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Abstract—Extracting building from high-resolution (HR) re-
mote sensing imagery (RSI) serves a variety of areas, such as
smart city, environment management, and emergency disaster
services. Previous building extraction methods primarily focus on
pixel-level and superpixel-level features, which do not fully utilize
the superpixel-level spatial context, leaving room for performance
improvement. To bridge the gap, this study incorporates spatial
context of both pixels and superpixels for building extraction of
HR RSI. Specifically, the proposed method develops a trainable su-
perpixel segmentation module to segment HR RSI into superpixels
by fusing pixel features and pixel-level context. And a superpixel-
level context aggregation module is devised to incorporate the
multiple-scale spatial context of superpixels to extract buildings.
Experiments on public challenging datasets show that our method
is superior to the state-of-the-art baselines in accuracy, with better
building boundaries and higher integrity. This study explores a new
approach for HR RSI building extraction by introducing spatial
context of superpixels, and a methodological reference for the HR
RSI interpretation tasks.

Index Terms—Building extraction, high-resolution (HR) remote
sensing imagery (RSI), spatial context, superpixels.

I. INTRODUCTION

A S A fundamental task of remote sensing imagery (RSI)
processing, building extraction serves for numerous ap-

plications, including urban planning [1], [2], [3], urban environ-
mental change [4], geographic data updating [5], [6], and disaster
emergency response [7], [8]. High-resolution (HR) RSIs are
emerging as sensor technology continues to advance, providing
new opportunities for extracting fine-grained buildings. Usually,
building extraction can be performed by the binary semantic
segmentation methods of computer vision, which aims to label

Manuscript received 20 August 2023; revised 4 November 2023; accepted
23 November 2023. Date of publication 28 November 2023; date of current
version 8 December 2023. This work was supported in part by the Open Research
Project of The Hubei Key Laboratory of Intelligent Geo-Information Processing
under Grant KLIGIP-2023-B11 and Grant KLIGIP-2023-B09, and in part by
the National Natural Science Foundation of China under Grant 42071382.
(Corresponding author: Shengwen Li.)

Fang Fang is with the School of Computer Science, China University of
Geosciences, Wuhan 430074, China, and also with the Hubei Key Laboratory
of Intelligent Geo-Information Processing, China University of Geosciences,
Wuhan 430078, China (e-mail: fangfang@cug.edu.cn).

Kang Zheng, Shengwen Li, Rui Xu, Qingyi Hao, Yuting Feng, and Shunping
Zhou are with the School of Computer Science, China University of Geosciences,
Wuhan 430074, China (e-mail: zhengkang@cug.edu.cn; swli@cug.edu.cn;
uiirux@cug.edu.cn; hqy@cug.edu.cn; fengyuting99@cug.edu.cn; zhoushun-
ping@mapgis.com).

Digital Object Identifier 10.1109/JSTARS.2023.3337140

pixels to building or nonbuilding. However, buildings in HR
RSI are highly complex, as shown by varying building shapes,
obstacle occlusions, and low contrast with the surrounding area.
Extracting buildings from HR RSI are extremely challenging
and highly valuable [9].

Recently, deep learning (DL) has emerged as a promising
approach for extracting buildings from RSIs [10]. This progress
is driven by the advantages of DL, including automatic feature
learning, reduced human intervention. For example, fully con-
volutional networks (FCNs) [11] achieved great segmentation
of images by capturing and predefining the spatial information
of HR RSI and are widely employed for building extraction
tasks. Maggiori et al. [12] developed a two-scale FCN, to im-
prove the recognition and correct localization. Xu et al. [13]
used an FCN-based deep convolutional neural network (DCNN)
and guided filters to refine the building extraction from HR
RSI. Wu et al. [14] developed an FCN-based model to extract
buildings from aerial images with multiple constraint strategies.
Zhang and Wang [15] designed a building extraction network
by combining dilated convolution and dense connectivity. These
models are pixel-based, in which the buildings are mainly ex-
tracted with pixel features and context, suffering from some lim-
itations, such as salt-and-pepper noise [16], holes in the middle
of connected changed components, and jagged boundaries.

Meanwhile, superpixel-based methods have shown its ad-
vantages in building extraction tasks, being the mainstream
application of object-oriented approach in the task, which groups
contiguous image pixels from homogeneous regions [17].
Superpixel-based methods commonly employ an iterative clus-
tering technique to group similar pixels according to colors, tex-
tures, and brightness into superpixel clusters. Then, the obtained
superpixels are utilized as basic units for various tasks. For exam-
ple, a superpixel-aided CNN framework [18] is proposed to ex-
tract objects by utilizing scale-invariant features. A CNN-based
superpixel model is developed to detect earthquake-induced
damaged buildings [19]. Benchabana et al. [20] proposed an
algorithm for building detection via deep feature extraction and
adaptively superpixel classification. However, these superpixel-
based methods do not fully utilize the superpixel-level spatial
contextual semantics, which leads to imprecise building recog-
nition and indistinct building boundary segmentation.

This study incorporates spatial context of both pixels and su-
perpixels to improve building extraction, and proposes a spatial
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context-aware building extraction model that fuses superpixel
features and superpixel-level spatial context. Specifically, we
propose a spatial context-aware building extraction model that
fuses superpixel features and superpixel-level spatial context.
The proposed method designs a trainable superpixel segmenta-
tion (TSS) module that fuses the pixel features, pixel-level con-
text, and the superpixel features to generate accurate superpixel
boundaries. Then, a superpixel graph is constructed to capture
the spatial context of the superpixels. Finally, a superpixel-level
contextual aggregation component is developed to aggregate
spatial contextual information at different scales to improve
building extraction. To the best of our knowledge, this work
represents the first attempt to fuse superpixels and superpixel-
level spatial context for building fuses the pixel features and
pixel-level context to extraction from HR RSIs. The primary
contributions of this study are summarized as follows.

1) We highlight the effect of spatial context of superpixel in
extracting ground objects from HR RSI, and propose to
introduce superpixel-level spatial context to improve the
building extraction of HR RSI.

2) A superpixel-level context aggregation (SLCA) module
is developed, which provide an approach to adaptively
integrate local and long-range superpixel features.

3) A spatial context-aware graph convolution network
(GCN) is implemented. Extensive experiments on three
public datasets show that the proposed method outper-
forms baselines, with notable improvements in boundary
accuracy and preservation of fine-grained building details.

II. RELATED WORK

A. Traditional Building Extraction Method

Traditional building extraction algorithms can be divided into
traditional image processing-based and machine learning-based
methods. The former can extract building information from
RSI are designed based on handcrafted features [21], [22].
These methods typically designed handcrafted features to quan-
titatively describe the salient building features, including the
building shape, size, color, texture, shadow, and roof mate-
rial [23]. Wang et al. [24] employed distinctive image primitives
to extracted buildings. Cui et al. [25] proposed a graph-based
approach based on graph-based shape representation that utilizes
a simple yet robust process involving Hough transformation and
cycle detection to extract complex building descriptions from
the HR RSI. Huang and Zhang [26] alleviated commission and
omission of buildings by designing a morphological index of
building and shadow for building extraction.

Many machine learning models have been used for building
extraction. For instance, Karsli et al. [27] utilized the SVM
model to extract buildings by leveraging spatial, spectral, and
textural features from HR multispectral aerial images and Li-
DAR data. It effectively detected building boundaries by capi-
talizing on the complementary advantages of LiDAR data and
HR optical imagery, resulting in reliable and accurate results.
Li et al. [28] introduced conditional random field into rooftop
segmentation. This method incorporated pixel-level color fea-
tures, segment-level region consistency and shape features,
achieving high accuracy in rooftop segmentation.

In practice, both traditional image processing-based and ma-
chine learning-based methods often rely on prior knowledge
and parameter initialization, which can be time-consuming and
require significant human resources [29]. In addition, these
approaches suffer from some limitations, including ineffective
use of many cues hidden in images [30], resulting in poor
accuracy [31].

B. DL-Based Extraction Method

DL-based methods have been extensively promoted to in-
terpret aerial and satellite RSIs, which typically exploit CNNs
to capture deep pixel features. These methods regard building
extraction from RSIs as a semantic segmentation task by labeling
RSI pixels as a building or nonbuilding class [12], [31], [32],
[33], [34], [35]. For example, Maggiori et al. [12] developed
a pixel-wise classification framework of satellite imagery, in
which CNNs are employed to label RSI pixels. Recent work
has followed the idea of FCN [11], in which deconvolution
layers are introduced to predict the classes of individual RSI
pixels. Zuo and Juntao [36] used a hierarchical FCN to integrate
information from multiscale receptive fields to improve build-
ing extraction. This novel architecture helps in addressing the
challenges of complex scenarios, such as appearance variations,
varying building sizes, and occlusions, resulting in a higher over-
all accuracy (OA). Wu et al. [37] introduced a comprehensive
framework based on multiple constraints to extract buildings
from aerial images. In addition, some pixel-level building extrac-
tion methods are evolved with advanced semantic segmentation
methods, including SegNet [38], U-Net [39], and PSPNet [40].
For example, RFA-UNet [41] adopts reweighted attention to
extract buildings from aerial imagery. SegNet was combined
with multitask learning to improve building boundaries [42].
Yuan et al. [43] developed a PSPNet-based network for extract-
ing buildings from RSIs by introducing a novel shift pooling
technique. Although these pixel-level building extraction based
on DL has gained promising results. In practice, these methods
overlook the building-level semantics, resulting in some limi-
tations of the model, such as salt-and-pepper noise [16], holes
in the middle of connected changed components, and jagged
boundaries.

Object-oriented methods have been widely used in RSI
processing. Notably, superpixel-based methods, which treat su-
perpixels as individual objects, achieve higher accuracy. For ex-
ample, Li et al. [44] proposed an improved superpixel algorithm
for RSI segmentation, which overcomes the limitation of the
input feature dimension of pixels and improves performance
by using more features. Liang et al. [45] introduced a differ-
entiable superpixel branch to take advantage of the superpixel
segmentation algorithm to accurately identify object. However,
the object-oriented methods do not take full use the spatial
relationships between superpixels.

III. METHODOLOGY

This study presents a spatial context-aware building extraction
model that incorporates the trainable superpixel and the spatial
context of superpixels to improve the extraction performance
of HR RSI. As shown in Fig. 1, the approach comprises four
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Fig. 1. Framework of the proposed method. (a) TSS. (b) Superpixel-based graph construction. (c) SLCA. (d) Pixel-wise classification.

components: TSS, superpixel graph construction, SLCA, and
pixel-wise classification. The TSS module employs a superpixel
segmentation network to extract features and build a pixel-
superpixel mapping from the input image. Then, a superpixel
graph is constructed using an adjacency matrix and superpixel
features. Subsequently, the SLCA module aggregates the fea-
tures of the local and long-range superpixel node. Finally, the
superpixel nodes are classified by the pixel-wise prediction
module. The four components are elaborated in the following
sections.

A. Trainable Superpixel Segmentation

This study designs a superpixel segmentation module, TSS, to
generate the superpixels of buildings. Specifically, this module
aims to segment the original image into superpixels, and map
the pixel and positional features of the original image to its
corresponding superpixels, which will output a pixel-superpixel
mapping matrix, denoted as Q. TSS consists of an encoder and
decoder networks. The encoder network encodes the images
to high-level feature maps through multiple convolution oper-
ations. By sampling the feature maps, the decoder produces
the pixel-to-superpixel mapping matrix Q. During the upsam-
pling, the skip-connection mechanism is adopted to effectively

reconstruct fine-grained detail. The decoder fuses feature map
of early layers in the encoder which are rich in spatial detail,
facilitating the optimization of superpixel edges. The networks
of the module are trained with a reconstruction loss from the
pixel-superpixel association matrix, and subsequently optimized
via backpropagation and gradient descent. The TSS training
process is illustrated in Fig. 2.

In the figure, the module feeds the feature map f(v) ∈
RH×W×(3+N) composed of the HR RSIs and labeled images,
where W and H are the width and height of the HR RSIs,
respectively. N denotes the total number of classes. The ini-
tial superpixels are squares with side length r. That is, an
RSI will generated around H×W

r2 superpixels. Given pixel-to-
superpixel mapping matrix Q, a superpixel, s, can be presented as
cs = (us, ls), where us denotes attribute vector, ls denotes lo-
cation vector. us and ls are defined as follows:

us =

∑
v:s∈Nv f (v) · es (v)∑

v:s∈Nves (v)
(1)

ls =

∑
v:s∈Nv v · es (v)∑

v:s∈Nves (v)
(2)

where v = [x, y]T represents the image coordinates of the pixel,
and es(v) signifies the probability that v is assigned to superpixel
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Fig. 2. Illustration of the TSS module.

s, Nv denotes the set of neighboring superpixels around pixel v.
As shown in (1), this study will sum up all the pixels that
are possibly clustered to the superpixel. And, the location and
property of the pixel v are assigned by

f′ (v) =
∑
s∈Nv

us · es (v) (3)

v′ =
∑
s∈Nv

ls · es (v) (4)

Equation (5) illustrates that the reconstruction loss, Lsem, of
this module, which is composed of two parts. The first part to
group pixels sharing similar semantic information. Meanwhile,
the second part encourages that the superpixels remain spatially
compact

Lsem (Q) =
∑

v

E (f (v) , f′ (v)) +
m
S
‖ v − v′‖2 (5)

where E(·, ·) presents the cross-entropy (CE) function, S is the
sampling interval of superpixels, and m is a hyperparameter.

Finally, the trained TSS network is used to infer the mapping
between pixels and superpixels to extract superpixels from HR
RSIs.

B. Superpixel Graph Construction

In this module, a superpixel graph is employed to characterize
the spatial context of superpixels. The edges are presented by the
adjacency matrix A ∈ R(m×m), where Aij is the edge weight
from node i to node j. The features of the superpixel graph are ini-
tialized with the superpixel representations, S ∈ R(m×d), where
m is the number of superpixels and d denotes the dimensional
size of the superpixel feature

S = QTP,P ∈ RN×3 (6)

where Q and P denote pixel-superpixel mapping matrix and
pixel feature matrix, respectively. As illustrated in Table I, the
superpixel features consist of semantic and position features.
The semantic features present the meta information from the
pixels, including mean RGB, standard deviation of RGB values,

TABLE I
LIST OF SUPERPIXEL FEATURES

and number of pixels. The position features are the relative
location information in the image, including mean position and
standard deviation of position values. Specifically, each super-
pixel’s feature is an 11-dimensional vector that is concatenated
by the individual vectors listed in Table I.

Subsequently, the matrix A is used to presented the superpixel
graph, where Aij is assigned a value of 1 if the ith node shares
an adjacency with jth node, and 0 otherwise. In practice, super-
pixels sharing common edges are deemed being adjacent. The
values of A can be formulated as follows:

Aij =

{
1, if Si and Sj are adjacent
0, otherwise

. (7)

Fig. 3 shows the construction process of the graph.

C. Superpixel-Level Context Aggregation

The SLCA module is devised to update the feature repre-
sentations of superpixels and characterize the spatial contexts
between the superpixel nodes. In practice, the GCN models
typically utilize a single convolutional filter of fixed size in each
convolution layer, which may result in excessive dependence
of the node features on the certain scale context information
and neglect of information of other scales [46]. On the basis of
GoogleNet [47], the module employs a set of convolution kernels
of continuous size in all GCN layers. In this way, the nodes of
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Fig. 3. Illustration of the construction process of the superpixel graph. (a) Superpixel segmentation. (b) Adjacent relationship construction. The red dot in the
third image is the center point of the superpixel in the second image.

Fig. 4. Illustration of the SLCA process. SLCA first aggregates features from K-hop neighbors, then fuses the different scale context vectors.

the superpixel graph are updated from their neighborhood nodes
with superpixel-level context, as formulated as follows:

HK = σ

(
K∑

k=0

(
D− 1

2AD
1
2

)k
XΘk

)
(8)

where D represents the diagonal degree matrix, Dii =∑
j=0 Aij; Θk denotes the linear weights that sum the aggrega-

tion results of different sizes; K represents a hyperparameter that
indicating the maximum size of convolution kernels; X denotes
the nodes features of the superpixel graph; Σ(·) denotes the
activation function.

As shown in Fig. 4, the aggregation operation consists of two
consecutive steps: K-hop context aggregation and SLCA. The

K-hop context aggregation aims to aggregate the node represen-
tation from K graph convolution branches, where each branch
captures the node representation of its neighbors in a unique
number of hops. And the SLCA is used to combine different
scale features. The SLCA module extracts node features by
multilayer convolution operations rather than pooling operation,
where the multilayer convolution operations allow aggregating
the neighborhood features. The aggregation of node vi from its
neighbours is formulated as follows:

h
(l+1)
Nk(i)

=

K∑
k=0

∑
j∈Nk(i)

(
θkx(l)j + b

)
(9)

where Nk(i) is the index set of nodes that are k-hop neighbor of
node i. And θk is the corresponding aggregation weight, which
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is a learnable parameter. x
(l)
j denotes the feature of the jth

neighbor of node i after the lth convolutional layer. b denotes
the bias. The SLCA operation involves 0-hop context features
(i.e., features of the nodes). In this way, this operation facilitates
the aggregation of both local and long-range features of the
superpixels, thereby enabling the capture of superpixel-level
contextual features. Meanwhile, the SLCA module uses adap-
tive aggregation weights to improve the discriminative feature
representation of superpixels.

In practice, the generated superpixel graphs may have un-
balanced node classes. To mitigate the problem, the module
derives a loss function from the CE function, which adds the
class balanced and superpixel weight. The loss is defined as
follows:

lossk = −wkyk · log exp (ŷk, yk)∑C
c=1 exp (ŷk, c)

(10)

where ŷ is prediction label, and y is ground truth label repre-
senting the truth category for each node. The pixel-superpixel
mapping matrix is used to map from the ground truth label
to graph nodes. Each superpixel, each node in the graph, is
categorized into the dominant class of its pixels. w denotes
class-balanced weight, and C represents the total number of
classes. The wk is calculated by the following:

wk =
N − nk

N
(11)

where N presents the total samples and n is the number of
superpixels in each class. Here, the class-balanced weight helps
in penalizing misclassification in classes with fewer samples
than the others. Based on the losses of class-balanced CE in
each node, the superpixel penalty loss in each node k, SPLk is
defined as follows:

SPLk = sk · lossk (12)

where sk is a superpixel weight for each node k, defined as
follows:

sk = − 1 + ε

log rk + ε
, (13)

where rk denotes the proportion of the pixels contained in the
kth superpixel node relative to the pixels in an RSI image. ε is
the constant value to avoid the zero division error, set as 10−5.
According to (13), the module imposes a greater penalty on
superpixel nodes that contain more pixels than others, resulting
in a greater effect on the prediction accuracy. The superpixel
penalty loss is calculated by

SPL =
1

N

(
[l1, . . ., lN ]T · [s1, . . ., sN ]

)
(14)

where l1, . . ., lN denote the loss of superpixel 1 to superpixel n,
respectively.

Although more GCN layers help in improving the representa-
tion and prediction capabilities of the GCN networks, many stud-
ies on GCNs employ shallow networks [48]. This phenomenon
is mainly due to the GCN that aggregates the features of the
neighboring nodes, increasing the number of layers that can
potentially cause an oversmoothing problem. To overcome the

oversmoothing problem of the deep GCN, this module takes into
account losses from multiple GCN layers as follows:

Lossoverall = SPLl2 + SPLl4 + SPLl6 (15)

where SPLli denotes the superpixel penalty loss at the ith hidden
layer. In our experiment, we extract the intermediate loss from
the 2nd, 4th, and 6th graph convolutional layers.

D. Pixel-Wise Classification

During the inference stage, the images to be predicted will
be first put into the trained fully convolution superpixel net-
work to obtain pixel-superpixel mapping Q̃. Subsequently, graph
G̃(Ṽ , Ẽ) is constructed in the superpixel-base graph construction
module. Afterward, graph G̃ will be fed into the trained SLCA
to predict the category of each superpixel S̃gcn by the following:

S̃gcn = argmax
(
ỹ
(L)
f

)
(16)

where ỹ
(L)
f denotes the node features through L-layer GCN

convolution. In the end, the categories of the pixels are calculated
by the following:

Z̃ = Q̃S̃gcn (17)

where Z̃ represents the predicted pixel labels. In this study, the
predicted labels of a pixel is building or nonbuilding.

IV. EXPERIMENTS AND RESULTS

A. Datasets

In the experiments, we employed three publicly datasets to
investigate the proposed method, including WHU dataset [31],
CrowdAI dataset [49], and Typical Cities of China dataset
(TCC) [50].

1) WHU Dataset: The WHU dataset covers buildings of
various materials, structures, and distributions, making it chal-
lenging to extract buildings from the images. This dataset covers
450 km2 regions in New Zealand, contains more than 2000
independent buildings, with a spatial resolution of 0.075 m.
The dataset consists of 8189 nonoverlapping tiles. The training,
validation and test sets consist of 4736, 1036, and 2416 images,
respectively. Each tile is in TIF format, with 512 × 512 pixels.
Some of the images are shown in Fig. 5(a).

2) CrowdAI Dataset: The training and validation set of the
dataset includes 280 741 training and 60 317 validation images,
respectively, with a spatial resolution of 0.3 m. These images
are in 300 × 300-pixel JPEG format. Their ground-truth images
are annotated in MS-COCO format. Buildings in the dataset are
very diverse with varied shapes and sizes. Some of the images
are shown in Fig. 5(b).

3) TCC Building Dataset: The dataset was collected from
Google Earth, which are located in four Chinese cities, Shanghai,
Beijing, Shenzhen, and Wuhan. It is published in [50] including
many nonorthophoto images with a spatial resolution of 0.29 m.
Each image is in 500 × 500 pixels with a spatial resolution of
0.29 m. The training and test set contains 5985 and 1275 images,
respectively. Some images in the dataset are shown in Fig. 5(c).
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Fig. 5. Samples of the three datasets:(a) WHU. (b) CrowdAI. (c) TCC. The first and third rows are the original images, and the second and fourth rows are their
ground truth images.

TABLE II
EXPERIMENTAL ENVIRONMENT AND PARAMETER SETTINGS

B. Experimental Settings

The experiments were implemented with the PyTorch frame-
work and CUDA11.1, and performed with a single NVIDIA
GTX 3090. The parameter settings and experimental environ-
ment are reported in Table II.

Specifically, Adam [51] is employed to train model with an
initial learning rate of 0.001 and decaying 0.6 times every 10
epochs. The LeakyReLU function was selected as the activation
function of SLCA. The training was terminated when the loss of
the proposed model does not decrease in 50 epochs. The batch
size was set to 1 because an RSI formed a superpixel graph.
When constructing the superpixel graph, the initial grid size r
was set to 10. Following the previous work [52], the value of K
is set to 4. Accordingly, each image consists of approximately
3000 images. In addition, we resize the images of the three
datasets to 550×550. In the baselines, the FCN and PSPNet
used HRNet_W18 [53] and ResNet50_vd [54] as the backbones,
respectively.

C. Evaluation Metrics

Six widely used evaluation metrics, include OA, precision,
recall, F1-Score, kappa coefficient, and mean intersection-over-
union (mIoU) are chosen to examine the proposed model. For a
class, recall represents the ratio of correctly predicted pixels
to the total number of pixels. Precision is the proportion of
correctly segmented pixels in a given class. OA indicates the
rate of correctly predicted pixels to the number of all pixels. The

F1-Score is defined based on precision and recall by

F1-Score =
2× precision × recall

precision + recall
(18)

The kappa coefficient is defined by

Kappa =
p0 − pe
1− pe

(19)

where p0 denotes the relative agreement between the segmenta-
tion; pe represents the hypothetical probability of chance agree-
ment. The definitions of the IoU and the mIoU are presented in
the following equations:

IoU =
area (Mp ∩Mgt)

area (Mp ∪Mgt)
=

TP
TP + FN + FP

(20)

mIoU =
1

k + 1

k∑
i=0

TP
TP + FN + FP

(21)

where Mp and Mgt denote the predicted labels and the corre-
sponding ground truth labels, respectively; and k represents the
number of classes. The mIoU stands for the mean intersection
over union, which is the average of the intersection over union
values for all categories. TP refers to the true positive rate,
FN signifies the false negative rate, and FP represents the false
positive rate

D. Baselines

Six classical semantic segmentation methods, namely FCN
[11], U-Net [39], SegNet [38], PSPNet [40], SACANet [55],
and BCE-Net [56] are selected as baselines to examine our
method. Specifically, FCN reaches a milestone in semantic seg-
mentation, which can accept input images and make a prediction
for each pixel of the image. U-Net has found wide application
in various fields for image semantic segmentation tasks due
to its elegant network architecture. SegNet, one of the classic
models of semantic segmentation, is known for its ability to
preserve pixel-level detail while using fewer parameters. The
encoder–decoder architecture of the model allows it to adapt
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TABLE III
COMPARISON OF THE DIFFERENT EXTRACTION METHODS ON THE WHU DATASET

Fig. 6. Visualized results on the WHU dataset: (a) Original RSI. (b) Ground truth. (c) FCN. (d) PSPNet. (e) SegNet. (f) U-Net. (g) SLIC-MLP. (h) SACANet.
(i) BCE-Net. (j) Proposed model. (Notation: white, black, green, and red pixels represent predictions of TP, TN, FN, and FP, respectively).

well to objects of varying scales with a more pronounced effect
on the segmentation of small objects. PSPNet captures the
global and local context information by introducing the pyramid
pooling module and the dilated convolution, which can help
the network achieve higher accuracy and better performance
in complex scenarios. SACANet is a network integrating both
scene-aware and class attentions for semantic segmentation of
RSIs. BCE-Net is a multibranch building extraction method for
HR RSIs, which uses a contrastive learning strategy to increase
the distinguishability of buildings and nonbuildings.

In addition, a superpixel-based method, namely SLIC-MLP, is
used as a baseline. SLIC-MLP employs the SLIC [57] algorithm
to generate superpixels, and adopts an MLP network to predict
the labels of the superpixels.

E. Results

1) Evaluation With the WHU Dataset: Its experimental re-
sults are presented in Table III. Notably, the proposed method

outperforms all baselines. The proposed method improves OA,
recall, F1-Score, and mIoU by 0.76%, 1.62%, 1.46%, and
1.17%, respectively, compared with the second-best results. This
finding suggests that the proposed approach achieves advantages
in building extraction by optimizing the superpixel generation
and classification process. In addition, compared with SLIC-
MLP, the proposed method achieves significant improvement in
OA, recall, F1-Score, and mIoU by 19.67%, 19.54%, 25.71%,
and 33.05%, respectively. The improvement is traced to two
factors. First, the proposed method can achieve more precise
boundary delineation of superpixels, which reduces the proba-
bility of different categories of pixels being segmented into the
same superpixel. Second, the SLCA mechanism effectively cap-
tures the context of superpixels, including local and long-range
features, resulting in improved classification accuracy.

To further observe the results, Fig. 6 visualizes the extracted
buildings by these methods on the WHU dataset. The white
(TP) and black areas (TN) areas denote the correct prediction,
the red areas represent that the background areas are incorrectly
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TABLE IV
COMPARISON OF DIFFERENT EXTRACTION METHODS ON THE CROWDAI DATASET

Fig. 7. Visualized results on the CrowdAI dataset: (a) Original RSI. (b) Ground truth. (c) FCN. (d) PSPNet. (e) SegNet. (f) U-Net. (g) SLIC-MLP. (h) SACANet.
(i) BCE-Net. (j) Proposed model. (Notation: white, black, green, and red pixels represent predictions of TP, TN, FN, and FP, respectively).

predicted as building areas (FP), while the green areas indicate
that the building areas are incorrectly predicted as the back-
grounds (FN). The buildings in the proposed method demon-
strate more integrity and exhibit more precise boundaries in these
challenge scenarios compared with the baselines. For instance,
the proposed method extracts buildings with clearer boundaries
when the color and texture of the buildings are similar to the
backgrounds, as presented in the first row of Fig. 6. As shown
in the second and third rows of the figure, our method can more
accurately extract buildings with different shapes and densely
distributed small buildings. In the scenery of large buildings with
different visual characteristics, our method can more correctly
distinguish the buildings compared to the baselines, as shown in
the last row of Fig. 6. The abovementioned results demonstrate
that the proposed method helps in addressing the issue of “same
objects with different spectrums, and same spectrums with dif-
ferent objects.” In addition, the FN and FP errors of the proposed
method are smaller than SLIC-MLP. TSS is trained with labeled
samples, helping fit superpixels to building areas. Moreover, we

argue that the SLCA module captures both local and long-range
contextual features, thus improving the ability to discriminate
building areas.

2) Evaluation With CrowdAI Dataset: Its experimental re-
sults are presented in Table IV, which are lower than those
reported in Table III. This phenomenon is due to the dataset
has lower resolution and more complex building scenes than the
WHU dataset. Nevertheless, the proposed method performs best
across all metrics. Furthermore, compared with the second-best
results, the performance has increased by 0.79%, 1.05%, and
0.92% on OA, F1-Score, and mIoU, respectively.

The experimental results of these methods are visualized in
Fig. 7. As shown the figure, compared to the baseline methods,
the proposed approach yields buildings with more complete
structures and relatively sharper boundaries. For example, in the
first and second rows of the figure, the buildings are obscured
or covered by trees. Most baseline methods misclassify them as
background, while our method accurately extracts the buildings
in these areas. As presented in the third row in Fig. 7, our method
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TABLE V
COMPARISON OF NETWORK EXTRACTION METHODS ON THE TCC DATASET

Fig. 8. Visualized results on the TCC dataset: (a) Original RSI. (b) Ground truth. (c) FCN. (d) PSPNet. (e) SegNet. (f) U-Net. (g) SLIC-MLP. (h) SACANet.
(i) BCE-Net. (j) Proposed model. (Notation: white, black, green, and red pixels represent predictions of TP, TN, FN, and FP, respectively).

can recognize the buildings that resemble the ground more effi-
ciently. In addition, our method can obtain more refined building
boundaries in complex building shape scenarios, as shown in the
last row of the figure. These visualization results further validate
the outstanding performance of the proposed method.

3) Evaluation With TCC Dataset: The dataset contains many
nonorthophoto images, which make building extraction more
difficult. The quantitative accuracy assessment results on this
dataset are reported in Table V. As shown in the table, the dataset,
the values of all the evaluation metrics are lower than those
of the WHU and CrowdAI datasets. Among all the competitors,
the proposed method achieves the highest OA among all the
competitors with 93.77%. The recall, F1-Score and mIoU are
3.47%, 2.32%, and 1.92% higher than those of the second-best
results, respectively. The OA, recall, F1-Score, and mIoU are
0.96%, 0.48%, 2.19%, and 1.67% higher than the second-best
results, respectively.

Several samples are depicted in Fig. 8 to provide a more de-
tailed observation of the results. As shown in the first and second

rows, the buildings extracted by our method have less impulse
noise, are smoother, and have more continuous boundaries than
the buildings extracted by other methods. As presented in the
third row of the figure, our method performs better in distinguish-
ing buildings from nonbuildings. In addition, compared with the
baselines, the extracted buildings by the proposed method shows
more accurate, as shown in the fourth row of the figure. The
visualized results further suggest that our method is promising.

V. DISCUSSION

A. Ablation Study

Ablation experiments are conducted to further evaluate the
effect of key components. The OA values on the three datasets
are listed in Table VI. Introducing the TSS module increases the
OA values by 3.09%, 3.93%, and 4.36% on the three datasets, re-
spectively, as shown in Table VI. This improvement is attributed
to the fact that TSS learns building features from the training data
integrating local and overall cues. And it benefits from the gains
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Fig. 9. Visualized results of different superpixel segmentation methods on the image of the WHU dataset.

TABLE VI
OA (%) INDICES OF THE COMBINATIONS OF DIFFERENT MODULES

ON THREE DATASETS

that the pixel category is consistent with the superpixel category.
In addition, introducing SLCA significantly increases the OA
values by 17.05%, 19.48%, and 17.48% on the three datasets,
respectively. This phenomenon is due to the SLCA that captures
both the local and the long-range neighborhood features, which
helps in identifying obscure or confusing buildings. Finally, the
introduction of SPL increases the OA values by 3.66%, 4.32%,
3.31% on the three datasets. The proposed method merges the
TSS and SLCA modules, which increases the accuracies by
19.67%, 23.14%, and 22.24% in terms of OA on the three
datasets, respectively. This results suggests both TSS and SLCA
effectively contribute to the improvement of building extraction
from HR RSI.

B. Effect of the Superpixel Segmentation Algorithms

Given that superpixel segmentation is a fundamental com-
ponent of our method, the superpixel segmentation algorithm
should affect the model performance. Experiments are per-
formed on the WHU dataset with four algorithms, including
SLIC [57], SEED [58], LSC [59], and our TSS, to investigate the
effect of superpixel segmentation algorithms. SLIC is a widely
used superpixel segmentation algorithm, which generates super-
pixels based on k-means clustering. SEED is an energy-driven
sampling-based superpixel segmentation algorithm by continu-
ously refining the boundaries of superpixels. The LSC algorithm
represents image pixels as vectors in a low-dimensional space,
and uses a spectral clustering algorithm to generate superpixels.
In this article, the number of superpixel is set to 1000 to facilitate
the observation and distinguishing the differences in the super-
pixel segmentation algorithms. In Table VII, the TSS achieves
the best values in all metrics. The proposed TSS algorithm
achieved higher scores in OA (1.42%), F1-Score (3.41%), and
mIoU (3.37%) compared to the SLIC algorithm, which obtained
the second-best average evaluation metrics.

To illustrate the segmentation results of these algorithms, an
image from the dataset is taken as an example for further obser-
vation in Fig. 9. Three typical regions were selected, marked with
red rectangular boxes and shown enlarged. As shown in Fig. 9(b),
the SLIC algorithm results in blurring at the building boundaries
and misclassification of the ground shadows as buildings. This
is mainly due to the fact that the SLIC algorithm classifies
the superpixels based only on the color and position of the
pixels, resulting in insufficient feature information. As shown
in Fig. 9(c) and (d), the superpixels generated by the SEED
and LSC algorithms suffer from some limitations, with the
former having rough superpixel boundaries and the latter having
overly fragmented superpixels. While TSS aggregates pixels of
the same type more efficiently and generates superpixels with
clearer boundaries compared with the untrainable algorithms,
including SLIC, SEED, and LSC. The experimental results
suggest that TSS is an effective superpixel segmentation method
and can promote to better extract buildings.

C. Effect of Aggregation Strategies

In this study, the SLCA module aims to aggregate superpixel-
level contextual information. Experiments are conducted with
five types of aggregation strategies, including vanilla GCN [46],
graph sample and aggregate network (GraphSage [60]), graph
attention network (GAT [61]), graph isomorphism network
(GIN [62]), Mixhop [63], and our SLCA, to examine the effect
of aggregation strategies. In Table VIII, SLCA shows a large ad-
vantage in all metrics. This phenomenon is due to the SLCA that
aggregates local and long-range context information through a
SLCA mechanism. Moreover, compared with Mixhop, SLCA
adopts adaptive weights to aggregate features from neighbors,
which enhances the discriminability of superpixels, thereby
improving the performance of the model.

D. Parameter Sensitivity Analysis

Two hyperparameters, including the initial grid size r in
superpixel segmentation (see Section III-A) and the size of
the convolution kernel in SLCA (seeSection III-C), have the
potential to impact the model’s performance. The sensitivity
analysis of these hyperparameters was conducted in this section.

1) Effect of R: The initial grid size r in Section III-B deter-
mines the number of superpixels generated from each image. To
be more specific, the number of superpixels is equal to the area
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TABLE VII
EVALUATION RESULTS OF THE DIFFERENT SUPERPIXEL SEGMENTATION ALGORITHMS ON THE WHU DATASET

TABLE VIII
EVALUATION RESULTS OF THE AGGREGATION STRATEGIES ON THE WHU DATASET

Fig. 10. OA (%) indices with different segmentation numbers m on three
datasets.

of the image divided by the area of the square with r as the side
length. Specifically, to investigate the effects of r, we conducted
experiments by setting the size of the initial grid r is in the range
of 8, 10, 16, 20, which produces the number of superpixels m
in the range of 625, 1024, 2500, 3025, 4096, respectively. The
OA values of the datasets are plotted in Fig. 10. The OA values
gradually increases as the number of superpixels increments. We
argue that fewer superpixels may result in that some superpixels
contain pixels from both nonbuilding and building areas, thus
decreases extraction accuracy. And in this phase, increasing the
number of superpixels will improve the model accuracy.

The OA values on all three datasets reach the highest values
when the number of superpixels is 3000. Thereafter, the OA
values first gradually decrease. This can be explained that the ex-
cessive number of superpixels reduces the information contained
in each superpixel, resulting in fragmented segmentation results.

Fig. 11. OA (%) indices with different filter sizes K of SLCA on three datasets.

In addition, the greater number of superpixels, the more com-
plexity of adjacency matrix, superpixel-graph and the model.
This added complexity can make training more challenging and
hinder the achievement of high accuracy.

2) Effect of K: The hyperparameter, K, in Section III-C
represents the maximized size of the convolution kernels. The
values of K may affect the performance of our model. In the sec-
tion, K is set to values from 1 to 6. The experimental results are
illustrated in Fig. 11. The proposed method performs best when
the filter size is K = 4, and the values are quite close when K = 2
and K = 4. As K increases beyond four, the OA values exhibits a
decreasing trend as the scale decreases gradually, which should
be due to the occurrence of the “overfitting phenomenon.”

E. Model Efficiency

To investigate the efficiency of our method, comparative
experiments were conducted on the WHU dataset. We reported
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TABLE IX
COMPARISONS EXPERIMENT ON TRAINABLE PARAMETERS, FLOPS, AND TEST

TIME OF DIFFERENT METHODS

the number of trainable parameters, floating point of operations
(FLOPs), and the time costs (seconds) of their inference are
reported in Table IX. SLIC-MLP requires minimal trainable
parameters and spends least inference time compared with
pixel-level methods. The proposed method takes relatively less
computation time than most other methods. The experimental
results suggest that the proposed method makes a better tradeoff
between accuracy and efficiency.

VI. CONCLUSION

In this study, a spatial context-aware approach is developed to
enhance building extraction for HR RSI. The method develops
a TSS module and a SLCA module to improve the ability to
discriminate building areas. As the TSS module is trained, it
helps in generating superpixels with building features, improv-
ing the accuracy of building extraction. SLCA employs more
convolutional layers with different filter sizes to enhance feature
extraction, which aggregating superpixel-level contextual infor-
mation and consequently improving the building extraction. The
experimental result on the three public datasets illustrate that the
proposed method is superior to baselines. This work explores a
new approach of superpixel-based building extraction of HR
RSI, and provides a methodological reference for the various
segmentation of HR RSI images.

A further study can focus on introducing the spatial rela-
tionship of buildings and more pixel features to improve the
superpixel segmentation. In addition, this model can be opti-
mized with the semisupervised paradigm to alleviate the lack of
building image labels.
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