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Abstract—Due to the advantage of high spectral resolution, hy-
perspectral imaging techniques have been extensively used in a
variety of fields. Hyperspectral images (HSIs) classification is one
of the fundamental tasks and attracts significant research interest.
HSIs classification is pivotal as it facilitates precise identification of
objects, providing invaluable insights for Earth observation tasks,
such as resource management and land cover analysis. In existing
studies, convolutional operations have been broadly applied for
HSIs classification, especially 3-D convolution, which has shown its
effectiveness in extracting spectral–spatial features from the raw
HSIs. However, HSIs exhibit the characteristic of high dimensional-
ity and pose challenges in extracting more discriminative features.
In order to enhance the capability of capturing discriminative
spectral–spatial features, in this article, a novel and effective 3-D
sharpened cosine similarity (SCS) operation is proposed, serving
as a replacement for conventional 3-D convolutional operation in
HSIs classification and enhancing the classification accuracy. The
3-D SCS operation calculates and sharpens the cosine similarity be-
tween kernels and HSI input data. Based on the 3-D SCS operation,
a 3-D SCS neural network is developed for HSIs classification tasks.
To evaluate the effectiveness of 3-D SCS operation, experiments
are conducted on three real-world HSIs datasets, including the
University of Pavia, the University of Trento, and the University of
Houston. Quantitative and qualitative experimental results illus-
trate that the SCS operation can effectively extract discriminative
spectral-spatial features, achieving superior performance over the
CNNs under the same model configuration.

Index Terms—3-D convolutional operation, 3-D sharpened
cosine similarity (SCS) operation, classification, hyperspectral
images, neural network.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) typically contain hun-
dreds of narrow and continuous spectral bands located in

the visible and near-infrared ranges [1], [2]. These spectral bands
provide abundant spectral information and are beneficial for dis-
tinguishing objects with similar visual appearances. Therefore,
HSIs have broad applications in various Earth Observation (EO)
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tasks, such as agricultural analysis, vegetation monitoring, and
urban planning [3], [4], [5].

While the abundant spectral information in HSIs is good for
accurate target identification, it also poses significant challenges
due to high dimensionality. Besides, the interrelationship among
these continuous spectral bands may lead to the curse of dimen-
sionality [6], [7]. As a result, it is challenging but crucial to
effectively capture spatial–spectral information from raw HSIs.

In earlier studies, band selection and band extraction have
been commonly used to extract informative spectral information
and solve the problem of high dimensionality [8], [9], [10], [11].
Band selection identifies a few informative bands from entire
spectral bands to preserve the main spectral information. On the
other hand, band extraction employs methods, such as principal
component analysis [12] or independent component analysis
(ICA) [13] to convert high-dimensional spectral data into a
low-dimensional feature space. Moreover, traditional classifiers,
such as linear regression, support vector machine (SVM), and
K-nearest neighbors (KNN) [14] are used for classification.
Chen et al. [15], proposed an ensemble SVM method for HSIs
classification and achieved good classification performance by
combining multiple SVM models. Bo et al. [16] designed a
spectral–spatial KNN model based on spectral–spatial infor-
mation and the KNN algorithm. Their method determined the
category for a given test sample by calculating the distance
between itself and the training samples.

However, the abovementioned traditional classifiers employ-
ing handcrafted features require prior knowledge and exhibit
limited generalization capacity with different datasets. Over
the past few years, deep learning-based feature extraction and
classification methods have been extensively applied for HSIs
classification tasks and have achieved remarkable results [17],
[18], [19], [20]. In contrast to traditional manual feature extrac-
tion methods, deep learning models can automatically capture
features from the original HSIs through hierarchical neural
networks. According to the distinct architecture of the network,
deep learning-based classification methods could be roughly
divided into convolutional neural networks (CNNs) [21], [22],
recurrent neural networks (RNNs) [23], [24], graph neural net-
work [25], [26], and self-attention-based vision transformers
(ViT) [27], [28], [29], [30].

CNNs are able to discriminate diverse objects through their
inherent local feature extraction capability and are the first deep
learning-based methods for HSIs classification. Hu et al. [31]
employed a straightforward CNN framework with a convolu-
tional layer, a max pooling layer, and a fully connected layer
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to extract spectral features and classify HSIs in the spectral
domain. Yue et al. [32] utilized 1-D CNN and 2-D CNN to extract
spectral features and spatial representations, respectively. Sub-
sequently, these features were concatenated and fed into a fully
connected layer for classification. Given the correlation between
neighboring pixels, lots of methods based on 3-D convolution
have been developed in order to capture spectral–spatial features
simultaneously [33], [34], [35]. Spectral–spatial classification
models take hypercubes comprising the central pixel and its sur-
rounding pixels as input and are able to capture spectral–spatial
features, improving the classification performance. For example,
Zhong et al. [36] designed a spectral–spatial residual network
that used a stack of 3-D convolutions in residual architecture to
explore discriminative features. The residual connection within
the spectral and spatial residual blocks could effectively alleviate
the challenge of decreasing accuracy associated with increasing
depth of the network.

The aforementioned CNNs assume that each spectral band
and each spatial location of the input data have equal impor-
tance for classification. In order to make the model focus on
more discriminative features and alleviate the effect of infer-
ence pixels, the attention mechanism is integrated into CNNs
and obtains improved classification performance [37], [38],
[39], [40]. Sun et al. [41] exploited a spectral–spatial attention
network (SSAN) to emphasize discriminative features and re-
duce the impact of interfering pixels. Li et al. [42] proposed a
double-branch dual-attention network to classify HSIs. In their
method, a model with two branches was constructed first. Then,
spectral attention and spatial attention were embedded in the two
branches, respectively, to capture important spectral and spatial
features. In order to establish dependencies among different di-
mensions, Qiao et al. [43] presented a cross-dimensional residual
network for HSIs classification. Hang et al. [44] designed an
attention-aided CNN for HSI spectral–spatial feature extraction
and classification. The attention modules were incorporated into
the CNNs and emphasized more useful spectral bands and spatial
positions.

In addition to CNNs, RNNs have also been employed for HSIs
classification. RNNs regard the spectral information as sequen-
tial data and capture spectral features effectively. Mou et al. [45]
took hyperspectral pixels as sequential input and extracted fea-
tures using RNNs for the first time. A modified gated recurrent
unit was utilized to process the input sequential data. Experimen-
tal results demonstrated the efficiency of the sequential-based
RNNs for the HSIs classification task. Mei et al. [46] designed
a bidirectional long-short-term memory network to explore the
bidirectional spectral correlation of HSIs. They also introduced
a spatial–spectral attention mechanism to the proposed model
to focus on effective information.

Moreover, as a new emerging neural network architecture,
self-attention-based transformers have also been increasingly
explored in the HSIs remote sensing community [47], [48],
[49]. ViT could address the limitation of local receptive fields in
CNNs and establish global dependencies. Hong et al. [50] first
employed a transformer architecture for HSIs classification and
proposed a transformer-based backbone called SpectralFormer
to classify HSIs from a sequential perspective without any

feature preprocessing. Sun et al. [27] proposed a spectral–spatial
feature tokenization transformer (SSFTT) to extract informative
features. The low-level features were first captured using hybrid
3-D and 2-D convolutional layers. Later, the high-level semantic
features were extracted via a transformer encoder module with a
Gaussian-weighted feature tokenizer. Wang et al. [51], utilized
transformers to capture regional and global spatial contexts.
The former context was located within homogeneous areas and
the latter encompassed relationships between different regions.

Among various network architectures discussed above, CNNs
stand out as the most extensively used models. The convolu-
tional operation calculates the dot product between the input
data and kernel, serving as the cornerstone in most CNNs.
However, the inherent characteristic being unbounded in the
dot product increases the variance of the model and dimin-
ishes its generalization capability. To alleviate this issue, a 3-D
sharpened cosine similarity (SCS) operation is proposed here
and implemented as a replacement for the 3-D convolutional
operation to capture spectral–spatial features from the original
HSIs data. Different from the convolutional layer, which slides
the kernel on the image and calculates the dot product between
the kernel and image, the SCS operation computes the cosine
similarity between the kernel and image. Moreover, the standard
cosine similarity is further sharpened through exponentiation
operation (i.e., raising its value to a power of p), while retaining
its original sign. This exponentiation operation is implemented
when calculating the output of the 3-D SCS layer. Based on
3-D SCS operation, a simple but effective 3-D sharpened cosine
similarity neural network (SCS-NN) is constructed for HSIs
classification. Our preliminary work [52] initially proved the
effectiveness of the 3-D SCS operation. In this article, we further
extend our research by conducting more extensive experiments,
such as comparing the 3-D SCS operation with more different
methods and additional two datasets. The main contributions of
this article are as follows.

1) A 3-D SCS operation is proposed and employed for HSIs
feature extraction and classification. The implemented
3-D SCS operation utilizes the value of cosine similarity
rather than the dot product to capture spectral–spatial
features. The extracted features are further amplified via
exponentiation operation.

2) A simple but effective 3-D SCS-NN is built based on the
3-D SCS operation for HSIs classification. Moreover, it is
proved that the 3-D SCS operation can easily replace the
conventional 3-D convolutional operation in existing net-
works to further improve their classification performance.

3) In order to validate the performance of the 3-D SCS
operation, a series of comparison experiments on three
benchmark HSIs datasets are carried out and the results
illustrate the effectiveness of the developed method for
HSIs classification tasks.

The rest of this article is organized as follows. Section II
introduces the 3-D SCS operation and the constructed 3-D SCS-
NN. Section III describes the three datasets used for validation,
the experiment settings, and results, and Section IV describes
the corresponding discussion. Finally, Section V concludes this
article.
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II. PROPOSED METHOD

A. 3-D Sharpened Cosine Similarity

Convolutional operations are the foundation of most exist-
ing HSIs classification models. In HSIs classification tasks, it
is essential to capture both spectral information from various
spectral bands and spatial features. The spatial features refer to
the patterns related to the spatial distribution of pixels within
HSIs, such as the texture features and relationships between
neighboring pixels. The 3-D operation takes the 3-D data cube
as input and integrates both spectral and spatial information. As
a result, 3-D convolutional operations are the most commonly
used method to capture spectral–spatial features. The 3-D convo-
lution is implemented by convolving the 3-D kernel and the input
feature cube. Formally, the output value at the given position p0
on the output feature cubes y could be expressed as follows:

y(p0) = w · x =
∑
pn∈R

w(pn) · x(p0 + pn) (1)

where x and y represent the input and output feature cubes
of 3-D convolution, respectively. w is the 3-D kernel and
R denotes the receptive field. The kernel is a filter (or ar-
ray) that slides over hyperspectral input data to extract rele-
vant features. The elements in the kernel are initialized ran-
domly and updated during the training process. p0 stands for
the current position on both feature cubes x and y. pn ∈
R enumerates all the positions within the receptive field.
Take the receptive field of (3× 3× 3) as an example, pn =
{(−1,−1,−1), (−1,−1, 0), . . . , (1, 1, 0), (1, 1, 1)}.

3-D convolutions obtain the output value via the dot product
operation, as shown in (1). However, the dot product operation
inherently suffers from the problem of being unbounded, which
can potentially increase the variance of the model. To alleviate
this issue, in this article, a novel 3-D SCS operation is proposed
for the HSIs feature extraction and classification. Unlike 3-D
convolution, 3-D SCS calculates the value of cosine similarity,
which is bounded in the range of -1 to 1. Moreover, the cosine
similarity values are further sharpened using an exponentiation
operation (i.e., raising the values to a power of p), while reserv-
ing the original sign. This exponentiation operation enables a
better discrimination between different features. Formally, the
calculation of 3-D SCS is shown as follows:

v(p0) = sign(w · x)
(

w · x
max(‖w‖, ε) · max(‖x‖, ε)

)p

(2)

where v is the output feature cube of 3-D SCS operation.
Sign(w · x) means keeping the original sign of the dot produc-
tion operation, which is defined in (1). ‖w‖ and ‖x‖ denote the
norm of w and x, respectively. It should be noted that in order
to avoid being divided by zero, the larger value between the
corresponding norm and a small value ε will be kept. The cosine
similarity output is additionally raised to a power of p, and this
power value is dynamically updated during the training process.
In our experiments, ε is set to 10−6, and p is initialized as 2.

TABLE I
HYPERPARAMETERS OF THE PROPOSED 3-D SCS-NN MODEL

B. 3-D SCS-NN

To evaluate the effectiveness of the proposed 3-D SCS op-
eration in extracting discriminative spectral–spatial features,
a simple neural network called 3-D SCS-NN is developed
based on the 3-D SCS operation for HSIs classification. Sup-
pose the HSI dataset is denoted by H ∈ Rh×w×b, where h,
w, and b represent height, width, and the number of spectral
bands, respectively. Within the dataset, there are N labeled
pixels represented as X = {x1,x2, . . . ,xN} ∈ R1×1×b. Y =
{y1,y2, . . . ,yN} ∈ R1×1×c stands for their corresponding la-
bels and c is the number of land used and land cover categories.
In order to fully utilize both spectral and spatial information,
the small HSI patches comprising the central pixel and its
neighboring pixels are extracted. The generated HSI patches
are denoted as Z = {z1, z2, . . . , zN} ∈ Rs×s×b, where s refers
to the patch size. The label of the central pixel is regarded as the
label for the whole patch.

Fig. 1 shows the overall architecture of the developed 3-D
SCS-NN. The 3-D SCS-NN model is composed of three main
blocks. The choice of a three-layer structure is based on the bal-
ance between model complexity and classification performance.
Each block incorporates a 3-D SCS layer, followed by a 3-D
batch normalization (BN) layer and a nonlinear ReLU layer. The
hyperparameters, including the kernel size, padding, and stride
are listed in Table I. The criteria for choosing these hyperpa-
rameters includes the tradeoff between model complexity and
computation efficiency, spatial resolution, and spectral bands.
For example, kernel size is related to the spatial distribution.
Since a pixel and its neighboring pixels do not always belong to
the same class, a small kernel size is used to incorporate features
of the neighboring pixel while reducing interference. The stride
on spectral dimension is set to 2 to reduce the number of spectral
bands. All these three layers capture spectral and spatial features.
The former includes wavelength variation and the latter refers to
the spatial distribution. However, those extracted features also
exhibit some differences. First, the features extracted by neural
networks are hierarchical, meaning the first layer captures simple
patterns and deeper layers capture more abstract high-level
features. Second, the sizes of the captured features for each layer
are also different. Take the University of Pavia (UP) dataset as an
example, for the input patch with a size of (103,11,11), the sizes
of output features for these three layers are (49,9,9), (22,7,7),
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Fig. 1. Overall architecture of the constructed 3-D SCS-NN.

and (8,5,5), respectively. These processes could be defined as
follows:

Xk+1 = SCS(Xk;Wk+1,bk+1) (3)

BN(Xk+1) =
Xk+1 − E(Xk+1)

Var(Xk+1)
(4)

where SCS is the 3-D SCS layer based on the 3-D SCS operation.
Xk and Xk+1 are the input and output feature cubes of the
(k + 1)th layer. Wk+1 and bk+1 denote the weights and the
bias of the (k + 1)th layer. E() and Var(), respectively, represent
the expectation and variance of the input feature cubes.

Following these three blocks, a 3-D average pooling layer
is employed to fuse the extracted spectral–spatial features. A
multilayer perceptron consisting of two linear layers is used to
obtain the final classification result finally.

III. EXPERIMENTS

In this section, the performance of the proposed 3-D SCS
operation is evaluated on three benchmark HSI datasets. First,
the selected datasets, including the UP, the University of Houston
(UH), and the University of Trento (UT) are described. Then,
experiment settings are introduced. Finally, the quantitative and
qualitative experimental results are presented, along with a
corresponding discussion.

A. Datasets

1) UP: The UP dataset was captured via a Reflective Optics
System Imaging Spectrometer sensor over the UP located in
Northern Italy. The scene consists of 610 × 340 pixels with a
spatial resolution of 1.3 m. After removing 12 noisy bands from
the original 115 bands, there are 103 spectral bands ranging from
430 to 860 nm. This dataset contains nine land cover classes in
total. Fig. 2 displays the spatial distribution of both training and
test data for each class.

2) UH: IEEE Geoscience and Remote Sensing Society
(GRSS) released the UH dataset for the 2013 IEEE GRSS data
fusion contest. Since then, the UH dataset has been one of the
widely used benchmark datasets for HSI classification. The UH
dataset was collected over the UH campus and its surrounding
communities by an airborne sensor. There are 349× 1905 pixels
in spatial dimension and 144 bands in spectral dimension. The
spatial resolution is 2.5 m and the spectral bands range from
380 to 1050 nm. 15 different classes are involved in the ground

Fig. 2. UP dataset. (a) Training data. (b) Test data.

Fig. 3. UH dataset. (a) Training data. (b) Test data.

truth. The spatial distribution of training and test data are shown
in Fig. 3.

3) UT: The UT dataset was captured over the UT campus in
Italy through the airborne imaging spectrometer for application
Eagle sensor. Six classes are distributed in a spatial size of
600 × 166, along with a resolution of 1 m. The UT dataset
includes 63 spectral bands over 402–989 nm. All the labeled
pixels are disjointedly divided into training and test data, which
are displayed in Fig. 4.
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Fig. 4. UH dataset. (a) Training data. (b) Test data.

It should be noted that different from the random sampling
method used in our preliminary work [52], in this article, the
disjointed sampling method is adopted. In the disjointed sam-
pling method, the training data are limited to certain small areas,
which could effectively alleviate the problem of potential spatial
overlapping between training and test samples caused by random
sampling.

B. Experiments Setup

To validate the effectiveness of the 3-D SCS operation pro-
posed in this article, a series of comparison experiments with
various methods are conducted. First, since 3-D SCS is a funda-
mental operation aiming at enhancing the capability of capturing
discriminative spectral–spatial features, comparative analysis
with two other fundamental operations, the common vanilla
convolution and the central difference convolution (CDC), are
carried out. Vanilla convolution is the most widely used oper-
ation, which calculates the dot production between the kernel
and the input data. CDC [53], on the other hand, calculates
the difference between the central elements and their neighbor-
ing elements. For the vanilla convolution, the 3-D SCS-NN is
compared with several established methods with similar com-
plexity, including 2-D CNN, HybridSN, and 3-D CNN. For
the CDC, a similar architecture called 3-D CDC-NN, which
replaces the 3-D SCS operation with the 3-D CDC operation
is constructed. The padding strategy is adopted in the 3-D
CDC-NN model. Moreover, the performance of the 3-D SCS
operation is compared with one of the state-of-the-art models,
i.e., the SSFTT [27]. In the original SSFTT, 3-D convolutions
are employed to extract low-level features, which are fed into
the transformer encoder later. In the modified model, denoted as
SCS-SSFTT, the 3-D convolution operations are replaced by the
3-D SCS operations. These comparative experiments provide a
comprehensive assessment of the 3-D SCS operation.

The code is implemented in Python and all the networks are
constructed using the PyTorch framework. All the comparison
experiments are performed on the Digital Research Alliance of
Canada Cedar cluster equipped with a GPU V100 with 32 GB.

The processor model is Intel Silver 4216 Cascade Lake with
a frequency of 2.1 GHz and the operating system is Linux.
In total, 64 GB of RAM is allocated during the training. The
whole labeled datasets are disjointedly separated into training
and test data, as illustrated in Figs. 2–4. In addition, during the
training process, in order to select the best model, a subset of the
training data is chosen as the validation data. Specifically, for
the whole training data, 90% are used to optimize and update
the parameters in the model, and the other 10% are utilized for
validation. It should be noted that in the experiments of eval-
uating the performance with smaller sizes of training data, the
portions of training samples are reduced to 3%, 5%, 7%, and 9%,
and the validation data percentages are correspondingly adjusted
to 97%, 95%, 93%, and 91%. In this study, the cross-entropy is
employed as the loss function. The training process is configured
to run 500 epochs and an early stopping strategy is adopted. The
training process would be stopped if the loss remains unreduced
for 50 consecutive epochs for the validation data. This strategy
can effectively avoid potential overfitting. Various classification
metrics including classwise accuracies, overall accuracy (OA),
average accuracy (AA), and the Kappa coefficient (Kappa) are
calculated. To ensure reliability, each method is tested five times.
The accuracies are presented as the mean values along with their
corresponding standard deviations.

Moreover, HSIs exhibit the characteristic of high dimen-
sionality, which requires preprocessing in order to stabilize the
training process. In this study, the max–min standardization is
applied to the spectral dimension, normalizing it to the range
of 0–1.

C. Quantitative Comparison

1) Classification Accuracies: Tables II–IV list the classifi-
cation accuracies of different methods on the three selected
datasets. All results are shown in a format of mean ± standard
deviation of five repetitions, with the best results highlighted in
bold.

The classification results on the UP dataset are given in
Table II. Compared with the 3-D CNN and 3-D CDC-NN, the
constructed 3-D SCS-NN achieves superior results with an OA
of 88.41%, AA of 88.26%, and Kappa of 84.53%. The OA is
0.93% higher than that of 3-D CNN, and 8.94% higher than that
of 3-D CDC-NN. Besides, SCS-SSFTT exhibits a higher AA
value and competitive OA and Kappa values compared with the
original SSFTT model. These results illustrate the effectiveness
of the proposed 3-D SCS operation in capturing discriminative
features for the HSI classification task.

For the UH dataset, 2-D CNN obtains a relatively lower
accuracy, as presented in Table III. This could be attributed to the
fact that 2-D CNN only considers the spatial information while
neglecting the spectral features, which are important for HSI
classification. The lower spatial resolution of the UH dataset also
leads to a worse performance for 2-D CNN. Besides, under a sim-
ilar model complexity, 3-D SCS-NN outperforms both 3-D CNN
and 3-D CDC-NN in terms of OA, AA, and Kappa. Specifically,
the OA, AA, and kappa values are improved by 1.54%, 1.26%,
and 1.58% compared with 3-D CNN, and by 2.16%, 2.93%,
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TABLE II
CLASSIFICATION RESULTS ON UP DATASET

TABLE III
CLASSIFICATION RESULTS ON UH DATASET

TABLE IV
CLASSIFICATION RESULTS ON UT DATASET

and 2.26% compared with 3-D CDC-NN. Similar results could
also be observed for SCS-SSFTT, which obtains the highest OA
(85.48%), AA (86.29%), and Kappa (84.24%), outperforming
SSFTT by 2.49%, 1.65%, and 2.63%, respectively. Moreover,
SCS-SSFTT exhibits the best classification accuracies in most
categories, even achieving 100% for class 14, i.e., tennis court.
These enhanced classification accuracies illustrate that the SCS
operation could effectively extract spectral–spatial features and
boost the classification performance when replacing the convo-
lution operation.

In terms of the UT dataset, 3-D SCS-NN attains a better OA
score than 3-D CNN and 3-D CDC-NN, as reported in Table IV.
Furthermore, 3-D SCS-SSFTT also surpasses SSFTT in both
OA and the majority classwise accuracies, demonstrating the
superior performance of the SCS operation.

2) Computational Cost: In addition to quantitative classifi-
cation accuracies, quantitative computational cost comparisons
are also investigated, as displayed in Table V. Since the early stop
strategy is adopted during the training process, the final training
epochs are different. To make a fair comparison, following [54],
the average training time per epoch is reported. All these values
are obtained on a computer with an NVIDIA RTX 3070 GPU.
It should be noted that 2-D CNN and 3-D CNN have different
numbers of convolution kernels and kernel sizes. As a result,
2-D CNN has more parameters than 3-D CNN on the UP and UT
datasets. For the proposed 3-D SCS operation, the introduction
of the exponentiation operation results in more parameters com-
pared with the common 3-D convolution operation. The number
of increased parameters is decided by the number of 3-D kernels.
Although the 3-D SCS operation results in additional parameters
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TABLE V
COMPARISON OF PARAMETERS AND INFERENCE TIME FOR DIFFERENT METHODS

Fig. 5. Classification maps for the UP dataset generated by various methods. (a) 2-D CNN. (b) 3-D CNN. (c) HybridSN. (d) 3-D CDC-NN. (e) 3-D SCS-NN.
(f) SSFTT. (g) SCS-SSFTT. (h) Ground Truth.

and increases both training and inference time, this tradeoff is
acceptable given the improved accuracies it produces.

D. Visualization Comparison

To qualitatively compare the classification performance, the
pixel-level classification maps obtained by different methods,
i.e., 2-D CNN, 3-D CNN, HybridSN, 3-D CDC-NN, 3-D SCS-
NN, SSFTT, and SCS-SSFTT on the UP, UH, and UT datasets
are depicted in Figs. 5–7, respectively. These qualitative clas-
sification maps are in line with the quantitative accuracies in
Table II–IV. The maps generated by 2-D CNN, take Fig. 6(a)
as an example, exhibit more misclassified pixels compared with
those based on spectral–spatial features. This is due to that 2-D
CNN misses the spectral information and only considers the
spatial features. In addition, the input patches could incorporate
pixels belonging to different categories, further challenging
the spatial-based classification methods. Compared with the

3-D convolution-based method, i.e., 3-D CNN and SSFTT, the
3-D SCS operation-based methods yield better classification
maps, especially for the region highlighted by the red box in
Fig. 6(g), demonstrating its effectiveness in extracting discrimi-
native spectral–spatial features and enhancing HSI classification
performance.

Figs. 8–10 show the distribution of the spectral–spatial fea-
tures extracted by different methods using T-distributed stochas-
tic neighbor embedding (t-SNE) [55]. For 3-D SCS-NN, al-
though there is a certain degree of mixing, such as class 2
(buildings) and class 6 (road) in the UT dataset, it can be
observed that features extracted from the same category are
clustered together, while those generated from different cate-
gories are separated from each other. Moreover, SCS-SSFTT
also generates a more tightly distribution, e.g., class 1 (ap-
ples) in Fig. 10(g). Therefore, it can be inferred that the
SCS operation can capture distinctive features from different
categories.



QIAO et al.: 3-D SHARPENED COSINE SIMILARITY OPERATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION 1121

Fig. 6. Classification maps for the UH dataset generated by various methods. (a) 2-D CNN. (b) 3-D CNN. (c) HybridSN. (d) 3-D CDC-NN. (e) 3-D SCS-NN.
(f) SSFTT. (g) SCS-SSFTT. (h) Ground Truth.

Fig. 7. Classification maps for the UT dataset generated by various methods. (a) 2-D CNN. (b) 3-D CNN. (c) HybridSN. (d) 3-D CDC-NN. (e) 3-D SCS-NN.
(f) SSFTT. (g) SCS-SSFTT. (h) Ground truth.

E. Robustness Evaluation

In order to assess the robustness of the proposed operation,
experiments using limited training samples are conducted in
this section. Smaller training data are randomly selected from
the original training data. Specifically, 3%, 5%, 7%, and 9%
of the original training data are selected for training, while
corresponding 97%, 95%, 93%, and 91% are used for validation
during the training process. The test data remain unchanged.

Methods with similar complexities are also tested for compari-
son, including 2-D CNN, 3-D CNN, HybirdSN, 3-D CDC-NN,
and 3-D SCS-NN. The OA scores on different datasets are shown
in Fig 11. It is observed that as the training data size decreases,
the OA of various methods also decreases and 2-D CNN exhibits
the biggest decline. The developed 3-D SCS-NN presents the
best OA on the UP and UT datasets with limited training samples,
demonstrating the superior generalization capability of the 3-D
SCS operation. In terms of the UH dataset, 3-D SCS-NN obtains
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Fig. 8. T-SNE visualization for the UP datasets. (a) 2-D CNN. (b) 3-D CNN. (c) HybridSN. (d) 3-D CDC-NN. (e) 3-D SCS-NN. (f) SSFTT. (g) SCS-SSFTT.

Fig. 9. T-SNE visualization for the UH datasets. (a) 2-D CNN. (b) 3-D CNN. (c) HybridSN. (d) 3-D CDC-NN. (e) 3-D SCS-NN. (f) SSFTT. (g) SCS-SSFTT.

the second-best performance. This could be attributed to the
higher complexity of the UH dataset, which has more classes
compared with the UP and UT datasets.

IV. DISCUSSION

3-D convolution is the most commonly used operation in ex-
isting HSIs classification models. This article introduces a novel
3-D SCS operation as an alternative to 3-D convolution in the
field of HSIs classification. In order to evaluate its effectiveness
and superiority, a series of experiments have been conducted.
First of all, a simple but effective model named 3-D SCS-NN is

constructed based on the designed 3-D SCS operation. The quali-
tative and quantitative experimental results demonstrate that 3-D
SCS-NN could achieve higher classification accuracies than 3-D
CNN and 3-D CDC-NN under similar model architectures.

Second, the performance of the 3-D SCS operation is further
assessed through SSFTT, a transformer-based state-of-the-art
model. The experiments illustrate that when the 3-D convolution
is replaced with the 3-D SCS operation in SSFTT for feature
extraction, the performance could be improved. Besides, consid-
ering the lack of sufficient labeled data is a common challenge in
practical applications, experiments with small sizes of training
data are conducted. The proposed 3-D SCS operation again
obtains superior results, illustrating its robustness under small
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Fig. 10. T-SNE visualization for the UT datasets. (a) 2-D CNN. (b) 3-D CNN. (c) HybridSN. (d) 3-D CDC-NN. (e) 3-D SCS-NN. (f) SSFTT. (g) SCS-SSFTT.

Fig. 11. Classification accuracies under limited training samples. (a) UP. (b) UH. (c) UT.

training samples. However, it should also be noted that since the
3-D SCS operation calculates the cosine similarity value and
introduces additional parameters, the computation cost of the
3-D SCS is higher than that of conventional the 3-D convolution
operation.

V. CONCLUSION

HSIs classification plays a crucial role in object identification.
In this article, a novel and effective 3-D SCS operation is
proposed to capture discriminative spectral features and those
related to spatial distribution of pixels within HSIs. The value of
cosine similarity rather than the dot product between the input
and the kernels is calculated and forwarded in the network.
Besides, in order to better distinguish different features, the
value of cosine similarity is further sharpened through an expo-
nentiation operation while keeping the original sign unchanged.
Based on the implemented 3-D SCS operation, a 3-D SCS-NN
model is developed for HSIs classification and obtains better
classification performance compared with a convolution-based
3-D CNN model with the same structure. Specifically, 3-D
SCS-NN achieves OAs of 88.41%, 81.84%, and 95.56% on
the UP, UH, and UT datasets, improved by 0.93%, 1.54%, and
0.43%, respectively, compared with 3-D CNN. Moreover, the

3-D SCS operation can be used as a replacement for the 3-D con-
volution operation and experiments prove that the classification
performance could be further enhanced with the replacement.
The 3-D SCS operation also presents good robustness under
limited training samples with relatively simple datasets.

Compared with 3-D convolution, the 3-D SCS operation
also exhibits some limitations, primarily in terms of computa-
tional cost. Since cosine similarity involves more computation
compared with dot production and exponentiation introduces
additional parameters, models based on the 3-D SCS operation
typically require more computational resources, which could be
justified given the improved classification performance.
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