixel level from the reconstructed hyper-
spectral image. The deviation between it and the anticipated
abundance of the raw data is leveraged to configure a regular-
ization constituent founded on the ¢ ; norm, instead of acting
as an outright abundance solution. This regularization term is
integrated into the unmixing model to induce the nonzero row
vectors of abundances tend to the desired endmembers. More-
over, the spectrally weighted coefficients grounded on the holis-
tic scale of the imagery and the spatially weighted coefficients
stemming from the 8-adjacency scale are amalgamated into the
sparseness regularization constituted on the ¢; norm, analogous
to the work in [51], in order to augment the sparseness and
piecewise continuity of the abundance maps, respectively. The
cardinal contributions of this undertaking can be encapsulated as
ensues.

1) A new regularization term is introduced to reduce abun-

dance estimation errors in sparse hyperspectral unmixing.
It is defined as the difference between the expected abun-
dance computed from the original data and the abundance
computed at the superpixel scale using the coarse recon-
structed data. This term is constrained by the {5 ; norm
and helps mitigate the influence of mixed noise on the
unmixing process.
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2) A multiscale spectral-spatial regularization method is de-
veloped for sparse hyperspectral unmixing. This frame-
work leverages spatial information from multiple levels,
including the global image scale, superpixel scale, and 8-
neighborhood scale, to improve the accuracy of abundance
estimation.

The rest of this article is organized as follows. Section II
succinctly elucidates the sparse unmixing model and expatiates
the proposed RMSR algorithm. Section III exhibits experimental
outcomes utilizing simulated hyperspectral data. Section IV
manifests experimental upshots harnessing bona fide hyperspec-
tral datasets. Finally, Section V concludes this article.

II. INNOVATIVE MULTISCALE UNMIXING METHOD
A. Sparse Unmixing Model

Assuming Y = [y1,...,yn] € R™ represents a hyperspec-
tral remote sensing image consisting of n pixels and / spectral
bands, A = [ay, ..., a,;] € R*™isacollection of m endmem-
bers in the spectral library, X = [z1,...,z,] € R™*" is the
abundance matrix corresponding to each image element in the
remote sensing image, and N = [n1,...,n,] € R>*™ denotes
the systematic noise or the potential error. If the spectral library
A isextensive enough to encompass all the endmembers existing
in the hyperspectral image [45], then LMM takes the form of

Y = AX + N. (1)

LMM is generally subject to two physical constraints, namely,
the abundance nonnegativity constraint, represented by X > 0,
and the abundance sum-to-one constraint (ASC), represented by
1Tx = 1.

Considering that the real number of endmembers in the hy-
perspectral image is generally fewer than those available in the
spectral library, and the abundance matrix X is generally sparse.
Therefore, it is necessary to find the sparse linear combination X
that can optimally represent each of the mixed image elements.
The following represents the optimization formulation for sparse
unmixing:

1
n§n§\|Y—AX||%+A||XHO s.t: X >0 )

where ||[Y — AX]||% denotes the relevant data term, || - ||
denotes the Frobenius norm, ||X]||o is the indication for the
sparsity constraint, and the parameter A > 0 determines weight
given to the regularization term. It should be noted that ASC
may not be suitable for sparse unmixing, as the spectral library
A may not contain all the endmember spectra present in Y [30].

The solution to the £y norm is a classical nonconvex optimiza-
tion problem that is known to be NP-hard [55]. Hence, SUnSAL
uses a convex relaxation technique to transform the ¢, constraint
into ¢y constraint, as described in the work [56]. The SUnSAL
model is denoted as

1
m}éniHY—AX\|2F+,\||X||1_,1 s.t: X >0 3)

where the || X||;,; norm, also known as the ¢; ; norm of X,
is calculated as the sum of the absolute values of each element
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within the matrix X across all its columns. The convex optimiza-
tion problem is addressed through the alternating directional
multiplier method (ADMM) algorithm [57].

B. Superpixel Segmentation

This work adopts the well-known SLIC algorithm [45], [58].
This algorithm clusters pixels locally and iteratively, grouping
them together based on their similarity in color (spectrum) and
distance. To be more specific, the pixel with the minimum gradi-
ent within the neighborhood is selected as the initial clustering
seed point to prevent erroneous seed point selection. Thereafter,
similar pixels are searched within a region surrounding the
seed point for more efficient and focused clustering. Suppose
the total number of pixels in the image is N and the desired
number of superpixels is K, then the step size of the adjacent

%, and the
search range of similar pixels is set to 25 x 2. It enables us to
effectively control the granularity of the superpixels according
to research needs. Furthermore, we take into account both spatial
and spectral information when measuring the similarity between
pixels. The spectral angle distance is utilized as a metric to gauge
spectral similarity, whereas the Euclidean distance signifies the
spatial closeness of the pixels. These similarity measures are

defined as follows:
xT'x
L ) )

seed points in the initial generation is set to S =

1%p 21141

-1
dspectral = COs <

where dgpeciral 18 the spectral distance, and x, and x, are the
spectral vectors of pixels p and ¢ in the image, respectively.

dspatial = \/(pa - Qa)2 + (pb - Qb)2 (5)

where dgpaiial is the spatial distance, and p, and p, denote the
spatial position of pixel p.

dspatiar \ >
Dsimilarity = \/(dspectral)2 + <S]§t1al> w? (6)

where Dyimilarity denotes the final similarity metric equation and
S'is afixed constant that represents the size of a superpixel block.
It is derived from the total pixels and predefined superpixel
amount. w is a weight that adjusts the balance between spectral
similarity and spatial similarity, with values ranging from 0 to
1. When w is larger, spatial similarity becomes more important,
resulting in superpixel blocks with more regular shapes. Con-
versely, when w is smaller, spectral similarity becomes more
important, leading to superpixel blocks with better homogeneity
but less regular shapes. Overall, the SLIC algorithm has the
advantages of being fast, simple to implement, and capable
of generating high-quality superpixel blocks. It can effectively
divide a hyperspectral image into multiple coherent and homoge-
neous regions, forming visually meaningful superpixel blocks.
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Fig. 1. Flowchart of the proposed RMSR method.

C. Proposed RMSR Model

To enhance the unmixing of hyperspectral images with low
signal-to-noise ratio (SNR), effectively utilizing spatial informa-
tion to mitigate the adverse impact of noise is crucial for improv-
ing abundance estimation precision. In addition to leveraging the
sparsity of abundances for iterative updates, incorporating reli-
able spatial and spectral regularization into the unmixing model
ensures the stability and accuracy of abundance estimation. In-
spired by filter-based image denoising techniques, we proposed
a novel multiscale spectral-spatial regularization approach for
sparse hyperspectral unmixing, aiming to accurately decompose
hyperspectral images severely contaminated by noise.

The workflow diagram of RMSR method is shown in Fig. 1.
Initially, the SLIC algorithm introduced in Section II-B is em-
ployed to perform superpixel segmentation on the hyperspectral
image, followed by averaging the pixels within each superpixel
block to generate a new hyperspectral image. This process acts
as an approximation of mean filtering, effectively suppressing
noise. It is worth mentioning that the proposed RMSR algo-
rithm does not perform preprocessing for denoising. Instead, it
primarily reconstructs a rough hyperspectral image using the
SLIC algorithm and predictively establishes a superpixel scale
abundance matrix. This matrix is then used to construct an /5 ;
regularization term for reducing abundance estimation errors,
rather than being directly employed as a solution for abundance
estimation. The main purpose of the /> ; norm is to induce the
abundance of nonzero row vectors to tend toward the desired
endmembers. Furthermore, the spectral weight based on the
global scale of the image and the spatial weight based on the

8-neighborhood scale are integrated into the ¢; ; norm-based
sparse regularization, similar to the work in [51]. Ultimately,
the robust multiscale spectral-spatial regularization sparse un-
mixing (RMSR) model is given by

1 -
min Z|IY — AX[[F+4[(Z122) © X][1,1+8|Xe = X]]2,1

st X > 0. @)

The RMSR model consists of three parts. The first term is
the data fitting term, the second term is the sparse weighted
regularization, and the third term is the superpixel scale spatial
regularization. Parameters A and 3 adjust the weights of the
two regularization terms. Next, the two regularization terms in
the model will be explained in detail.

The sparse regularization ||(Z1Z2) @ X||; 1 introduced two
weighting factors into the £; ; norm and © denotes the multipli-
cation of two variable elements. The spectral weighting factor
Z, € R™*™ ig defined as

1 1

= dia Yo
! SXO@ s+ X (m, )] el

where Z; is a diagonal matrix consists of the {5 norm of each
row vector in X, X is the estimated abundance matrix at ¢
iteration, || - [|2 denotes the /5 norm, and ¢ is a small positive
constant. The spectral weighting factor will penalize the nonzero
rows with smaller values in the whole matrix X. After multiple
iterations, only the rows with significant values are preserved,
while the other rows tend to zero. The spatial weighting factor
Zy € R™*™ is calculated based on the spatial 8-neighborhood
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information, and it can be expressed as

(t+1) 1
2,45 T ©)
T R (=) + e

where z ;; represents an element in the matrix Zy, and the
subscripts ¢ and j indicate the row and column indices of
the element. The function fj,cpr(j) (mf}?) explores the spatial
neighborhood information of pixel j. Here, N'(j) denotes the
neighboring space surrounding pixel j, and «; represents the
neighbors of pixel j. The function f(-) is represented as follows:

_ 2hen() €inin

i) = 10
f(xij) S (10)

where €;;, calculates the Euclidean distance between pixel j and
its neighbor x;;. The spatial weighting factor seeks to lever-
age spatial context within a local neighborhood. It prioritizes
closer pixels by assigning them greater weights, while allotting
smaller weights to farther pixels, encouraging center pixel to
have similar abundance values with neighboring pixels. When
adjacent pixels have low abundances, the abundance of the center
pixel will also become smaller iteratively until it is zero. This
spatial weighting strategy can simultaneously enhance sparse
constraints on the abundances while maintaining spatial coher-
ence of abundance maps. R

The superpixel scale spatial regularization || X, — X]||2 1 in-
troduces a precomputed coarse abundance matrix }A(C into the
{51 norm as a difference. The coarse abundance matrix )A(C is
calculated from a superpixel-based reconstructed hyperspectral
image Y . Since Y, is reconstructed based on the average of
each superpixel in the original hyperspectral image, it acts as
a denoiser similar to the mean filter. Therefore, the obtained
X, is robust to noise. Subsequently, a regularizer based on the
£ 1 norm is introduced to force the sparse unmixing abundance

matrix X to approximate X, thereby enhancing the robustness
of the algorithm. Let Y € R!*" be the original hyperspectral im-
age, Y; € RU™i(t =1,... K, Zfil ny =n) represents the
tth superpixel obtained by segmenting Y with the SLIC algo-
rithm, Here, K denotes the number of superpixels and n; repre-
sents the number of pixelsin Y;. Lety, € RNk =1,...,n)
denote any pixel (column vector) in Y. Based on the aforemen-
tioned symbol definitions, the coarse-grained image Y, € R™*™
can be formulated as

1 &
Ye=—> ¥ (11)

gt
where y. represents any column in the coarse image Y ¢ with
the same space position in superpixel block Y. It can be seen
from (11) that the value of y. is the average of all pixel vectors
in Y. In other words, the value of each pixel in the coarsened
image equates to the average of the aligned superpixel cluster
in the native image. The source image is projected onto the
reconstituted coarse image at a superpixel-by-superpixel.

Subsequently, the coarse abundance matrix X, is obtained

through a coarse decomposition of the coarse image Y ¢ In this
process, SUnSAL algorithm is employed for the solution, as
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follows:

C

. 1 5
Xo = argg(ncnglch—AXcHF

+ Ao 1Xcllyy st X > 0. (12)

The coarse abundance matrix }A(C preserves the correlation
among each pixel and its neighboring pixels within the same
superpixel. It can be incorporated into the unmixing model in
multiple ways. To enforce concordance between the coarse abun-
dance and predicted abundance, constraints can be imposed on
their divergence. The Frobenius norm, ¢; ; norm, and /> ; norm
can be utilized for constraining these differences. However, it
should be noted that the Frobenius norm is indeed defined as
the square root of the sum of the squares of a matrix’s elements,
which measures the magnitude of a matrix. When the matrix
is defined as the difference between the coarse abundance and
predicted abundance, the Frobenius norm constraint is exces-
sively stringent, leading to an excessive reliance on the coarse
abundance. Alternatively, the /1 ; norm is computed as the sum
of the absolute values of the matrix elements. It only takes into
account individual pixels and ignores potential collaborative
relationships among them. The {5 ; norm calculates the sum
of the squared magnitudes of the rows of a matrix, followed by
taking the square root of the resulting sum. The minimization
of f31 norm captures the combined contribution of multiple
rows while penalizing minor values in an effort to encourage
row sparsity. The £ 1 norm constraint further facilitates the
consistency of endmembers in the coarse abundance and inferred
abundance. Consequently, we introduce the coarse abundance
matrix as differences within the framework of the /5 ; norm.

The proposed RMSR model leverages the spatial and spec-
tral information of hyperspectral images at multiple scales,
including the global scale, 8-neighborhood scale, and super-
pixel scale. It incorporates two regularization terms: a spatial—
spectral weighted ¢; ; norm and an /5 ; norm of the divergence
between the superpixel-based coarse-grained abundance and
the predicted abundances. The spatial-spectral weighted ¢; ;
norm encourages both spatial coherence and spectral sparsity
in the estimated abundance maps, promoting the identification
of distinct materials and reducing the influence of noise. The
l51 norm reduces discrepancies between the coarse-grained
and inferred abundance, preserving the spatial structure within
each superpixel and enhancing the coherence of the estimated
abundances in a homogeneous region. By incorporating mul-
tiscale constraints, the RMSR model improves the accuracy
and reliability of abundance estimation in hyperspectral image
analysis.

D. Optimal Solution Approach

This section demonstrates the application of ADMM to solve
the proposed RMSR model. It provides a detailed explanation of
solving (7). To facilitate the solution, first of all, (7) is modified
to the following form:

1
min §||Y — AX||% + A|[(Z1Z2) © Xl
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Fig. 2. Residual [|[GU® + BV®)||x versus outer loop iterations for the
proposed algorithm.

+ B[R = Xlla1 + le+ (X) (13)
where g+ (X) =3, lg+(x;) is an indicator function. It
equals zero if x; is nonnegative, and positive infinity otherwise.
To alleviate the intricacy of solving the original objective
function, five auxiliary variables U, V1, V5, V3, and V, are
introduced as
min

1
Y = V4|2 +A|[(Z1Z2) &V
U, V.1,V Vs, Vy 2H 7 +A(Z1Z2) © Va|11

+ 8|1 X, — Vil + g+ (V4)

st.V; =AU, V, =U,V3=07,V, =1U. (14)
We rewrite (14) in a compact form
Ig}li‘I/lg(U,V) st:. GU+BV =0 (15)

where ¢(U,V) = 3||Y = Vi|[i + A|[(Z1Z2) © Vo110 +
BIXc = Vil +1ps (Vi), G =(ALLDT, and B =

diag(—1I),V = (V1, V3, V3, V)T, Followed by the introduc-
tion of the Lagrange multiplier D = (D1, D5, D3, D)%, the
augmented Lagrangian of (14) can be expressed as follows:

£(U,V,D) = ¢(U, V) + gHGU +BV-D|% (16

where (o is a positive constant. Subsequently, we leverage the
ADMM to solve the associated optimization problem, as delin-
eated in Algorithm 1. soft(y, 7) = sign(y)max{|y| — 7} is the
soft-threshold function, vect — soft(y, 7) = y%
the vect-soft threshold function, and « and d- are the entries in
U and Dy, respectively.

The plot in Fig. 2 shows the image of the residual plotted
versus the iteration count. The number of iterations is set based
on experience to 5 and 200 for the interior and exterior cycles,
respectively. The minimum threshold for the residual || GU®) +
BV®|| is set to 1075, It can be observed that Algorithm 1
converges quickly and is nearby converging to zero after 50
iterations.

is

III. SIMULATION DATA EXPERIMENTS AND ANALYSIS

In this section, to ascertain the efficacy of the proposed
RMSR approach, it is compared with the results obtained from
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Algorithm 1: ADMM Method for Solving (7).
1: Input:
2: Y,A,X_,parameters A, 3,E,k=0,t =0, >0
and initialize
U — 0, v — vO _ v _y© _ .
Repeat:

4: Zy) + diag {

1
I(U®-D) (Ao
1
I(U®-D)(m,:)|2+€
o (t)

22,11 %2,1n
5: Zét) — . zét)
: 117 )
t t
() _ 1
where 2,05 = fhE.’\‘/(])(ugfl)7d2'(i;:,))+g
Repeat:
8: (ATA +30) (AT(V]Y + D) + vy
R S

+D¥ 4 v 1 DE v 4+ D)
9: VI = oY u(AUtY - DY)
100 VY = soft(U+D — DY 2707))
11: ng—H) = vect — soft(UF+H) — ng) -X

By+X,
12: VE = maz(ut+) —DE o)
13: Update Lagrange multipliers:
14: DY« DM — AU+ Y
15: DY« D~y vty
16: D§k+1) “ ng) _ U(k+1) + ngJrl)
17 DY« D~y v
18: Update iteration: k + k + 1
19: U+ . yl+1)
20: DYV« DYV
21: Update iteration: t < ¢t + 1
22: until the termination condition is met.

co

five advanced sparse unmixing algorithms: ADSpLRU [59],
JSpBLRU [60], DRSU-TV [44], MUA (SLIC) [50], and
S2WSU [51]. Three evaluation metrics, including signal-to-
reconstruction error (SRE, measured in dB), the probability
of success (ps), and sparsity, were harnessed to calibrate the
functionality of each unmixing method. The definition of SRE
(dB) is delineated henceforth

2
SRE (dB) = 10logy, (EE(|X||2) 17)

In the preceding equation, x and X symbolize the veritable
fractional abundances and surmised abundances severally, while
E(-) emblematizes the expectation operator.

The probability of success (p,) mentioned in [30] proffers an
intimation regarding the robustness of the appraisal. It is defined
as follows:

ps =P (| x—x|? /| x||>< threshold) . (18)
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Fig. 3.

Ground truth fractional abundance maps of the endmembers in SDC1. (a)—(i) Endmember #1—#9.

Nontronite GDS41

Dumortierite HS190.3B

Fig. 4. Ground truth abundance maps of SDC2.

The optimal performance threshold is defined as 3.16 (5 dB)
according to [30]. Elevated SRE (dB) or p; magnitudes portend
superior unmixing functionality. Specifically, sparsity is defined
as the fraction of nonzero entries (elements with coefficient
values greater than 0.005) in X relative to the total number of
entries. It is evident that as the sparsity decreases, the unmixing
solution becomes sparser.

A. Simulated Datasets

The simulated data experiment employs two mineral spectral
libraries, both being subsets of the USGS library.! The premier
spectral library A; € R?24%240 gubsumes 240 materials with
224 bands spaced at regular intervals throughout the 0.4-2.5 ym
electromagnetic wavelength territory. The latter spectral library
A, € R?21%222 encompasses 222 materials with 221 bands
equipartitioned over the 0.4-2.5 ym electromagnetic wavelength
domain. Adhering to the precepts of the linear spectral mixing
model, we fabricated two simulated datasets from the aforemen-
tioned spectral libraries.

1Y)

2)

Alunite GDS83 Na63 Sphene HS189.3B

Simulated Data Cube 1 (SDCI): A data cube named
SDC1 was created, containing 100 x 100 pixels with 224
spectral bands per pixel. The generation process involved
randomly selecting nine spectral signatures from A, as
documented in [43]. The fractional abundances exhibit a
piecewise smoothness property, which helps in revealing
the spatial information mining capabilities of different
algorithms. A pictographic representation of the authentic
endmember abundance distribution is given in Fig. 3.
Simulated Data Cube 2 (SDC2): SDC2 encompasses
100 x 100 pixels, and each endowed with 221 bands.
As portrayed in [61], nine particular endmembers were
selected from As. The abundance maps deftly simulate
the spatial dissemination of archetypal landforms existent
in the world around us. Fig. 4 provides imagery of the per-
cent abundance layouts corresponding to each individual
endmember.

![Online] Available: http://speclab.cr.usgs.gov/spectral.lib06
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TABLE I
RESULTS OF SRE (DB), ps, AND SPARSITY FOR VARIOUS ALGORITHMS ON SDC1

. SNR=20dB SNR=30dB SNR=40dB
Algorithm
SRE (dB) Ds sparsity | SRE (dB) Ps sparsity | SRE (dB) Ds sparsity
ADSpLRU 6.5590 | 0.7387 | 0.0501 | 18.6708 | 0.9966 | 0.0157 | 29.2021 1 0.0122
A=18, 7 = T7e-3) A=2,7=1e-3) A=8e—1, 7 =2e-4)
JSEBLRU 45873 | 0.6156 | 0.0754 | 122822 | 09395 | 0.0244 | 282473 | 1 | 0.0155
A\ =13, 7=17) \=2,71=4) A=1, 7 =2e1)
DRSU.TY |_5-4184 | 0.8438 | 0.0379 [ 193229 | 09937 | 0.0260 | 31.1984 | 1 | 00127
O\ = 8e-3, \ry = 2¢-2) O\ = 3e-3, \rv_ = 2¢-3) O\ = 2¢-3, \ry_ = 4de-4)
MUA 74257 | 07372 [ 00655 | 11.0458 [ 09259 | 0.0561 | 16.0422 | 0.9973 [ 0.0415
\=1lel, f=2) O\ = 2¢-2, f = 2e-1) O\ = 6e-3, f = 2¢-2)
PWSU 8.0178 | 0.8146 | 0.0296 | 21.7501 [ 0.9994 | 00152 | 32.2263 [ 1 [ 0.0123
(\ = 9¢-3) (\ = 5e-3) O\ = 2¢-3)
RMSR 14.1040 [ 0.9794 | 0.0159 | 23.0452 | 0.9999 | 0.0133 | 32.3335 [ 1 | 0.0123
(A = 3e-2, B = 6e-1) (A =8e-3, = le-1) (A = 2e-3, B = 2e-2)
RMSR 12.8257 | 0.9584 [ 0.0162 | 22.9624 | 09996 | 0.0133 [ 322593 | 1 | 0.0123
v (\ = 3e-2, = 5e-2) O\ = 9¢-3, = 8e-3) O\ = 2¢-3, = 2¢-3)

Fig. 5. Segmentation results on the simulated data at the SNR of 20 dB by
the SLIC method. (a) Pseudocolor image of SDCI. (b) Segmentation result.
(c) Pseudocolor image of SDC2. (d) Segmentation result.

Thereafter, independent and identically distributed Gaussian
noise was introduced to the two simulated datasets, resulting in
datasets with SNR of 20, 30, and 40 dB, respectively.

B. Results and Discussion

Fig. 5(a) and (c) shows the false-color images of randomly
selected bands from two simulated datasets with an SNR
of 20 dB, respectively. Fig. 5(b) and (d) demonstrates the
segmentation results of the two simulated datasets using the
SLIC algorithm, respectively. As can be seen from the figures,

the SLIC segmentation technique can effectively extract the
homogeneity information of images and still achieve relatively
good segmentation performance on datasets with low SNRs.
This advances the effectiveness of unmixing methods. In light
of the aforementioned, both the RMSR algorithm and the MUA
algorithm devised herein leverage the SLIC technique to parti-
tion the imagery.

Tables I and II, respectively, present the SRE (dB), p, values,
and sparsity attained by diverse sparse unmixing algorithms
operating on SDC1 and SDC2 across all three SNR tiers. The
optimal parametric configurations availing the utmost perfor-
mance from each algorithm are denoted within parentheses. To
further validate the performance of the regularization term for re-
ducing the abundance estimation error introduced in the RMSR
unmixing model, we impose constraints on it through Frobe-
nius norm (defined as RMSR ) and /5 1 norm (i.e., RMSR),
respectively. Examination of Tables I and II illuminate that the
RMSR algorithm propounded herein attains superior SRE (dB)
and p, metrics compared with alternative unmixing methods
across most scenarios under consideration. The RMSRy al-
gorithm achieved suboptimal values comparable to the RMSR
algorithm in most cases. Especially at low SNR, the superiority
of the two algorithms is more prominent. This indicates that
our method has good noise robustness. Relative to the MUA
algorithm, the RMSR algorithm propounded herein incorporates
spectral weighting predicated on holistic image scale and spatial
weighting derived from local eight-pixel vicinities, conferring
considerable enhancements in unmixing capabilities. Relative
to the S? WSU algorithm, the RMSR algorithm propounded
herein incorporates a regularization component designed to
diminish deviations in abundance estimates, thereby mitigating
pernicious impacts of noise upon unmixing performance. To
further validate the performance of the regularization term for re-
ducing the abundance estimation error introduced in the RMSR
unmixing model, we impose constraints on it through Frobenius
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TABLE II
RESULTS OF SRE (DB), ps, AND SPARSITY FOR VARIOUS ALGORITHMS ON SDC2

. SNR=20dB SNR=30dB SNR=40dB
Algorithm
SRE (dB) Ds sparsity | SRE (dB) Ds sparsity | SRE (dB) Ds sparsity
ADSpLRU 6.4044 | 0.6807 | 0.0701 | 16.4287 | 0.9828 | 0.0306 | 25.0912 1 0.0189
(A=18, 7 = 4e-3) A=2, 7 =4e4) A=1, 7="TebH)
JSpBLRU 3.8108 | 05078 | 0.0790 [ 15.1094 [ 0.9926 | 0.0489 | 249620 | 1 [ 0.0236
O\ = 24, 7 — 43) A=27=9¢—1) O\ = Te-1, 7 = le-1)
pRSU.TY | 93255 | 08222 [ 0.0543 | 193229 | 09937 | 0.0260 | 27.6420 | 1 | 0.0221
O\ = 2¢-3, \rv = 2¢-2) O\ = 3e-3, \rv_ = 2¢-3) O\ = 6e-4, A\rv = de-4)
MUA 53248 | 05026 | 0.0837 [ 8.0303 [ 0.7205 | 0.0813 | 12.6404 | 0.9388 | 0.0661
O\ = le-1, B =3) O\ = 7e-3, B = 3e-1) O\ = 2¢-3, B = 3e-2)
Pwsy | 50842 | 0.6836 | 0.0238 | 197573 | 0.9926 | 0.0207 | 27.8067 | 1 | 0.0215
O\ = 1e-2) (\ = 3¢-3) O\ = 4de-4)
RMSR 13.2162 \ 0.9387 \ 0.0201 | 20.4129 \ 0.9981 \ 0.0202 | 28.1130 \ 1 \ 0.0210
(A =3e-2, B =Te-1) (A =4e-3, B = 2e-1) (A = be-4, B = 2e-2)
RMSR 127928 | 0.9266 | 0.0194 | 20.0245 [ 0.9965 | 0.0206 | 28.0653 | 0.9999 | 0.0209
" O\ = 4e-2, f = 4e-2) (\ = 3e-3, 8 = 8e-3) (\ = He-4, B = 9e-4)

|

ADSpLRU estimated abundances

Pixels
Ground-truth abundances

- D )
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MUA estimated abundances

$2WSU estimated abundances

Fig. 6.

norm (defined as RMSRf) and ¢35 ; norm, respectively. The
empirical findings indicate that utilizing the {5 ; norm yielded
superior SRE (dB) and p, values outcomes, especially under low
SNR conditions, which further validates the effectiveness of this
relaxation method.

To facilitate a more intuitive comparison, Figs. 6 and 7 show-
case the real abundances and inferred fractional abundances
achieved by varied algorithms on SDC1 and SDC2 individually,
with an SNR of 20 dB. For perspicuity, merely 500 stochastically
chosen pixels from the outcomes are rendered, with chromatic
traces denoting the proportions of the endmembers. By ana-
lyzing Figs. 6 and 7, we can discern that the inferred abun-
dance diagrams produced by our postulated RMSR technique
exhibit superior visual quality, showcasing negligible erroneous
demarcations. The chromatic demarcations in these illustrations
intimately emulate the delineations in the authentic abundance

m

JSpBLRU estimated abundances

Pixels

DRSU-TV estimated abundances

Pixels Pixels

RMSR estimated abundances

RMSR g7 estimated abundances

Abundance maps garnered through various methods on SDC1 data under SNR = 20 dB (solely 500 pixels exhibited).

maps, both regarding their multitude and spatial juxtaposition.
The figures clearly illustrate that the results obtained by the MUA
algorithm are heavily impacted by noise interference, rendering
them excessively noisy. The abundance maps educed by the duo
of methods ADSpLRU and JSpBLRU, both of which impose
low-rank constraints, are imbued with a proliferation of spurious
delineations. There exist conspicuous divergences between the
fractional abundance representations fabricated by the S2WSU
and DRSU-TV approaches and the factual fractional abundance
portrayals. To summarize, it corroborates that our proposed
approach possesses superior noise-immunity capabilities.

In order to provide a more comprehensive evaluation of the
performance of our proposed RMSR algorithm, Fig. 8 depicts
the inferred abundance representations of the ninth endmember
in SDC1 under an SNR of 20 dB (similar observations can
be made for other endmembers). In addition, the illustration
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Pixels

RMSR estimated abundances RMSR f7 estimated abundances

Abundance maps garnered through various methods on SDC2 data under SNR=20 dB (solely 500 pixels exhibited).

(k) m

(a)—(f) Abundance maps of the ninth endmember garnered via unmixing the SCD1 data at an SNR of 20 dB using various algorithms. (g)—(1) Deviation

maps between the factual abundance maps and the inferred ones by each algorithm. (a) ADSpLRU. (b) JSpBLRU. (c) DRSU-TV. (d) MUA. (e) S*WSU. (f) RMSR.

(2) ADSpLRU. (h) JSpBLRU. (i) DRSU-TV. (j) MUA. (k) S2WSU. (1) RMSR.

exhibits deviation portrayals between the inferred abundance
and the factual abundance evaluated by diverse unmixing meth-
ods. It is evident that the RMSR algorithm produces results that
are less affected by noise, accurately representing each abun-
dance fraction region. Particularly in areas with high-abundance
fractions, the RMSR algorithm preserves more detailed texture
information and exhibits minimal deviation from the true abun-
dance values. The abundance maps obtained through the AD-
SpLRU and JSpBLRU algorithms exhibit a significant amount
of noise. On the other hand, the MUA algorithm lacks adequate
utilization of spatial information within the image, leading to
lower estimation accuracy. The DRSU-TV algorithm, which in-
corporates TV regularization, tends to oversmooth the estimated
abundance maps, resulting in a loss of fine image details, partic-
ularly in edge areas. On the other hand, the S?WSU algorithm
only considers the abundance estimation of neighboring pixels
within local windows, resulting in the presence of some noisy
points in the inferred abundance maps.

Fig. 9 provides a visual appraisal of the inferred abundance
portrayals of the seventh endmember on the SDC2 dataset
(SNR = 20 dB) obtained from various unmixing algorithms,

alongside the associated divergence representations between the
approximated and factual abundances. These outcomes enable
us to evaluate the precision capability of each algorithm. Anal-
ogous deductions can be gleaned as in Fig. 8. The unmixing
performance of MUA algorithm is poor. The estimated abun-
dance image by DRSU-TV algorithm is still oversmoothed.
S2WSU and JSpBLRU algorithms are more susceptible to noise
interference. In comparison, the proposed RMSR algorithm
suffers the least from noise interference on the SDC2 dataset,
demonstrating good noise-resistance capabilities. Upon examin-
ing the difference map of the simulated SDC2 data, it is apparent
that the abundance map estimated by our algorithm exhibits the
least deviation from the true abundance values. This observation
aligns with the findings obtained from the comparative experi-
ment discussed earlier in the previous section. In summary, by
exploiting the spatial information in the image from multiple
perspectives, the proffered RMSR method accomplishes the
overall optimum competence.

To further demonstrate the performance of the proposed al-
gorithm in handling sparse noise in images, we introduced two
types of sparse noise, namely impulse noise and dead lines, on
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(@ (h) (i)

Fig. 9.

0] (k) U]

(a)—(f) Abundance maps of the seventh endmember garnered via unmixing the SCD2 data at an SNR of 20 dB using various algorithms. (g)—(1) Deviation

maps between the factual abundance maps and the inferred ones by each algorithm. (a) ADSpLRU. (b) JISpBLRU. (¢c) DRSU-TV. (d) MUA. (e) SZWSU. (f) RMSR.

(2) ADSpLRU. (h) JSpBLRU. (i) DRSU-TV. (j) MUA. (k) S2WSU. (I) RMSR.

) E» *u:;&":‘ffl |

() (b)

Fig. 10.

(a) Band 20 of SDC2 without any noise interference. (b) Gaussian noise with an SNR of 20 dB added on top of (a). (c) Impulse noise added on top of

(b). (d) Band 80 of SDC2 without any noise interference. (¢) Gaussian noise with an SNR of 20 dB added on top of (d). (f) Dead lines added on top of (e).

TABLE III
RESULTS OF SRE(DB) AND pg FOR VARIOUS ALGORITHMS ON THE SDC2 CORRUPTED BY SPARSE NOISE

Algorithm ADSpLRU JSpBLRU DRSU-TV MUA S*WSU RMSR
SRE (dB) Ps SRE (dB) Ps SRE (dB) Ps SRE (dB) Ds SRE (dB) Ds SRE (dB) Ps
SNR=20dB 3.8375 0.5057 1.5803 0.2257 4.9386 0.5724 3.9660 | 0.3853 4.6714 0.5829 | 10.3776 0.8560
A=26,7=9e3) | A=11,7=31) | A=1e2, Aty =2e2) | (A=3e-1, B=5) (A =Te-2) (A =4e-2, B = 8e-1)

TABLE IV
RUNTIMES (IN SECONDS) OF VARIOUS UNMIXING METHODS ON PROCESSING SDC2 AT SNR = 20 DB

Algorithm | ADSpLRU | JSpBLRU

DRSU-TV | MUA | S?WSU | RMSR

264.91 234.74

Times(s)

451.83 8.19 74.10 131.14

top of the SDC2 dataset with an SNR of 20 dB. Specifically,
bands 20-30 and 150-160 were contaminated with 10% impulse
noise, whereas bands 80-90 and 180-190 were contaminated
with dead lines. For this hyperspectral image corrupted by
multiple types of noise, we selected images from bands 20 and
80 for visualization, as shown in Fig. 10.

Table III presents the SRE (dB) and p, values achieved by
various unmixing algorithms under sparse noise interference.
The optimal parameter configurations for each algorithm are
also indicated within parentheses. It can be observed from
Table III that the proposed RMSR algorithm exhibits superior
performance in terms of SRE (dB) and p; values compared with
other unmixing methods. The SRE (dB) value reaches an impres-
sive 10 dB, while none of the other algorithms surpass 5 dB.

This indicates that the proposed RMSR method demonstrates
excellent robustness when handling images with low SNR and
sparse noise, while other methods fail to deliver satisfactory
results.

Table IV renders the temporal expenditure of implementing
all the unmixing methods. The simulations were conducted on
MATLAB R2016a, utilizing a laptop equipped with an Intel Core
15-8300H CPU functioning at 2.30 GHz and 8 GB of RAM. The
tests were performed on the simulated SDC2 dataset at an SNR
of 20 dB. The findings indicate that the DRSU-TV algorithm
took the most time to process as a result of its intricate model
complexity, while the ADSpLRU, JSpBLRU, and RMSR algo-
rithms were faster. RMSR was observed to be the fastest among
the three algorithms. Although RMSR took longer time than
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Fig. 11. SRE (dB) garnered through the propounded RMSR algorithm on

SDC1 and SDC2 with different numbers of superpixels. (a) SDCI. (b) SDC2.

S2WSU and MUA algorithms due to its more comprehensive
exploitation of spatial information from multiple perspectives,
the time cost was still reasonable.

C. Analysis of Parameter Settings

Fig. 11(a) and (b) shows the trends of the SRE (dB) values
and different numbers of superpixels obtained by the proposed
RMSR algorithm on the simulated datasets SDC1 and SDC2
at different SNR levels. The results indicate that at an SNR of
20 dB, the unmixing outcome was considerably affected by the
number of superpixels, resulting in suboptimal SRE (dB) values
when the superpixels were partitioned into too many or too few
blocks. For SDC1 with an SNR of 30 dB, the SRE (dB) curve
tends to stabilize and reach the ideal results when the number of
superpixels is greater than 16. For SDC2, the overall trend was
that the SRE (dB) value increased as the number of superpixel
blocks increased. The peak SRE (dB) value was obtained when
the number of superpixel blocks was 2500. Under high SNR
conditions, the number of superpixel blocks had little impact on
the final unmixing result, and the overall trend was relatively
stable.

We conducted two sets of simulated experiments to explore
the selection of parameters to obtain the optimal SRE (dB)
value. Fig. 12 shows the effects of regularization parameters
A and 8 on the unmixing performance of RMSR at an SNR
of 20 dB. It indicates that the proposed algorithm can select A
and [ in a relatively large range, which further demonstrates the
effectiveness of the spatial and spectral weighting factors as well
as the multiscale spatial regularization.
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Fig. 12.  SREs (dB) obtained by the proposed RMSR algorithm on (a) SDC1
and (b) SDC2 data with SNR of 20 dB, as functions of parameters A and /3.

IV. EXPERIMENTAL STUDY ON REAL HYPERSPECTRAL DATA

Within this division, we explicate empirical assays utiliz-
ing authentic documentation wherein the propounded RMSR
method and comparative methods were leveraged on the Cuprite
dataset and Mangrove dataset, respectively.

A. Cuprite Data

The experiment utilized the Cuprite dataset acquired in June
1997 by AVIRIS over the Cuprite region, Nevada, USA. The
spectral reflectance values can be obtained online.? The dataset
has 224 spectral channels, which span wavelengths from 0.4
to 2.5 pm and have a spectral resolution of 10 nm. Owing to
the deficient SNR and pronounced water absorption, bands 1-2,
105-115, 150-170, and 223-224 were expunged, culminating
in the utilization of 188 bands for the trial. A subset of the
Cuprite data with 350 x 350 pixels was used in the experi-
ment. The library A; € R88%240 ytilized in this experiment
is identical to the one used in the SDCI1 trial; however, the
interference bands have been eliminated. Fig. 13 depicts the
mineral geographical delineation constructed by USGS in 1995.
The minerals were mapped using Tricorder 3.3 software [62].3
Note that the Tricorder mining area image was crafted in 1995,
hence, it predates the cuprite datasets collection in 1997. So, the
results of unmixing Cuprite dataset cannot be directly compared
quantitatively with the map produced by the USGS, but the
Fig. 13 can be used as a qualitative evaluation criterion.

2[Online] Available: http://aviris.jpl.nasa.gov/html/aviris.freedata.html.
3[Online] Available: http://speclab.cr.usgs.gov/PAPER/tetracorder.
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Cuprite, Nevada
AVIRIS 1995 Data

SGS
Clark & Swayze
Tricorder 3.3 product

Fig. 13.  Mineral map by USGS showing the mineral distribution within the
Cuprite extractive precinct, Nevada.

Three minerals (Alunite, Buddingtonite, and Chalcedony)
that are particularly prominent in the hyperspectral scene were
selected to showcase their estimated abundance maps in Fig. 14.
The regularization weights applied in ADSpLRU, JSpBLRU,
DRSU-TV, MUA, S2WSU, and RMSR in this experiment were:
A =0.0005 and 7 = 0.001, A = 0.05 and 7 = 0.2, A = 0.002
and Aty = 0.0001, . = 0.001 and 8 = 3, » = 0.002, as well as
A =0.001 and 8 = 0.5, respectively. The figure demonstrates
that all six algorithms can successfully analyze three types of
minerals. The prognosticated abundance map engendered by
the propounded RMSR algorithm exhibits superior verisimil-
itude to the referential taxonomic delineation synthesized by
the Tricorder software, surpassing the other five methods. AD-
SpLRU, JSpBLRU, and MUA produced abundance maps for
Buddingtonite with a significant amount of noise and Chal-
cedony abundance maps with varying degrees of information
loss, showing significant difference from the reference images.
The outcomes of DRSU-TV, S2WSU, and the propounded
RMSR methods are relatively meritorious as they efficaciously
delineate the dissemination of the three mineral constituents.
The abundance map (Buddingtonite) obtained by RMSR stands
out with significantly fewer noise, resulting in a cleaner map.
Moreover, the sparsity of the results obtained by ADSpLRU,
JSpBLRU, DRSU-TV, MUA, S2WSU, and RMSR is 0.0471,
0.0728, 0.0423, 0.0711, 0.0420, and 0.0407, respectively. It is
evident that the RMSR algorithm has a lower sparsity compared
with the other algorithms, indicating an advantage in sparse
unmixing.

B. Mangrove Data

The data utilized in this experiment were acquired in Oc-
tober 2016 via an unmanned aerial vehicle equipped with the
Cubert UHD185 hyperspectral imaging system, imaging the
mangrove nature reserve on Qi’ao Island, Zhuhai City, China,
with the specific area shown in Fig. 15(a) [63], [64]. The image
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Fig. 14.  Proportional abundance delineations prognosticated by ADSpLRU,
JSpBLRU, DRSU-TV, MUA, S2WSU, and RMSR for the Cuprite subscene.

scene dimensions are 1878 x 1877, with a wavelength range of
450-950 nm, a spectral resolution of 4 nm, and a total of 125
bands. The imagistic evidential data pervade approximately 3
hectares of mangrove biomes, and subsequent to antecedent pro-
cessing the pictorials were resampled to a spatial discrimination
of 0.02 m.

The predominant mangrove species found in the study area, as
documented in [63] and [64], are Kandelia candel (KC), Acan-
thus aureum (AA), Aegiceras corniculatum (AC), Sonneratia
apetala (SA), Acanthus ilicifolius (Al), and Hymenocallis lit-
toralis (HL) & Thespesia populnea (TP). Other vegetation types,
such as Phragmites australis (PA), tidal creeks, and wooden
walkways, are also distributed in the region. It is worth noting
that the imagery contains some shaded areas, which are also
treated as a class of endmembers, owing to the presence of
shadows in the image. The endmember spectral library Az €
R125%23 jdentical to those used in [65] and [66], is utilized in this
study. Fig. 15(b) illustrates the spectral signatures for the seven
major vegetation species contained in library As. The spectral
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signatures in the figure exhibit a high degree of similarity across
the various vegetation classes, presenting substantial challenges
for spectral unmixing. For this study, we conduct a qualitative
evaluation of the unmixing performance of various algorithms
on the mangrove hyperspectral data by examining a mangrove
species classification map [Referring to Fig. 15(c)] of our study
area from Cao et al. [63], who utilized support vector machine
classification.

Applying multiple sparse unmixing algorithms to the mangrove data produced abundance maps for seven characteristic mangrove vegetation types.

In this experiment, the regularization parameters for the four
examined algorithms—ADSpLRU, JSpBLRU, DRSU-TV, and
S2WSU—are selected based on recommendations from previ-
ous works [65] and [66]. Whereas the related regularization pa-
rameters for the MUA and RMSR algorithms are empirically set
to A =0.1, B =50, and A = 0.0001, 5 =9, respectively. The
abundance maps for seven representative mangrove species—
KC, HL&TP, AA, SA, PA, AC, and Al—derived by unmixing
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this dataset using the examined algorithms are illustrated in
Fig. 16. The regions in the figure where pixel abundance exceeds
0 denote the existence of the respective vegetation species.
Fig. 16 demonstrates that the abundance maps produced by the
six sparse unmixing methods show considerable agreement with
the reference classification in multiple areas. This substantiates
the capability of sparse unmixing techniques to effectively dis-
criminate between the various endmembers present in the man-
grove dataset. While the unmixing results of the algorithms can-
not be quantitatively gauged, inspection of the figure reveals that
the abundance maps derived by the proposed RMSR approach
exhibit greater congruence with the reference classification for
all endmembers. This signifies enhanced capacity of RMSR to
represent the distributions of varied vegetation and preserve finer
grained specifics (such as for PA species).

V. CONCLUSION

In this study, we proposed a robust and accurate sparse
unmixing method, called RMSR, which introduced multiscale
spectral-spatial regularization to integrate global spectral in-
formation, as well as irregular superpixel-based and regular
neighborhood-based spatial information. A superpixel-guided
spatial regularization term is proposed to alleviate the impact of
noise on endmember identification. It constrains the discrepancy
between the coarse abundance at the superpixel level and the
estimated abundance of the original image using the /> ; norm. In
addition, a spectral—spatial weighted sparse regularization term
is introduced to constrain the number of active endmembers
and the spatial correlation among neighboring pixels in the
abundance map. Experimental results confirm the effectiveness
of the combined multiscale spectral-spatial regularization in
combating noise contamination and enhancing ground object
separation performance. Highly mixed pixels existing in the
edge regions of images is a challenge in hyperspectral unmixing.
While the proposed RMSR algorithm implements multiscale
spatial regularization, it offers limited effectiveness in preserv-
ing information in the edge regions. In the future, we will explore
more precise prior knowledge, such as spatial structures or fine
spectral endmember information, to better handle complex and
challenging scenarios.
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