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Instructional Mask Autoencoder: A Scalable Learner
for Hyperspectral Image Classification
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Abstract—Nowadays, an increasing number of hyperspectral
images (HSIs) are becoming available. However, the utilization of
unlabeled HSIs is extremely low due to high annotation costs. Thus,
it is crucial to figure out how to use these unlabeled HSIs and en-
hance the classification performance. Fortunately, self-supervised
training enables us to acquire latent features from unlabeled HSIs,
thereby enhancing network performance via transfer learning.
Whereas, most current networks for HSIs are inflexible, it is chal-
lenging for them to perform learning and accommodate multimodal
HSIs. Therefore, we devise a scalable self-supervised network called
instructional mask autoencoder, which can extract general patterns
of HSIs by these unannotated data. It primarily consists of a
spatial–spectral embedding block and a transformer-based masked
autoencoder, which are utilized for projecting input samples into
the same latent space and learning higher level semantic infor-
mation, respectively. Moreover, we utilize a random token called
ins_token to instruct the model learn components of global in-
formation, which are highly correlated with the target pixel in HSI
samples. In the fine-tuning stage, we design a learnable aggregation
mechanism to put all tokens into full play. The obtained results illus-
trate that our method exhibits robust generalization performance
and accelerates convergence across diverse datasets. In cases of
limited samples, we conducted experiments on three structurally
distinct HSIs, all of which achieved competitive performance. Com-
pared to state-of-the-art methods, our approach demonstrated
respective improvements of 1.97%, 0.44%, and 3.35% on these
three datasets.

Index Terms—Mask autoencoder, multimodal hyperspectral
image (HSI), self-supervised, transfer learning, unlabeled HSI.
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I. INTRODUCTION

IN RECENT years, hyperspectral remote sensing technol-
ogy has made significant strides, which uses spectroscopy

imagery technology to synchronously gather enormous spectral
and spatial information of the observing targets at pixel level [1].
Thus, it enables us to conduct accurate classification for the
observation targets [2], [3], [4]. Numerous fields, including
ecological research [5], precision agriculture [6], mineral ex-
ploration [7], and medicine [8], are covered by the catego-
rization tasks of a hyperspectral image (HSI) considering the
advantage of a wealth of information contained in it. Unlike
some other image classification missions, HSI classification is
a dense task that assigns each of the pixels in the imagery
into a specific category [9]. Hence, annotating HSIs is a quite
expensive mission. Moreover, the sensors and payloads used for
capturing HSIs are diverse, with a wide range of parameters. That
means the gathered HSIs exhibit variations in wavelength range,
spectral resolution, and spatial resolution. It is still necessary to
train a model from scratch to analyze these HSIs due to their
different structures. Therefore, how to leverage readily available
unlabeled data to learn a shared feature extractor that can handle
multimodal HSIs would be a meaningful work.

In the domain of remote sensing, numerous methodologies
have been proposed for creating efficient HSI classifiers. In its
early beginnings, researchers focus on the traditional machine
learning approaches to train an HSI classifier. As graphics
card computing power continues to advance and deep learning
technology evolves, numerous ingenious networks have been
devised for HSI classification, such as those based on convo-
lutional neural networks (CNNs) [10], [11], recurrent neural
networks (RNNs) [12], long short-term memory networks [13],
[14], graph neural networks [15], [16], and graph convolutional
networks [17], [18]. Compared to traditional machine learning
methods, these approaches have all demonstrated remarkable
performance. In particular, the CNN is often combined with
other networks to enhance the extraction of spatial–spectral
information. With the introduction of a CNN, the input structure
of the model has changed from Rc to Rs×s×c. The reason behind
this transition is the prevalent local homogeneity observed in
natural images, that is, pixels within the same area are likely
to belong to the same land cover class, and their spectral and
textural features are similar.

However, the potential of CNN-related methods has been
constrained by the following limitations.
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1) The CNN is constrained by the fixed size of its con-
volutional kernel, allowing it only to access short-term
dependencies.

2) Local homogeneity introduced by convolutional opera-
tions may not be applicable to pixels located at the bound-
aries of land cover regions. Specifically, there may exist a
variety of pixels belonging to distinct land cover classes
within the same sample.

3) Owing to the sensitivity of convolutions to geometric
textures in images, boundaries between land cover regions
are also prone to extraction, introducing noise during
classification [19].

4) When the sample size is fixed, the structure of the CNN
becomes rigid, resulting in a singular input size and limited
generalization performance [20].

Altering the sample size necessitates a corresponding modifi-
cation in the CNN structure, rendering previously trained model
parameters unusable. Therefore, although CNN-related methods
have demonstrated strong performance, certain limitations per-
sist, constraining the performance and generalization capability.

To surmount these inherent limitations of CNN-based meth-
ods, certain research endeavors opt to employ a transformer as
a foundational structure in designing classification models [20],
[21], [22], [23], [24], [25], [26], [27]. The core of the transformer
is the self-attention (SA) mechanism. The transformer exploits
long-term dependencies along data through SA. It captures the
dependencies between all positions in sequence data by calculat-
ing similarities and performing weighted summation to integrate
information from different positions. Besides, SA is parameter
free and enables the model to process inputs of any length. Re-
grettably, the transformer model performs indiscriminate global
SA calculations on input data. It lacks some a priori assumptions
about the data, the so-called inductive bias, such as translation
invariance and local homogeneity in the CNN. Therefore, this
type of network often has a larger function domain and requires
more data to train it effectively [28]. Although some approaches
have used pretraining to alleviate this issue, they have only
been performed on small datasets. When encountering new
data, these models still require training from scratch. These
methods still cannot effectively support multimodal HSIs, and
their generalization performance in such scenarios has not been
thoroughly validated.

In this article, for the purpose of effectively harnessing unan-
notated hyperspectral data and making the model compatible
with multimodal inputs, such as data from varying spectral
resolutions, spatial resolutions, and input sizes, a transformer-
based self-supervised learner is specifically designed for the
HSI, which shows strong generalization capabilities across mul-
timodal HSI inputs. First, a spatial–spectral embedding block is
designed to convert the multimodal HSIs to a shared token space.
Afterward, we employ two self-supervised agent tasks, namely,
masking reconstruction and model attention instruction, to train
a unified shared encoder. During this process, each pixel can
be analogously likened to words in the context of natural lan-
guage processing (NLP), and the spatial relationships between
these pixels are reminiscent of contextual information in NLP.
Consequently, the network inherently acquires an understanding

of spatial spectral information within HSIs as it undertakes the
patch reconstruction task. In response to the inherent absence of
inductive biases within transformer architectures, we propose a
novel approach. This entails the incorporation of an ins_token
at the input side of the encoder, initialized with random values.
Leveraging a metric learning paradigm [29], we aim to align
the output vector of this ins_token, postdecoding, as closely as
possible with the embedding vector of the target pixel within a
designated projection space. This strategic augmentation serves
to direct the model’s attention toward the specific target pixel. To
accommodate variable input sizes, this study introduces adapt-
able conditional positional embedding [30]. Finally, instead
of global average pooling [31], we introduce a mechanism to
adaptively combine the tokens generated by the encoder to fully
exploit the knowledge acquired by the network for downstream
tasks. The resulting composite output is subsequently utilized
as the ultimate classification vector, which is then fed into the
classifier for supervised training. To facilitate the training of our
model, we source a diverse collection of HSIs from the GaoFen-5
satellite. This dataset encompassed a broad spectrum of en-
vironmental scenarios, such as desert, forest, township, forest
village, snowfield, village, city, and metropolis. Subsequently,
we meticulously divided these unlabeled images into nonover-
lapping patches, categorized into four distinct size parameters.
When transferring pretrained model parameters to a new dataset,
the process primarily involves the replacement of the input layer
to accommodate varying spectral resolutions. Subsequently, su-
pervised fine-tuning can be conducted with a limited number of
samples. Under the same circumstances, compared to the similar
methods, our technique delivered state-of-the-art performance
under the same circumstances.

In summary, the primary contributions of this article are as
follows.

1) We devise a self-supervised learner, which is capable of
harnessing a substantial volume of unannotated HSIs.
It significantly enhances data utilization efficiency and
promotes downstream task performance, particularly in
a sample-limited scenario.

2) Our proposed method exhibits robust generalization ca-
pabilities on multimodal HSI inputs while maintaining
simplicity and ease of implementation.

3) We introduce a model attention instructor, denoted as the
ins_token, a randomly initialized token that directs the
model focus toward areas of human interest through metric
learning.

II. RELATED WORKS

A. Deep-Learning-Based HSI Classification Methods

In the early stage of the study on HSI classification, most
methods focus on exploring the discrepancy of original spec-
tral signatures in HSIs to distinguish the pixels into different
categories, including k-nearest neighbor [32], support vector
machines (SVMs) [33], logistic regression [34], and so on.
Several methods for dimension reduction and spectral informa-
tion extraction have also been developed to handle the com-
plex high-dimensional nonlinear distribution of HSIs, such as
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principal component analysis [35], [36], independent compo-
nent analysis [37], and linear discriminant analysis [38]. How-
ever, the linear processing nature makes it challenging to process
the complex spectrum properties of HSIs. In recent years, deep
learning has emerged as a powerful tool in HSI classification.
For instance, Ahmad et al. [39] and Mughees and Tao [40]
gathered the feature sets by using an autoencoder (AE)-based
method to extract HSI features. Zhong et al. [41] proposed a
semisupervised deep belief network through regularizing pre-
training and fine-tuning procedures by a diversity promoting
prior over latent factors, thereby improving model classification
performance. Nevertheless, owing to challenges in HSIs, such
as spectral drift, spectral variability within identical materials,
and material variability within identical spectra, methods that
solely rely on spectral information still suffer from significant
classification errors [42].

To alleviate this issue, CNNs and their variants are being used
to explore joint spatial–spectral features in HSIs. For example,
Xu et al. [43] designed a multiple-spectral-resolution 3-D CNN,
which combined the 3-D convolution layer and residual connec-
tion to better adapt to the 3-D cubic form of hyperspectral data
and make efficient use of spectral information in different bands.
Li et al. [44] combined depthwise separable convolution and the
3-D CNN; this work successfully accelerated the training speed
and achieved good classification performance. Although CNNs
and their variants have shown promise in achieving accurate
results, their inherent network architecture and focus on local
spatial information may not effectively capture useful spectral
sequentiality information. As a result, these models may have
limitations in achieving higher accuracy in HSI classification
tasks.

B. Pretraining-Based HSI Classification Methods

In the realm of NLP, pretrained large-scale models have exhib-
ited remarkable performance, showcasing robust generalization
and transfer capabilities, even when exposed to a limited amount
of downstream task-specific annotations [45], [46]. Prominent
examples include BERT [47] and the GPT series [48], [49],
[50]. Building upon the foundation laid by vision transformers
(ViTs) [51], researchers have devised pretraining models tai-
lored for the visual domain, such as Google’s BEiT [52] and the
MAE [53] model developed by the team led by He et al. These
methods employ self-supervised learning techniques for model
pretraining and have consistently achieved state-of-the-art per-
formance in downstream tasks. Scholars, drawing inspiration
from the vision self-supervised framework like BEiT [52] and
the MAE [53], have devised pretrained models tailored for
hyperspectral imagery. These models have demonstrated com-
mendable performance in classification tasks, exemplified by
the masked autoencoder spectral–spatial transformer (MAEST)
designed by Ibanez et al. [54], spectral–spatial masked trans-
former (SS-MTr) proposed by Huang et al. [55], and masked
spatial–spectral model proposed by Scheibenreif et al. [56].
However, when employing these models on different datasets,
apart from fine-tuning the new data, retraining the new dataset
is often necessary. Moreover, it is noteworthy that these models

Fig. 1. Overall architecture of IMAE. During pretraining, we first perform
spatial–spectral embedding on the provided HSI samples, converting them into
a shared token space. Then, 50% of these tokens are masked out, allowing visible
tokens to enter an AE for the reconstruction task. Simultaneously, a randomly
initialized ins_token is introduced to guide model attention. After pretraining,
we discard the decoder and the encoder is applied to unspoiled HSI samples.
Finally, a learnable aggregation is applied to the outputs of encoder for the
classification task.

have primarily leveraged a limited subset of hyperspectral data
available in the public domain, such as Indian Pines (IP), PaviaU
(PU), and Salinas (SA) datasets. They have not fully harnessed
the extensive reservoir of unlabeled hyperspectral data that
are accessible and have still maintained certain constraints on
network inputs.

III. PROPOSED METHODOLOGY

A. Overview of Instructional Mask Autoencoder (IMAE)

In this section, we will introduce the proposed method in
detail. The complete workflow of IMAE is as follows: To begin
with, we start by performing spatial–spectral embedding on the
provided HSI sample, transforming it into a sequence of tokens.
Subsequently, these token sequences undergo random masking,
allowing the visible tokens to be fed into an AE for reconstruc-
tion. At the same time, a randomly initialized ins_token is fed
into the AE to conduct model attention instruction. The output of
ins_token at the decoder end, along with the spectral vectors of
target pixels, is projected into a metric space; then, their distance
within this metric space is minimized. The overall architecture
of the IMAE is illustrated in Fig. 1.

B. Spatial–Spectral Embedding

Spatial–spectral embedding is mainly composed of two basic
components: spectral embedding and position embedding. In
the spectral embedding strategy, a 1 × 1 2-D CNN layer is
employed as the input layer to unify all HSI data into the
same dimension. Then, a 1 × 1 3-D CNN layer is utilized to
extensively explore spectral information. Finally, we project the
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Fig. 2. Overall architecture of the spatial–spectral embedding module.

features into a shared space through another 1 × 1 2-D CNN
layer. If the spectral bands of the downstream task data differ
from those of the pretraining data, we can modify the parameters
of the input layer to continue leveraging the expertise acquired
by the model. Fig. 2 illustrates the overview of spatial-spectral
embedding module.

Specifically, given a training sample X, X ∈ Rh×w×b, where
h andw represent the height and width of the input patch, respec-
tively, b represents the number of bands. In the 2-D convolution
operation, the lth convolution kernel W(l)

2d ∈ R1×1×C2d and the

feature map of W
(l)
2d is Z

(l)
2d . For illustration, considering the

input layer, we calculate Z
(l)
2d as follows:

Z2d = Conv2D(X)

Z
(l)
2d (i,j) =

b∑
n=1

X(i,j,n) ×W
(l)
2d (i,j,n) (1)

In the 3-D convolution operation, the lth convolution kernel
W

(l)
3d ∈ R1×1×C3d and the feature map of W

(l)
3d is Z

(l)
3d . As a

demonstration, supposing that the input data Z2d ∈ Rh×w×m,
we calculate Z

(l)
3d as follows:

Z3d = Conv3D(Z2d)

Z
(l)
3d (i,j,k) =

C3d∑
n=1

Z2d(i,j,(k−1)∗s+n) ×W
(l)
3d (i,j,n) (2)

where s represents the stride of the 3-D convolution kernel on
the third dimension of the input; the third dimension c of Z(l)

3d

can be computed as

c =

⌈
m− C3d

s

⌉
+ 1. (3)

We construct the spectral embedding (SE) module using two
2-D convolution layers and a 3-D convolution layer, and its
expression is

Z = SE(X) = Conv2D(Conv3D(Conv2D(X))). (4)

In addition, position embedding plays a crucial role in the
transformer-based model. Through the SA mechanism, the
transformer-based model can learn the relationships between
tokens and pay attention to essential facts, but it is unable to
learn the position information of each token, thus necessitating
the input of extra token position information to the model.

Fig. 3. Structure of CPE. Note that F is a flatten function that flattens the 2-D
position embedding from Rh×w×c to Rhw×c.

The common position embedding methods are predefined; the
length of position token sequence is fixed even if the position
tokens are learnable, which will make the model unable to
handle sequences exceeding the predefined length. The sequence
length growth in an HSI patch is a square term of its size,
so using the length fixed embedding method will prevent the
model from generalizing to larger patch inputs. Furthermore, the
predefined methods just add a particular encoding to each token
in accordance with the sequence, disregarding the relationship
between the pixels in the patch and the neighborhood in which
they are located.

Conditional position embedding (CPE) is a flexible
parameter-free approach that can solve this defect. It hinges
on the input token and its neighborhood to dynamically pro-
duce the position embedding token associated with the input
token. Moreover, CPE is translation invariant, which allows it
to efficiently leverage the local homogeneity of natural images.
CPE can be easily implemented by the 2-D convolution layer
and same padding layers. Fig. 3 illustrates the structure of CPE.
After spectral embedding (SE) and position embedding (PE),
the input of the transformer is

Xembedded = SE(X) + PE(SE(X)) (5)

where Xembedded ∈ Rhw×c; c represents the embedding dimen-
sion.

C. IMAE for HSI Spectral–Spatial Feature Extraction

In this section, we focus on how to extract general features in
HSIs through the IMAE. Concretely, we perform self-supervised
training for the IMAE through constructing two proxy tasks: 1)
constructing a pixel-level masked AE to reconstruct the random
masked input and 2) designing an instructor token to direct the
model to concentrate on the region we are interested in.
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Fig. 4. Structure of a transformer block.

The transformer is a flexible module known for its strong
generalization capabilities, making it particularly well suited
for transfer learning. Through the SA mechanism, it can capture
long-term dependencies within input data and flexibly pro-
cess inputs of different lengths. When dealing with HSIs with
different spatial resolutions, the sizes of HSI samples would
have a great impact on the final classification performance. To
ensure that the IMAE possesses robust generalization capac-
ity, we utilize the transformer as the fundamental module for
constructing the network. A transformer encoder or decoder
includes several blocks; each block is composed of a multihead
self-attention layer (MSA), a multilayer perceptron (MLP), layer
normalization (LN), and residual connection. The structure of
the transformer block is shown in Fig. 4. The output token Z(l)

of the lth block can be computed as

Ẑ(l) = MSA(LN(Z(l−1))) + Z(l−1)

Z(l) = LN(MLP(Ẑ(l))) + Ẑ(l). (6)

The attention mechanism can be achieved through three learn-
able matrices, namely, WK , WQ, and WV . These matrices al-
low the input tokens X = {x1, x2, . . ., xn|x ∈ Rd},X ∈ Rn×d

to be mapped into an assembly of query, key, and value vectors,
respectively. They can be generated by matrix operation as
follows:

Q = XWQ�
= {WQx1,W

Qx2, . . .,W
Qxn} (7)

K = XWK�
= {WKx1,W

Kx2, . . .,W
Kxn} (8)

V = XWV �
= {WV x1,W

V x2, . . .,W
V xn} (9)

where K, Q, and V(K, Q, V ∈ Rn×m) represent the matrices
that combined by the query, key, and value vectors, respectively.
d represents the dimension of input tokens and m represents the
dimension of tokens after mapping. Afterward, we use scaled dot
product to compute the attention map by K and Q and generate
the output tokens by V and the attention map, as follows:

Attr(K,Q,V) = softmax

(
QK�
√
dk

)
V (10)

Fig. 5. 5 × 5 HSI patch. (a) Illustration of local homogeneity. The red pixel
is the target pixel; the yellow area is made of the similar material as the target
pixel. (b) Illustration of the visible token and the mask token.

where softmax(QK�√
dk

) represents the attention map and dk rep-
resents the dimension of key tokens.

The multihead attention mechanism involves performing var-
ious attention operations on the tokens independently, followed
by a weighted linear combination of the output through a learn-
able matrix WO. To be more specific, suppose that there are p
heads(H1,H1, . . .,Hp); the output of MSA can be computed
as follows:

Hi = Attr(XWK
i

�
,XWQ

i

�
,XWV

i
�
) (11)

H =
[
H1,H2, . . .,Hp

]
WO (12)

where Hi ∈ Rn×m,
[
H1,H2, . . .,Hp

]
∈ Rn×pm, and WO ∈

Rpm×m.
In HSI analysis, the surrounding neighborhood of a target

pixel is often used as input to expand information and enhance
model performance. This approach may introduce semantic
redundancy. In [53], it can help the model holistically under-
stand beyond low-level image statistics through masking a high
portion of random patches of natural images. Inspired by this
work, we randomly mask the input data to destroy the semantic
redundancy. After that, it conducts representation learning and
reconstructs the original unmasked input via an AE. In this way,
the model can implicitly learn the context and texture features
in HSI samples. Fig. 5 illustrates the local homogeneity in HSI
and our mask strategy.

Regrettably, since the transformer model performs indiscrim-
inate global SA calculations on input tokens, lacks inductive
bias, has a broad function domain, and disperses local attention,
training the transformer network requires a large amount of
data. In the context of HSI analysis, our primary focus lies in
understanding the relationships between target pixels and their
neighboring contexts. This constitutes a significant prior knowl-
edge. Hence, we aimed to design a mechanism that can learn
this prior knowledge during the network’s pretraining phase. We
introduced a random initialized token similar to the “cls_token”
found in the ViT, which we refer to as the “ins_token” to
represent global features of the input. Furthermore, we devised a
proxy task for self-supervised training. To elaborate, we project
the output of the ins_token and the spectral vector of the target
pixel into a specific metric space and minimize the distance
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Fig. 6. Working mechanism of the instructor.

between them. This operation enables us to guide the model in
learning components in the global information that are highly
correlated with the target pixel, allowing the model to naturally
focus on regions of interest and enhanced the local attention to
target pixel. Theoretically, this instructional term can be con-
sidered as a form of regularization constraint for the AE, which
serves to constrict the model’s functional domain, subsequently
diminishing the quantity of data necessary for fitting. Moreover,
it works as a helpful manual for the aggregate of encoder tokens
in the downstream task. Its working mechanism is shown in
Fig. 6.

Specifically, after spatial–spectral embedding Xembedded,
we randomly mask and flatten Xembedded and then contact
the ins_token to it as the input of encoder Xmasked =
{ins_token, x1, x2, . . ., xn |ins_token, xi ∈ Rc}. Let Z
represent the latent features of Xmasked

Z = encoder(Xmasked) = {ins_token, z1, z2, . . ., zn}. (13)

Afterward, we move the visible token to its original position
and then fill the masked token with a random token, called fill(·)

Zfilled = fill(Z). (14)

Finally, we useZfilled as the input of the decoder to reconstruct
the original HSI patch X′ as well as conduct instruction

X′ = decoder(Zfilled) = {ins_token, x′
1, x

′
2, . . ., x

′
hw} (15)

min||xc − ins_token||2 (16)

where xc represents the center pixel. The loss function of the
pretraining stage is

l = lr + αlins

=
1

hw

hw∑
i=1

||xi − x′
i||2 + α||xc − ins_token||2. (17)

D. Learnable Aggregation

In the downstream task, in order to make full use of the
information learned by the network, we propose a learnable
aggregation to combine the tokens from the encoder and then
feed its outputs to the classifier as the final logit for supervised
training. Specifically, we use the uncovered patch X ∈ Rh×w×b

as model input in forward propagation. Let the output of encoder

Z = {ins_token, z1, z2, . . ., zhw|ins_token, zi ∈ Rd}. The fi-
nal logit can be computed as follows:

Z = [z1, z2, . . ., zhw]
T , Z ∈ Rhw×d (18)

Z ′ = [f(z1), f(z2), . . ., f(zhw)]
T , Z ′ ∈ Rhw×d (19)

logit = clf(ZTZ ′g(ins_token) + ins_token)} (20)

where f and g represent MLP mapping, b represents the spectral
bands of input, and d represents the embedding dimension of
encoder. Finally, we employ the cross-entropy loss function to
train the classifier, as follows:

minimize
θ

E(y, logits) = −
n∑

i=1

yilog(logiti) (21)

where θ represents the parameters of the model, y represents the
ground truth of training data, and n represents the amount of
training data.

IV. EXPERIMENT RESULTS AND ANALYSIS

A. Description of Datasets

In the pretraining stage, we selected HSIs from a variety
of scenes, including desert, forest, township, forest village,
snowfield, village, city, and metropolis, and divided them into
four patches of varying sizes 9, 15, 29, and 33, respectively.
These HSIs were gathered by GaoFen-5 satellite, which contain
330 spectral bands in the wavelength range from 0.4 × 10−6

to 2.5 × 10−6 m. The spectral resolution of VNIR and SWIR
is 10 and 20 nm, respectively. The size of each hyperspectral
image is 2008 × 2083 and the spatial resolution of these data
is 30 m per pixel. Thirty-three water absorption bands are
removed in the process of data preprocessing. After pretraining,
the performance of the proposed method is evaluated on three
hyperspectral datasets, including IP, PU, and SA. These three
datasets possess different spectral bands and spatial resolutions
and are widely utilized for HSI classification tasks. Conducting
experiments on these three datasets allows us to effectively
evaluate the generalization performance of our model as well
as its classification performance on downstream tasks.

1) Indian Pines: The IP dataset contains 145×145 pixels,
which is gathered by the AVIRIS sensor in Northwestern
Indiana, where AVIRIS stands for airborne visible infrared
imaging spectrometer. The original IP dataset contains 220
spectral channels in the wavelength range from 0.4 × 10−6

to 2.5 × 10−6 m with a spatial resolution of 20 m. In this
article, 20 bands corrupted by water absorption effects are
discarded. It contains 16 classes and 10 249 labeled pixels
in total.

2) PaviaU: The PU dataset contains 610×340 pixels col-
lected by the ROSIS sensor at the University of Pavia,
where ROSIS stands for reflective optics system imag-
ing spectrometer. This image scene contains 103 spec-
tral bands in the wavelength range from 0.43 × 10−6

to 0.86 × 10−6 m with a spatial resolution of 1.3 m.
The dataset was provided by Prof. Paolo Gamba from
the Telecommunications and Remote Sensing Laboratory,
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Fig. 7. False-color images of GaoFen-5 pretraining dataset. (a)
Desert. (b) Forest. (c) Township. (d) Forest village. (e) Snowfield. (f)
Village. (g) City. (h) Metropolis.

TABLE I
LAND COVER CLASS ILLUSTRATION AND NUMBER OF TRAINING AND TESTING

SAMPLES FOR THE INDIAN PINES DATASET

University of Pavia. It contains nine classes and 42 776
labeled pixels in total.

3) Salinas: The SA dataset contains 512×217 pixels also
collected by the AVIRIS sensor over Salinas Valley, Cali-
fornia. These data contain 224 spectral bands range from
0.4 × 10−6 to 2.5 × 10−6 m with a spatial resolution of
3.7 m. It contains 16 classes and 50 929 labeled pixels in
total. In this article, 20 water absorption bands (108–112,
154–167, and 224) are removed during data preprocessing.

The false-color images of the GaoFen-5 dataset are shown in
Fig. 7. The false-color images and ground truth of three widely
used datasets are illustrated in Fig. 8. In the sample-limited
scenario, the details of training and testing samples split on three
widely used datasets are shown in Tables I–III. The descriptions
of all the datasets are summarized in Table IV.

B. Training Details and Experimental Settings

In the pretraining phase, the HSIs in the GaoFen-5 dataset are
sliced into samples with four divergent sizes 9, 15, 29, and 33.
Samples of the same size are uncovered. (For instance, suppose
that the size of the HSI is 100 × 100; we divide it into patches

TABLE II
LAND COVER CLASS ILLUSTRATION AND NUMBER OF TRAINING AND TESTING

SAMPLES FOR THE SALINAS DATASET

TABLE III
LAND COVER CLASS ILLUSTRATION AND NUMBER OF TRAINING AND TESTING

SAMPLES FOR THE PAVIAU DATASET

with two different sizes 10 and 20. Consequently, the number
of samples with size 10 is 100, and the number of samples with
size 20 is 25.) To compensate for the discrepancy in the number
of samples of different sizes, we resample samples of larger
size to align the number of samples of different sizes, hence
eliminating the model’s bias with regard to the input sample size.
After aligning, the number of total samples is about 300 000.

The mini-batch training strategy was employed during the
training process. Besides, we designed a custom data loader;
when sampling from the dataset, each step in each epoch has a
separate size, so as to guarantee that the model will not be biased
by the sizes of samples, as illustrated in Fig. 9.

During the fine-tuning stage, 20 samples per class were ran-
domly selected as the training data. In case a certain class has
fewer than 40 samples, 50% of them are assigned as training data.
Details of the data assignments can be found in Tables I and II.
Given that the number of spectral bands in the downstream task’s
data differs from that of the pretrained network, we have to
substitute the input layer of the trained IMAE encoder with an al-
ternative input layer that can adapt to the new hyperspectral data.
Otherwise, the network is unable to execute matrix operations
due to dimension mismatch. Subsequently, as aforementioned
we aggregate the output tokens of the encoder and submit the
output feature vectors to a randomly initialized classifier for
supervised classification training.
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Fig. 8. False-color images and ground truth of three widely used dataset. (a) False-color images of Salinas. (b) Ground truth of Salinas. (c) False-color images
of PaviaU. (d) Ground truth of PaviaU. (e) False-color images of Indian Pines. (f) Ground truth of Indian Pines.

TABLE IV
DETAILS OF ALL DATASETS

Fig. 9. Sample strategy of custom data loader. In this diagram, the yellow
blocks depict the steps within an epoch. The blue, green, turquoise, and pink
squares represent the HSI samples of varying sizes. Each sample encompasses
a set of pixels centered around the target pixel.

The implementation of our method is very sample, which is
completed entirely on the PyTorch platform. In the pretraining
stage, a server with two A40 computing cards and 256-GB
memory was employed as the hardware platform; the mask ratio,
embedding dimension, depth, and heads of encoder were set to
0.5, 256, 4, and 8, respectively; the number of parameters of the
decoder was half of it. AdamW was utilized as an optimizer, and
the learning rate was set to 8 × 10−4. In the downstream task,
we use a terminal with an RTX3090 graphics card and 56-GB
memory as the computing platform; the learning rate of the
encoder and the classifier was set to 10−5 and 10−3, respectively.

In order to quantify the classification performance of our
method, the overall accuracy (OA), average accuracy (AA),
and kappa coefficient (Kappa) were employed as evaluation

measures. OA is the ratio of the number of correctly labeled
hyperspectral pixels to the total number of hyperspectral pix-
els in test samples. AA is the mean of accuracy in different
land cover categories. Kappa measures the consistency between
classification results and ground truth. The larger values of OA,
AA, and Kappa represent the better classification results.

C. Classification Results

To verify the advancement of the our method, we com-
pared the classification results with SVM [57], RNN [58], 3-D
CNN [59], ViT, HIT [22], MAEST [54], SSTN [23], and SS-
MTr [55]. Among these comparative methods, SVM is a classic
machine learning method. RNN and 3-D CNN are mainstream
deep learning methods. ViT, HIT, and SSTN are transformer-
based methods, in particular, ViT is the first transformer-based
model used for image processing. HIT and SSTN have im-
plemented some improvements on its basis to make it more
suitable for HSI classification tasks. Similar to our method,
MAEST and SS-MTr are pretraining methods with backbone
network as MAE. The training data assignments for all compared
methods as the same as those for the IMAE; the size of the input
samples for CNN-based and transformer-based methods was
set to 15×15. Tables V–VII record the classification results of
different methods on IP, PU, and SA datasets, including accuracy
for each class and OA, AA, and Kappa for all classes. The
best results are highlighted in bold. Figs. 10–12 illustrate the
classification maps of different methods.

D. Discussion

Based on the empirical evidence derived from our experi-
ments, it becomes apparent that traditional machine learning
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Fig. 10. Classification maps using different methods on the Indian Pines dataset.

Fig. 11. Classification maps using different methods on the PaviaU dataset.
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TABLE V
CLASSIFICATION RESULTS OF DIFFERENT METHODS USING 20 TRAINING SAMPLES PER CLASS ON THE INDIAN PINES DATASET

TABLE VI
CLASSIFICATION RESULTS OF DIFFERENT METHODS USING 20 TRAINING SAMPLES PER CLASS ON THE PAVIAU DATASET

and deep learning algorithms struggle to perform effectively in
scenarios marked by a paucity of available samples.

It is indicated that such methods may not be adequate for
small-sample training. For the SVM, the high-dimensional fea-
ture space of HSIs can cause the curse of dimensionality and
increase computational complexity, leading to suboptimal clas-
sification results if inappropriate feature subset or extraction
methods are chosen. Moreover, noise and spectral mixing in
HSIs can result in irregular sample distribution and affect SVM
performance. In addition, a large number of support vectors may
lead to overfitting problems. For the RNN, it is a sequence model
primarily used to handle data with temporal sequence features.
Although HSIs are also sequential data, their temporal sequence
features are not prominent and the data dimensionality is high,
with complex interrelationships between different dimensions.
Therefore, using RNN to process the spatiotemporal information
of HSIs may face significant challenges. In addition, in HSI
classification tasks, data preprocessing is typically required,
such as dimensionality reduction, denoising, and normalization.
These operations may result in the loss of temporal sequence
features in the data, thereby affecting the performance of RNN in
HSI classification tasks. For the 3-D CNN, it is a complex model
that has a large number of parameters to learn, necessitating a

substantial amount of data for fitting. Therefore, in the sample-
limited scenario, training the 3-D CNN becomes challenging
and prone to overfitting. In addition, during the preprocessing
stage, operations like dimensionality reduction, denoising, and
normalization may cause the loss of spatiotemporal information
in the data. Since the 3-D CNN relies on this information to
improve classification performance, the preprocessing steps can
potentially impact the effectiveness of the 3-D CNN. ViT, as
the first model designed for visual tasks based on transformers,
performs poorly in limited-sample high spectral classification
tasks for several possible reasons. Firstly, it requires more data
for training due to the lack of inductive bias and the complex
architecture with numerous parameters, requiring more data for
training. Insufficient training samples can result in incomplete
learning and failure to converge. Second, ViT is more suitable for
handling image data with clear spatial structures, as it relies on
SA mechanisms. However, in the case of high spectral images,
the spatial correlation between pixels is relatively weak. ViT
primarily focuses on global correlations within input sequences,
potentially failing to fully leverage the local and spatial fea-
tures of high spectral images. Third, high spectral images often
possess a large number of spectral bands, resulting in high-
dimensional feature spaces. ViT is sensitive to the length of input
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TABLE VII
CLASSIFICATION RESULTS OF DIFFERENT METHODS USING 20 TRAINING SAMPLES PER CLASS ON THE SALINAS DATASET

sequences, and when there are too many bands, the input se-
quence length becomes long, leading to increased computational
complexity and potential difficulties in model training. Finally,
high spectral images commonly suffer from issues such as noise
and spectral mixing. ViT lacks robustness against noise and may
be overly sensitive to outliers when facing high levels of noise
or severe spectral mixing, leading to decreased classification
performance. However, the well-designed transformer-based
networks have achieved impressive performance, such as HIT
and SSTN. Their innovation lies in the integration of CNNs
and transformers to overcome the limitation of transformers in
capturing only global features while neglecting local features.
Specifically, they employ CNNs for local feature extraction and
utilize transformers to capture long-term dependencies between
these local features. Yet, the introduction of CNNs has impeded
the generalization performance of these approaches, making
it difficult to accommodate the samples of varying sizes. The
pretraining-based networks have also obtained competitive per-
formance, like MAEST and SS-MTr. The difference between
them is that the MAEST applies masking in the spectral di-
mension, allowing it to capture hidden information within the
spectrum and effectively suppress noise. This approach focuses
on learning spectral features for improved performance. On the
other hand, SS-MTr applies masking in the spatial dimension
and combines it with a convolutional network to learn spatial–
spectral features. Despite that, limitations imposed by their
model architectures and training strategies hinder their ability to
exploit extensive pools of unlabeled data for pretraining, leaving
room for further enhancement.

Our methodology incorporates an ins_token, enhancing the
model’s ability to capture features relevant to both the global
context and specific target pixels. Furthermore, we leverage
extensive pretraining on a large-scale dataset of HSIs, facilitating
the comprehensive learning of generic features embedded in
the data. Consequently, in comparable conditions, our approach
surpasses existing methods, achieving state-of-the-art perfor-
mance in the field. Specifically, on the IP dataset, we attained

an OA of 83.79%, an AA of 89.24%, and a kappa coefficient
of 81.60%. Similarly, on the SA dataset, our model achieved
an OA of 92.2%, an AA of 94.78%, and a Kappa of 91.34%.
On the PU dataset, our performance metrics were recorded
at 91.13% for OA, 90.95% for AA, and 88.28% for Kappa.
Across these three datasets, our model outperforms traditional
machine learning and deep learning methods by a substantial
margin. In comparison to the enhanced ViT model, our approach,
including the best performing model SSTN within it, exhibits
notable improvements across various performance indicators.
Furthermore, in comparison to similar pretraining methods, our
model surpasses MAEST in terms of AA, OA, and Kappa on
all datasets. Compared to SS-MTr, the AA score of IMAE is
on par with it except for the Indian Pines dataset. In all other
datasets, our model consistently outperforms SS-MTr across
various performance metrics.

The generalization performance of the model is the core met-
ric of our method. In this section, we first test the reconstruction
ability of the pretrained model. Afterward, we to assess the
generalizability of IMAE from the perspective of training and
inference of downstream tasks. Finally, we analyze the influence
of pretrained weights on model convergence speed.

As abovementioned, we random mask 50% HSI samples and
then reconstruct it to the original samples through a transformer-
based AE. PSNR and SSIM are employed to evaluate the recon-
struction performance. The average value of PSNR and SSIM
on test set are 50 dB and 0.99, respectively, which means the
latent knowledge of HSI was fully learnt by our model, and the
overfitting did not take place. Fig. 13 shows the original samples,
masked samples, and reconstructed samples.

In the pretrained stage, the IMAE was trained by HSI samples
with four different sizes, namely, 33, 29, 15, and 9. To examine
the generation capacity of our pretrained model on the sample
size, we random selected 10% samples of per class in three
widely used datasets with three different sizes, which are distinct
from it in the pretraining dataset. The classification results are
shown in Fig. 14. It is evident that despite the fact that the size
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Fig. 12. Classification maps using different methods on the Salinas dataset.

Fig. 13. Reconstruction examples obtained by the IMAE with 50% masking
ratio.

Fig. 14. Classification results of different training sample sizes different from
the pretraining dataset.

and spectral resolution of the training data in the downstream
tasks are not consistent with those in the pretraining dataset, our
method still achieves excellent classification results on these
data.

In the inference stage, we only fine-tune on the training set
with a sample size of 15. Then, we evaluate the classification
accuracy of our inferences using samples whose sizes differ from
those in the training set. The experiment result is illustrated in
Fig. 15.

Obviously, the common feature of the three curves in Fig. 15
is that when the input sample size is small, the inference ac-
curacy is also small. As the input sample size increases, the
inference accuracy also increases sharply until the inference
sample size is equal to the training sample size. The inference
accuracy gradually declines as the inference sample is larger
than the training sample. We postulate that the reason for this
phenomenon is that when the input sample size is small, the
model is unable to learn enough contextual information, lead-
ing to low inference accuracy; when the input sample size is
large, due to the presence of ins_token, the model prefers to
focus on areas close to the center pixel, allowing the model
to suppress invalid information brought on by the increase in
input sample size, thereby lessening the impact on inference
accuracy.
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Fig. 15. Inference performance on different input sample sizes where the
model was fine-tuned on training samples with a fixed size of 15.

Fig. 16. Accuracy curves in the training process with 10% training data each
class. The accuracy curves during (a) training and (b) testing.

In the classification task, as shown in Fig. 16, our method can
greatly improve the performance and speed up the convergence
rate especially when the training data are relatively small. By
observing the curves in the figure, we find that training with
randomly initialized weights converges slowly on PU and SA
datasets, and it not converges on the IP dataset. When pretrained
weights were utilized in the training process, it notably expedited
convergence on SA and PU datasets, achieving a substantial
level of convergence on the IP dataset. The resulting accuracy
was comparable with that of some state-of-the-art methods. To
achieve this result, all we did was simply replace the input layer
of the pretrained IMAE.

V. CONCLUSION

In this article, we devised a pretraining model tailored for
the HSI based on the principles of self-supervised learning.
This approach leverages copious amounts of unlabeled hy-
perspectral data as training material. Through a masking and
reconstruction mechanism, it captures intrinsic spectral spatial
characteristics prevalent within HSIs. In addition, it employs
metric learning to guide the model’s focus toward points of
interest. Our method exhibits robust generalization capabilities,
which we have rigorously tested in both training and infer-
ence phases. Remarkably, using a consistent set of pretraining
weights, our model demonstrates outstanding generalization
performance across multimodal inputs with varying spectral
resolutions, spatial resolutions, and input sample sizes. For

fine-tuning the IMAE on new datasets, a simple adjustment of the
input layer to accommodate different spectral resolutions suf-
fices. This adaptation significantly expedites model convergence
and enhances performance in downstream tasks, particularly in
scenarios characterized by limited samples. When compared to
classical and state-of-the-art methods under identical conditions,
our model attains state-of-the-art performance. The approach we
have introduced opens up new possibilities for the application
of large pretrained models in the domain of hyperspectral im-
agery. However, owing to the diversity in hyperspectral sensor
parameters, many HSIs come with varying numbers of spectral
channels. Constructing different input channels and training
them can be a highly resource-intensive task. Our future research
endeavors will focus on exploring methods to unify the channel
numbers of HSIs with different spectral resolutions. This ap-
proach allows for the seamless integration of HSIs generated
by various sensors without necessitating the replacement of
the input layer and promoting generalization, efficiency, and
cost-effectiveness.
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