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Automatic Monitoring of Oil Tank 3D Geometry and
Storage Changes With Interferometric Coherence

and SAR Intensity Information
Ya-Lun S. Tsai , Chun-Jia Huang , Chia-Ling Chen , and Jen-Yu Han

Abstract—Continuous monitoring of oil tanks is vital for an-
alyzing local fuel consumption. Synthetic aperture radar (SAR)
has been a popular data source as it guarantees day-and-night
and all-weather sensing capacity. However, most earlier studies
adopt a scene-wise and oil tank-wise scheme, which is inefficient
as there can be hundreds of oil tanks on an oil depot, while only a
few are dynamic. Also, no study explores both intensity coherence
and interferometric coherence for oil tank dynamics mapping.
This article proposes a novel three-stage strategy to detect all oil
tanks, identify dynamic oil tanks, and estimate their fuel volume
changes based on both the intensity and phase information of SAR
in both slant-range and geocoded projections. Results indicate
that the intensity coherence can perfectly differentiate dynamic
and stable oil tanks (a Jeffries–Matusita distance of 1.997) and is
less vulnerable to repeat-pass SAR factors, such as baselines and
atmospheric conditions. Via evaluating estimations’ consistency,
our scattering keypoint detection exhibits 0.23 and 0.87 m precision
of tank heights and diameters, respectively. By validation with
ground truth data, oil tanks exhibiting floating-roof changes larger
than 0.23 m are correctly identified. Also, the estimated storage
changes agree well with actual changes with an R-squared value of
0.98 and a root-mean-square error corresponding to 1.05 m biases
in floating-roof heights. These quantitative assessments confirm the
robustness and broad applicability of our non-in situ data-needed
approach, highlighting the opportunity to utilize spotlight SAR
data to automatically and comprehensively monitor oil tank dy-
namics in remote sites.

Index Terms—Object detection, scattering feature extraction,
spaceborne remote sensing, synthetic aperture radar (SAR).

I. INTRODUCTION

MONITORING oil tanks has been a vital research topic
as regional energy consumption is highly relevant to

economic activities [1] and military target reconnaissance [2]. To
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cost-efficiently monitor large amount of oil tanks at oil depots,
spaceborne remote sensing have become a popular data source.
Conventional multispectral image-based studies detect oil tanks
based on circular shapes and employ techniques, such as Hough
transform [3], template matching [4], saliency detection [5], or
thresholding segmentation [6]. Nonetheless, as optical images
are inevitably affected by clouds and rain, continuous moni-
toring is unfeasible. Also, the applicability of shadow-based
extraction methods, e.g., [3], [6], would be hindered by variant
illumination conditions.

In contrast, synthetic aperture radar (SAR), a long-wavelength
and active sensing technique, provides all-weather and day-
any-night sensing opportunities [7]. However, SAR data have
much more complex characteristics than optical data: due to
SAR sensors’ side-looking echolocation manner, oil tanks would
not present regular circular shapes but discrete points with
layover effects on images and as SAR sensors coherently record
backscattered echoes, oil tanks are difficult to be distinguished
from background clutter and speckle. Thus, conventional optical
image-targeted approaches are inappropriate for SAR data [2],
[8], [9].

Instead, the radar scattering mechanism is the key to cor-
rectly extracting of oil tanks on SAR images. As mentioned
in [10], by exploiting the SAR scattering mechanism, more
details in the vertical structure of oil tanks can be extracted
compared to optical sensors. Nonetheless, previous SAR-based
oil tank extraction studies demonstrate the following limita-
tions: requiring external data, e.g., optical images [11], [12];
utilizing poor-resolution SAR images (resolution > 2 m) [9],
[13]; demanding oil tank geometry information, e.g., radius and
height [13] and locations [14]; involving manual selection of
backscattering points [15], [16]; relying on nearby land features,
e.g., T-shaped harbor [9]; or consuming extensive processing
time and computation power [2], [14]. These limitations greatly
hinder their methods’ universal applicability, especially in re-
gions with many oil tanks, but no ground truth data is available.

On the other hand, because most oil tanks contain volatile
oil products with a vapor pressure of less than 11.1 Pisa [17],
their roofs are generally designed to float rather than be fixed to
reduce the vapor space [18]. Therefore, by exploiting scattering
feature points of floating roofs on SAR images, it is feasible
to estimate oil tanks’ storage changes, as simulated in [15] and
demonstrated in [14]. Nonetheless, many recent studies only
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extract oil tanks’ locations and spatial distributions [9], [11],
[19], [20], [21]. Furthermore, to our knowledge, all previous
storage change detection studies use scene-wise and oil tank-
wise approaches; therefore, they are time-consuming to examine
the time series dynamics of all oil tanks located in oil depots.
The only literature that explores image-pair analysis is [14].
However, in their sophisticated workflow, the interferometric
coherence is only computed at selected pixels (i.e., identified
coherent scatterers) to refine the oil tank’s geometry estimations.
Namely, no study utilizes image pair-derived information for
tracking oil tank changes.

Founded on the abovementioned aspects, we recognize that
using SAR data for 3-D mapping oil tanks has not been compre-
hensively explored. To overcome these limitations and further
make use of both phase and intensity information stored in SAR
data, the main objectives of this article include: exploring both
phase-based complex coherence (i.e., interferometric coher-
ence) and intensity-based correlation coherence (i.e., intensity
coherence) to detect oil tanks that floating roof have moved
(i.e., dynamic oil tanks); utilizing deep learning architecture
to automatically delineate all oil tanks’ locations; estimating
dynamic oil tanks’ storage changes via automatically locating
scattering keypoints; and establishing a computation-efficient,
nonmanual intervention-required, and nonexternal or ground
truth data-demanded workflow that maps 3-D oil tank’s geome-
try and dynamics.

The rest of this article is organized as follows: Section II
introduces the overall workflow and methodology, Section III
demonstrates the tested SAR data and corresponding results,
Section IV discusses the significance and limitations of our
approach, and Section V concludes the implications of this
article.

II. METHODOLOGY

A. Overall Workflow

To automatically and efficiently detect all oil tanks in oil de-
pots, identify dynamic oil tanks, and estimate dynamic oil tanks’
storage changes, we utilize different SAR-derived information
in a three-stage processing strategy. As both phase and intensity
are explored, level 1 single-look complex (SLC) images with full
native resolution in slant-range geometry are selected. Firstly,
to detect all oil tanks on SAR images, the geocoded decibel
intensity images are generated and input to the you only look
once (YOLO) model [22] for generating each oil tank’s bounding
box. Then, we examine each bounding box’s interferometric
and intensity coherence estimated from co-registrated phase and
intensity images, respectively, and apply a threshold to identify
dynamic oil tanks that floating roofs have moved. Finally, based
on each dynamic oil tank’s subset slant-range intensity image,
its storage changes can be estimated by detecting scattering
keypoints and computing 3-D geometry. The overall workflow
is illustrated in Fig. 1, with each stage elaborated as follows.

B. Stage 1: Oil Tank Detection

Since most oil tanks are cylindrical and designed according to
conventional standards [23], their geometry and corresponding

Fig. 1. Overall workflow of the proposed three-stage approach.

Fig. 2. Scattering features of floating-roof oil tanks on (a) intensity images,
(b) intensity images in decibel units. The lower panel histogram represents pixel
values along each center row (yellow line). Five geometry-related scattering
keypoints are marked in letters A to E.

scattering patterns on SAR images do not significantly vary in
different regions or countries. Therefore, an opportunity exists
to establish a widely applicable SAR-based oil tank detection
method. Specifically, as comprehensively discussed in [14] and
[15], most distinct scattering arcs and points result from direct
scattering from the top circumferential edge of oil tanks [blue arc
in Fig. 2(a)], double reflection between the ground and outer wall
of oil tanks [yellow arc in Fig. 2(a)], double reflection between
the floating roof and inner wall of oil tanks [red arc in Fig. 2(a)],
and double reflection between the floating roof and metal rods
on the floating roof [white points between yellow and red arcs
in Fig. 2(a)].

While these scattering features are observable in each oil
tank, their topology and appearances are sensitive to oil tanks’
geometrical details. For instance, a support structure on the roof
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Fig. 3. Schematic illustration of YOLOv5 architecture modified from [30].

or a gangway on the top edge would yield extra scattering arcs
[15], and multiple scattering can lead to additional scattering
keypoints [2], [13]. Also, the ground materials and correspond-
ing dielectric properties would significantly alter clutter signals,
which change the contrast between ground and oil tanks [15].
Due to the abovementioned variant scattering signals, conven-
tional template matching and saliency detection approaches
are unfeasible for oil tank detection. Consequently, this article
employs a deep learning-based object detection scheme.

Specifically, we employ YOLOv5m, a mature one-stage de-
tector and a region-based object detection network, which is the
medium-sized version of YOLO with increased model capacity
[22]. The YOLO algorithm improves detection reliability by
training with the entire image and thus reduces false positives
[24]. In contrast to other detection models, such as single shot
multibox detector and RetinaNet, YOLO provides frequent up-
dates, resulting in faster processing and higher accuracy [25]. It
has been a popular architecture as it redefines the object detection
task as a regression problem, which significantly increases the
processing speed [26].

In detail, its architecture comprises three essential compo-
nents, i.e., the backbone, head, and detection part, as illustrated
in Fig. 3. Within the backbone, the input image undergoes a
series of transformations through the Focus structure and the
convolution, batch normalization and leaky ReLU activation
function module (CBL) to extract features. In addition, the initial
input image, with a resolution of 640 × 640 × 3, undergoes a
slicing operation, resulting in a transformation into a 320 ×
320 × 12 feature map. Subsequently, a convolution operation,
involving 32 convolution kernels, is applied [27]. YOLOv5
also utilizes the cross-stage-partial connections modules to im-
prove learning ability and computation efficiency compared to
YOLOv4 [28]. Also, YOLOv5’s neck component incorporates

the feature pyramid network and the path aggregation network
structure (PAN), enabling layers to convey semantic features
while capturing precise positioning features from the bottom to
the top. In the head component, there are typically three detection
heads, each responsible for detecting objects of different sizes.
Thus, feature information of objects at varying scales can be
detected [29].

In this article, a training dataset comprising images with visual
object classes format labels is employed. Specifically, for objects
such as oil tanks in SAR images, the bounding box annotations
are slightly larger than the actual size of the tanks, minimizing
the inclusion of unnecessary image background to enhance
training effectiveness. This approach ensures that the model
learns to identify tanks accurately within diverse scenarios. To
achieve the best learning and validation, we strategically allocate
the data: 70% for model training, 20% for validation to monitor
and fine-tune the learning trajectory, and the remaining 10% for
external testing to assess real-case performance. This dataset
serves as a foundation for model training, allowing the model to
learn and accurately identify tanks within the given context.

In detail, the input geocoded intensity images in decibel units
are generated by the following steps.

1) Radiometrically calibrating SLCs to sigma nought based
on the state vectors.

2) Coregistrating each calibrated intensity image to the ref-
erence image at subpixel accuracy.

3) Multitemporally filtering all images’ speckle. As time
series information is used, a finer spatial resolution can
be kept while the same speckle-suppression performance
is achieved. The improved Lee sigma filter based on the
speckle probability density functions and the minimum-
mean-square-error adaptive estimator [31] with a window
size of 5× 5 is used. This size is chosen because pixels in
a 3× 3 window are statistically dependent, as discussed
in [31], and a larger size inevitably produces an undesired
blurring effect on the edges of features.

4) Range-Doppler terrain correction of side-looking geo-
metric distortions. The average ellipsoidal height is used
instead of a digital surface model (DSM) as there is no
available DSM that includes the height information of oil
tanks. Furthermore, to preserve the projection relationship
between slant-range and ground-range geometry, each
pixel’s original slant-range coordinates are documented.

5) Conversion of intensity to decibel units to compress its
wide value range.

By ingesting geocoded decibel intensity images to a manually
marked label-trained YOLO model, bounding boxes containing
each oil tank on the input images can be drawn. Furthermore,
since the input images are geocoded, the corner coordinates
of each bounding box can be retrieved. To evaluate the cor-
rectness, apart from examining the internal accuracy of model
training using the mean average precision (mAP) value cal-
culated over multiple intersection of union (IOU) thresholds
(from 0.50 to 0.95 with a constant interval of 0.05), the actual
detection accuracy is also assessed. Specifically, based on the
visual examinations, we compute different evaluation indices,
including precision, recall, and F1 score: Precision quantifies the
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proportion of correctly predicted target bounding boxes relative
to the total predicted bounding boxes; recall indicates the ratio
of correctly detected target bounding boxes to the total number
of actual target bounding boxes; and F1 score is a composed
weighted measurement of precision and recall. Notably, in this
article, we only consider bounding boxes that completely contain
five scattering keypoints of oil tanks (see Fig. 2) and do not show
significant offsets as true positive cases.

C. Stage 2: Dynamic Oil Tank Identification

As mentioned in the introduction, most earlier storage change
detection studies use scene-wise and oil tank-wise approaches,
which are computation-intensive to examine the time series
dynamics of all oil tanks located in oil depots. To improve
the efficiency, this article proposes an image pair-based and
automatic dynamic oil tank detection approach.

The essence of this approach is exploring both interfero-
metric coherence and intensity coherence, which are computed
with phase and intensity, respectively. The former assumes the
ground motion-led temporal de-correlation would reduce the
interferometric coherence γc, which is defined as (1) under
the assumption of ergodicity

γc (i, j) =

∣∣∣∣∣∣
∑

N c1 (i, j) c
∗
2 (i, j)√∑

N |c1 (i, j)|2
∑

N |c2 (i, j)|2

∣∣∣∣∣∣ (1)

where c1(i, j) and c2(i, j) are the complex pixel values of paired
SLC images at pixel (i, j), c∗ denotes the complex conjugate of
c, and N is the number of pixels in the sample window. On the
contrary, intensity coherence γI only utilizes the intensity value

γI (i, j) =

∑
N I1 (i, j) I

∗
2 (i, j)√∑

N |I1 (i, j)|2
∑

N |I2 (i, j)|2
(2)

where I1(i, j) and I2(i, j) are the pixel values of paired intensity
images at pixel (i, j).

Although (1) and (2) are structurally similar, their values are
changed with different mechanisms: the interferometric coher-
ence measures the preservation of the phase between paired
images, which is not only affected by objects’ changes but
also SAR sensors’ sensing geometry (e.g., spatial baseline) and
environment (e.g., atmospheric delay) [32], while the intensity
coherence maps the changes in objects’ characteristics, e.g.,
geometry, dielectric properties, and surface roughness [7]. Due
to these differences, they are suitable for mapping changes of
different magnitudes (the former is more sensitive to subtle
deformation, while the latter is suitable for detecting large-scale
changes [33], [34]). Despite previous studies have examined
their suitability for landslide detection [35] and building dam-
ages [34], there is no study explores them for oil tank dynamics
tracking.

Practically, in this article, both phase and intensity informa-
tion of SLCs are extracted and coregistrated. Namely, the cali-
brated and coregistrated intensity stack described in Section II-B
step two is used. Then, both pair-wise coherences are calculated
with a window size of 7× 7. A larger window than stage one is
used because here we do not need to preserve the details of the oil

tanks, but rather emphasize the general similarity between paired
images to enhance the contrast between stable and dynamic oil
tanks. Next, to mitigate the noises in coherences, we apply a
median filter with a minimum window size of 3× 3 to avoid
any additional blurring effect. It should be noted that since here
we do not aim to detect the scattering keypoints on oil tanks (i.e.,
stage one) but calculate the overall areal coherence value of each
oil tank, the median filter is used rather than the improved Lee
sigma filter aiming at preserving inhomogeneous edges/points.
Finally, Range-Doppler terrain correction is performed to yield
geocoded interferometric and intensity coherence.

Next, both coherences are compared to select an optimized
coherence showing the more significant differentiation between
stable and dynamic oil tanks. In addition to visually inspect-
ing the distributions of coherence values, we calculate their
Jeffries–Matusita (JM) distance [36] to quantify their inter-class
separability, which is defined as

J = 2
(
1− e−B

)
(3)

where B is the Bhattacharyya distance between classes (i.e.,
dynamic and stable oil tanks), which is further rewritten as (4)
under the assumption of multivariate normal distribution

B =
1

8
(μdyn − μsta)

2 2

σ2
dyn + σ2

sta
+

1

2
ln

[
σ2

dyn + σ2
sta

2σdynσsta

]
(4)

where μdyn and μsta denote the mean and σdyn and σsta represent
the standard deviation of coherence values of all dynamic and
stable oil tank samples. As JM distance is asymptotic to 2.0,
a larger JM distance presents a better separability between
classes: values less than 1.4 suggest poor separation with signif-
icant overlap, values ∈ [1.4, 1.8) suggest moderate separation,
values ∈ [1.8, 1.9) indicate fairly good separation, and values
∈ [1.9, 2.0] denote classes fully separated [37].

Based on the chosen coherence (either γc or γI ), an optimized
threshold value γthres is determined based on Otsu’s algorithm
[38], which is preferred for its simplicity and robustness for
binary classifications [7]. Then, together with each oil tank’s
bounding box extracted in stage one (see Section II-B), we
compute the average coherence value of each oil tank γavg. By
applying thresholding with the determined value γthres, dynamic
oil tanks can be identified{

Dynamic oil tank if γavg < γthres

Stable oil tank otherwise
. (5)

This coherence-based approach enables automatic dynamic
oil tank detection, which is particularly valuable when there are
hundreds of oil tanks in an oil depot.

D. Stage 3: Storage Changes Estimation

After identifying dynamic oil tanks, we estimate their storage
changes which are vital pieces of information for estimating
local fuel consumption. To fulfill this aim, the scattering fea-
tures mentioned in Section II-B and illustrated in Fig. 2 are
explored. In detail, because oil tanks are cylindrical, their scat-
tering features are symmetric concerning the range direction.
Hence, rather than exploiting the whole scattering arcs, we can
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estimate oil tanks’ 3-D geometry by only locating the scattering
keypoints, i.e., points A, B, C, E, and F marked in Fig. 2(a),
which show strong reflections and high intensity values. This
simplification has a three-fold advantage: it avoids the difficulty
of reconstructing inconsecutive scattering arcs using techniques,
such as the Hough transform, which demands heavy calculation
and demonstrates false fitting [14]; it avoids the radius bias
between the constructed scattering arcs and the actual oil tank
shape, as thoroughly discussed in [10]; and it efficiently reduces
the number of detected targets and corresponding computation
time.

Based on these five points (points A, B, and C locates in
the same range direction, while points E and F locates in the
same azimuth direction), each oil tank’s 3-D geometry (e.g.,
diameter D, tank height htank, and floating-roof height hfloat)
can be estimated

D = PSaz (Faz − Eaz) (6)

htank =
PSrg (Brg −Arg)

cos θ
(7)

hfloat =
PSrg

cos θ

[
(Crg −Brg) +

D sin θ

PSrg

]
(8)

where Faz and Eaz are azimuth coordinates of points F and E,
Arg , Brg, and Crg are range coordinates of points A, B, and
C. These coordinates are in pixel units. PSaz and PSrg are
pixel spacing distance in azimuth and slant-range direction, θ is
the incidence angle. Pixel spacing and incidence angle can be
extracted from the SLCs product metadata. It should be noted
that the pixel spacing may differ from spatial resolution when
SLCs are resampled. Eventually, based on these parameters, the
stored fuel volume V can be estimated as

V = πhfloat

(
D

2

)2

. (9)

In this article, the coregistrated and filtered intensity stack
described in Section II-B step three is used. Namely, we ex-
tract scattering keypoints based on slant-range intensity images
because: the geocoding processing rotates the alignment of
scattering keypoints along the range and azimuth directions,
which impedes efficient row- and column-wise searching of
scattering keypoints and the decibel conversion reduces the
contrast between scattering keypoints and clutter as shown in
Fig. 2(b). Noteworthily, stage one (see Section II-B) utilized
geocoded decibel intensity images as decibel conversion reduces
value range and enables detecting the overall shape of each oil
tank, while geocoding processing facilitates retrieving oil tanks’
geo-coordinates. In other words, stage one considers each oil
tank as an object, while stage three only focuses on each oil
tank’s scattering keypoints.

Also, since this article aims at tracking dynamic oil tanks’
storage changes, only the bounding boxes (extracted in stage
one, i.e., Section II-B) of the dynamic oil tanks (identified in
stage two, i.e., Section II-C) are utilized to clip the intensity
image for the following analysis. The merit of this approach is
high efficiency, as based on our experiences, generally there are
only a few oil tanks in oil depots that are dynamic, especially

when the revisit time of SAR sensors is short. Consequently,
rather than extracting all oil tanks’ scattering keypoints and
estimating their storage changes, performing these steps only
on dynamic oil tank detected with coherence is more efficient.

To extract five scattering keypoints, we perform an automatic
row- and column-wise peak searching scheme. First, to detect
three range direction-aligned and two azimuth direction-aligned
keypoints, candidate rows (i.e., the center row of the bounding
box plus or minus one-fifth box height) and candidate columns
(i.e., the one-third column of the bounding box from the left
plus or minus one-fourth box width) are chosen. This selection
is because each bounding box is trained to be nearly centered at
the oil tank (so three range direction-aligned keypoints should
approximately sit at the center row, while the location of two
azimuth direction-aligned keypoints vary as floating-roof loca-
tions can move).

Next, each candidate’s rows and columns are cubically up-
resampled to a 20-times higher resolution to facilitate subpixel
analysis. More importantly, a large upsampling factor converts
discrete values between neighboring pixels to a smooth and
continuous signal [39], avoiding misconsidering shoulder peaks
as actual peaks. Afterward, each row and column is scanned
with the multiscale-based peak detection algorithm [40] to detect
candidate scattering keypoints (i.e., pixels with peak values).
This algorithm is originally developed for electrocardiography,
yet due to its robustness in detecting peaks of noisy signals via
exploring the local maxima scalogram and does not require users
to manually set any hyper-parameter prior to the analysis, it is
commonly used in different disciplines [41].

Nevertheless, quality inspection (i.e., checking whether there
are more than three and two peaks identified along the range and
azimuth directions, respectively) is recommended, as scattering
keypoints could be confused with other oil tanks’ geometrical
details or ground clutters mentioned in Section II-B. Although
practically, as found in our study sites, clutter signals from paved
surface and multiple scattering would show weaker backscatter
coefficients than the double reflections from metal oil tanks, and
thus would not be considered as peaks.

Finally, the five actual scattering keypoints are detected from
all candidate scattering keypoints by selecting the row and col-
umn with the longest pixel distance between keypoints as the ac-
tual diameter has the longest profile distance. Eventually, based
on five detected scattering keypoints with subpixel resolution,
we estimate each dynamic oil tank’s 3-D geometry and storage
change between each image pair. Thence, a multi-temporal
oil tank dynamic tracking and fuel volume assessment can be
achieved.

III. EXPERIMENTS AND RESULTS

In this section, we first introduce the datasets and imple-
mentation details. Then, each processing stage’s results are
demonstrated, including accuracy assessment of oil tank detec-
tion, selection of the optimized coherence for dynamic oil tank
identification, and validations of estimated oil tank geometry
and storage changes.



TSAI et al.: AUTOMATIC MONITORING OF OIL TANK THREE-DIMENSIONAL GEOMETRY AND STORAGE CHANGES 1589

TABLE I
METADATA OF USED TERRASAR-X DATASET

A. Dataset and Setup

As concluded in previous studies, the discernment of oil
tanks’ scattering features largely depends on the SAR sensor’s
resolution. For instance, SAR images with a resolution smaller
than or equal to 1 m resolution yield much more reliable height
and radius estimations [16], while 3 m resolution images give
a lower detection rate [9], [13]. Therefore, we employ X-band
TerraSAR-X SLC images acquired in the high-resolution spot-
light (HS) mode with a bandwidth of 300 MHz, guaranteeing
a fine slant-range and azimuth resolution of 0.6 and 1.1 m,
respectively. To examine the universal applicability of our pro-
posed workflow, three oil depots (i.e., sites A, B, and C) located
in different bay areas are selected. Since there are more than
a hundred oil tanks on both sites A and B, the value of our
automatic and efficient monitoring scheme is affirmed. Each
site’s dataset consists of eight TerraSAR-X images, with details
given in Table I. Note that the incidence angle and pixel spacing
distance would slightly vary between images.

It should be noted that since this article aims at estimating
dynamic oil tanks’ storage changes, only floating-roof oil tanks
at these sites are considered in the following analysis.

In stage one, to train the YOLO model for oil tank detection,
we first labeled half of the oil tanks randomly chosen among
all eight images of site A (i.e., the A-1 subdataset), where oil
tanks’ sizes and geometrical details are the most variant. All
oil tank samples are carefully outlined during the data labeling
procedure. To train the model and examine resultant accuracy,
70%, 20%, and 10% of labeled data are allocated for training,
internal validation, and external testing, respectively. Regarding
the hyperparameters, we utilize the Adam optimization algo-
rithm with a learning rate of 0.001 and a momentum value of
0.9. The maximum number of training epochs is set as 300. Also,
the confidence score threshold is set as 0.5 in the article.

Then, the trained model is used to estimate the bounding boxes
of all oil tanks in sites B and C as well as another half of the

Fig. 4. Overall data splitting and training strategy of three test sites. Different
grey colors represent different processing stages.

Fig. 5. Visualization of the detected bounding boxes (yellow boxes) for parts
of oil tanks of (a) A-2 subdataset, (b) site B, and (c) site C shown over intensity
images in decibel units.

oil tanks in site A (i.e., the A-2 subdataset). Next, in stage two,
all dynamic oil tanks in sites B and C are identified with the
optimized coherence and threshold value determined with the
A-2 subdataset. Finally, in stage three, the storage changes of all
dynamic oil tanks in sites B and C are estimated based on their
extracted scattering keypoints. In order to evaluate the precision
and accuracy of the estimated oil tank geometry and storage
changes, the ground truth data in site C provided by the Chinese
Petroleum and Chemical Corporation (CPC) in Taiwan are used
for quality evaluations. The overall data splitting and processing
stages are illustrated in Fig. 4.

B. Accuracy Assessment of Oil Tank Detection

First, we examine the internal accuracy of the model training
using the A1 subdataset. A mAP value of 88.1% is found.
Considering our methodology during model training, detections
with an IOU of 0.5 or higher are incorporated into the precision
calculations. Detections below this IOU threshold did not posi-
tively contribute to the model’s performance metrics. Therefore,
a mAP value of 88.1% is deemed acceptable. The trained model
demonstrates fairly good performance of oil tank detection,
especially considering site A has the most complicatedly shaped
and sized oil tanks. Therefore, we apply the trained model on the
A-2 subdataset and sites B and C to detect each site’s oil tanks.

By visual inspections, it is confirmed that the model can cor-
rectly detect all oil tanks in each test site, as exemplified in Fig. 5.
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TABLE II
RESULTS OF OIL DETECTION ON DIFFERENT TEST SITES

Fig. 6. Distributions of (a) intensity coherence and (b) interferometric co-
herence values of dynamic (light grey) and stable (dark grey) oil tanks. The
determined interclass threshold value is marked with the dotted line.

More importantly, detected bounding boxes match well with
oil tanks’ centers, guaranteeing the feasibility of stage three’s
row- and column-wise searching of scattering keypoints. Next,
we compute different evaluation indices to assess the practical
usability of detected oil tank bounding boxes, as given in Table II.
Results indicate our trained YOLO model can generate reason-
able bounding boxes for at least 94.6% of oil tanks at three sites,
which accuracy satisfy the purpose of this article. In fact, if more
SAR images over different sites where oil tanks have variant
scattering features due to different geometrical details were used
for model training, or employed a more sophisticated detection
architecture (e.g., the self-attention component-included trans-
former network that can learn long-range dependencies between
pixels and capture global contextual connections, as used in
[13]), the accuracy can be further improved.

C. Selection of Coherence for Dynamic Oil Tank Identification

To select the optimized coherence and threshold value for
classifying dynamic and stable oil tanks, the A-2 dataset is used.
By visually inspecting each oil tank’s floating-roof scattering
keypoint (i.e., point C in Fig. 2), among all 516 oil tank samples
(each oil tank can be counted more than once, as time series
images are used), 92 samples (17.8%) are found dynamic, i.e.,
oil tanks that floating roof have moved due to either consumption
or filling. This disproportion also suggests that previous studies’
oil tank-wise screening scheme is inefficient, as only a minority
of oil tanks changed.

Then, to compare both intensity and interferometric coher-
ences’ stable/dynamic oil tank differentiation capacity, we plot
each sample’s average coherence value in Fig. 6. First, intensity
coherence has an overall higher value (mainly between 0.4 and
0.8) than interferometric coherence (mainly between 0.2 and

Fig. 7. Internal precisions of the estimated tank heights and diameters of oil
tanks on sites B (light grey) and C (dark grey).

0.7). Secondly, for both intensity and interferometric coherence,
dynamic and stable oil tanks always present lower and higher
values, respectively. Nonetheless, a substantial overlap between
them is observed in interferometric coherence. To quantify both
coherences’ inter-class separability, we calculate their Jeffries–
Matusita (JM) distance. Based on all 516 oil tank samples,
the JM distance of intensity and interferometric coherence is
1.997 and 1.271, respectively, indicating the former can perfectly
distinguish classes, while the latter cannot.

Therefore, because intensity coherence demonstrates a much
stronger separability, it is selected as the coherence for identify-
ing dynamic oil tanks. To facilitate automatic classification, an
optimized threshold coherence of 0.61 is determined with Otsu’s
algorithm, which is then applied to all paired images of sites B
and C. Because the distribution of coherence demonstrates a
bimodal distribution (although a negative skewness is noted),
the suitability of the Otsu’s algorithm is guaranteed.

D. Evaluations of Estimated Geometry and Storage Changes

Based on the bounding box detected in stage one and the
intensity coherence-based identification conducted in stage two,
the 3-D geometry and storage changes of all dynamic oil tanks
on sites B and C can be estimated via detecting their scattering
keypoints.

To evaluate the results’ reliability, we first assess the precision
of each dynamic oil tank’s diameter and tank height. Since both
geometries would not vary with time or storage changes, their
stability can represent the internal precision of our estimations,
i.e., the smaller the standard deviation, the better the precision.
Practically, the box plots of the standard deviations of both the
estimated diameter and tank height of each oil tank on sites
B and C calculated across time/images are plotted in Fig. 7.
To enable further uncertainty analysis of the estimated storage
changes, standard deviations are presented in pixel units. First,
the precision of tank heights is considerably higher than the
diameters, as the median standard deviation of the former and
latter is approximately 0.2 and 0.8 pixels, respectively. It is
because the tank height’s scattering keypoints are located along
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Fig. 8. Appearance of oil tanks on (a) site B (b) site C in an employed
TerraSAR-X spotlight SAR image (upper panel) and an oblique optical image of
Google earth (lower panel). Multiple scattering results from support structures
on the outer wall of oil tanks are marked with dotted yellow boxes.

the range direction, where strong double reflections happen (as
the walls of oil tanks are facing the SAR sensor). Oppositely, the
diameter’s scattering keypoints stem from the wall of oil tanks
nearly orthogonal to the SAR sensing direction, yielding weaker
reflections.

Second, site C’s tank height estimations are found to be more
precise (i.e., a smaller value range) than site B. By inspecting
both sites’ intensity images, we observe that all of site B’s oil
tanks exhibit significant multiple scattering, as illustrated in
Fig. 8. These additional scattering features likely to result from
extra support structures on the outer wall of the oil tank, which
are visible on Google Earth’s high-resolution optical images.

In conclusion, based on the estimations of both sites B and C,
tank height estimations show a higher precision with a third quar-
tile value of a half slant-range pixel, corresponding to 0.23 m. In
comparison, the diameter estimations exhibit a relatively lower
precision with a third quartile value of nearly one azimuth pixel,
i.e., 0.87 m.

In addition to the internal precision examination, we con-
duct accuracy validation of our estimated storage changes with
ground truth provided by CPC. Nonetheless, since CPC only
provides the fuel volume records of oil tanks on a subregion of
site C, only parts of site C’s results can be externally verified.
Additionally, because CPC’s records are at a 30-min interval,
uncertainties in fuel volume caused by temporal gaps are in-
evitable.

Results indicate that although CPC’s data reveal 14 samples
showing storage changes, three samples showing the most minor
changes among them are not identified dynamic in our stage
two coherence-based approach. Based on the CPC’s fuel vol-
ume records, we inversely calculate these samples’ theoretical
floating-roof changes [i.e., point C in Fig. 2(a)] in pixels with our

Fig. 9. Estimated (light grey) and ground truth (dark grey) storage changes of
dynamic oil tanks on site C.

estimated diameter. The results show that these samples’ theo-
retical slant-range pixel changes are less than half a pixel (0.10,
0.11, and 0.48 pixels, respectively), i.e., 0.23 m. On the contrary,
oil tanks showing floating-roof changes larger than 0.23 m are
all found to be correctly identified as dynamic samples. We
believe it is because the moving window cross-correlation-based
coherence approach would inevitably miss these relatively small
half-pixel offsets.

Then, by excluding three missed samples, we compare our
estimated and the actual storage changes, as plotted in Fig. 9. It
should be noted that the expected uncertainties (i.e., the standard
deviation) of estimated storage changes are quantified through
error propagation analysis of (9) (as discussed in Section II-D,
we assume the errors of estimated floating-roof height and diam-
eter is 0.23 and 0.87 m, respectively). Results demonstrate that
all eleven samples’ actual storage changes are within the uncer-
tainty range of our estimations. This great accuracy can also be
confirmed by an R-squared value of 0.98 and a root-mean-square
error (RMSE) of around 5808 m3. This RMSE corresponds to
1.05 m biases in floating-roof height estimations, which is in
fact smaller than our expected biases (1.11 m) quantified via
error propagation analysis of (8). Namely, the external accuracy
agrees with the internal precision. Overall, these evaluations
suggest our estimations satisfactorily match well with ground
truth data, despite the trend of oil tanks showing storage changes
less than propagated uncertainty (e.g., sample two in Fig. 9) may
be wrongly depicted.

IV. DISCUSSION

A. Comparison Between Interferometric and Intensity
Coherence for Dynamic Oil Tank Identification

The results presented in Section III-C indicate that intensity
coherence is more capable of differentiating dynamic and stable
oil tanks than interferometric coherence. To the authors’ knowl-
edge, it is the first study to examine both coherences’ suitability
for dynamic oil tank detection. Therefore, exploring the mech-
anism and other principles behind this finding is necessary.

First, as many earlier studies suggested, intensity coherence is
preferred for detecting more significant changes, while interfer-
ometric coherence is suitable for mapping trivial or unnoticeable



1592 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 10. Appearance of dynamic (top left and top center) and stable oil tanks
on (a) intensity coherence and (b) interferometric coherence images.

changes [33], [34]. We deem that the floating roof’s dynamic is
considerably large when utilizing modern very high-resolution
(VHR) spotlight SAR images that have a slant-range resolution
near one meter: according to (6), assuming the reliable minimum
discernable change of floating-roof scattering keypoints is half a
slant-range pixel (based on the precision found in Section III-D)
when the incidence angle is less than 60°, the detectable floating
height changes is less than one meter, viz., as long as a floating
roof moves more than one meter, its changes is reliably visible on
a spotlight intensity image and detectable on the corresponding
intensity coherence. This theory can be supported by the fact that
all oil tanks showing floating-roof changes larger than 0.23 m
are corrected identified dynamic, as described in Section III-D.
Furthermore, considering most SAR sensors have a revisit time
longer than a few days, dynamic oil tanks’ roof changes are
commonly greater than one meter and, thus, are more suitable
to be detected with intensity coherence.

Second, although interferometric coherence is more sensitive
to ground objects’ changes, it is also vulnerable to different
parameters of repeat-pass SAR, such as spatial and temporal
baselines. A long temporal baseline implies that ground objects
might significantly move or change, and atmospheric condi-
tions might substantially differ [42]. Despite artificial features,
such as oil tanks, would not alter their geometry with time,
occasional precipitation or dust cover can subtly alter features’
dielectric properties and yield random decorrelation [43]. Also,
a long spatial baseline beyond the critical baseline can cause
paired images’ phase to be completely uncorrelated, i.e., an
interferometric coherence equals zero [32]. Oppositely, intensity
coherence remains much more stable with the same baseline
conditions as it is less vulnerable to decorrelation [34], [44]. This
mechanism explains stable oil tanks’ floating roofs show higher
and more concentrated values in intensity coherence (approx.
0.7–0.8) than interferometric coherence (approx. 0.4–0.6), as
plotted in Fig. 7 and demonstrated in Fig. 10. In fact, it is the
background theory of the Permanent Scatterer SAR interferom-
etry that uses amplitude dispersion to identify stable scatterers
for overcoming phase decorrelation [45]. In conclusion, since
intensity coherence yields consistent and high values for stable
oil tanks, it shows greater contrast between stable/dynamic oil
tanks.

Founded on Fig. 10, it is interesting that shadows are much
more legible in interferometric coherence. We regard it is be-
cause as the shadowed areas’ phases are completely random

Fig. 11. Overall appearance of (a) intensity coherence and (b) interferometric
coherence images.

noises (i.e., noise equivalent sigma zero [46]) in both images
(so their interferometric coherence is low) while their intensity
values are consistently low. Although this article does not detect
oil tanks or estimate geometry based on shadows, this finding
may be valuable to some shadow-based studies, e.g., [2].

Finally, intensity coherence is less affected by paired images’
atmospheric phase screen (APS) due to the variant atmospheric
conditions. By examining each image pair’s interferometric
coherence, we notice that APS-led effects are commonly found:
among all 24 used images, six image pairs show visually
clear gradient patterns on interferometric coherence images, as
demonstrated in Fig. 11. These patterns are because two paired
images’ phase signals are modulated with different atmospheric
refractivity indices resulting from different temperature, pres-
sure, and humidity (usually exhibit certain spatial patterns),
which eventually cause spatially gradient decorrelation [47].
However, notably, this atmospheric effect is trivial in intensity
coherence because the intensity is less sensitive to atmospheric
refractivity changes unless rain attenuation is evident [48].

B. Limitations and Future Work

In this article, we propose a computation-efficient oil tank 3-D
geometry and dynamics mapping strategy by utilizing both the
intensity and phase information of SAR images in slant-range
and geocoded projections. Although similar to previous studies
that are limited by ground truth data availability, only parts of
the site C’s results are externally validated, revealing that an
RMSE corresponds to 1.05 m biases in floating roof heights; we
also examine the internal precision of estimations, indicating
the error of floating-roof height and diameter of the roof is 0.23
and 0.87 m, respectively. We anticipate this approach can be
applied to other oil depots apart from three test sites to facilitate
the comprehensive and automatic monitoring of many oil tanks.
Nevertheless, there is future potential to improve the current
approach and results.

First, whilst intensity coherence has more flexible require-
ments for paired images’ baselines, it still demands both images
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acquired with the same viewing geometry (e.g., ascending or
descending) and path number (or relative orbit). Otherwise,
significantly different geometric distortions, i.e., foreshortening
and layover, would hinder the correct coregistration of images.
In fact, this requirement can be exemplified by the failure
of our preliminary testing using the latest UMBRA, ICEYE
and Capella microsatellite images due to the incapability of
coregistration and coherence estimation so far. Nonetheless, as
demonstrated in [49], the scattering keypoints of oil tanks can
still be correctly identified. Namely, once these CubeSats reach
satisfactory orbital configurations, the workflow proposed in
this article can be efficiently applied. More importantly, as re-
vealed in Section III-D, trivial floating root movements less than
0.23 m cannot be identified using our proposed coherence-based
approach. Thus, once these ultrafine submeter resolution mi-
crosatellite images are coregistratable, these dynamic oil tanks’
storage changes can also be retrieved.

In addition, SAR sensors’ look and azimuth angles are vital
to ensure the correct extraction of scattering keypoints. Since
our proposed strategy exploits the contrast between strong
keypoints caused by double reflections and relatively weaker
clutter/multiple-scattering signals, the occurrence of the double
reflection scattering mechanism is essential to guarantee the
successful keypoint extraction. Nonetheless, as simulated in
[15], when oil tanks in the vicinity are perfectly aligned in
the SAR sensors’ range direction, the near-range tank’s shadow
could hinder the double reflection resulted from the far-range
tank’s outer wall and the ground in front of it [i.e., the yellow
arc in Fig. 2(a)]. In fact, shadowed areas will increase with a
larger look angle of sensors. Consequently, point B on Fig. 2
cannot be identified, and thus both tank height and floating-roof
height cannot be determined. In this extreme scenario, the whole
scattering arc needs to be reconstructed. However, rather than
the computationally intensive Hough transform used in an earlier
study [14], we consider that efficient edge detection algorithms,
such as the active contour model [50], should be explored.

Finally, apart from floating-roof oil tanks analyzed in the
current study, fixed-roof oil tanks should be included in the
proposed workflow with a more sophisticated strategy. To the
authors’ knowledge, there is only one study that addresses the
3-D geometry of fixed-roof oil tanks [14]; yet, no study has
detected their storage changes. It is because fixed-roof oil tanks
would not demonstrate detectable shape changes when fuel
volume changes. In other words, the pixel-wise coherence-based
method proposed in this article is inapplicable. Instead, we
consider the interferometric SAR technique should be employed
as it is capable of detecting subtle changes in objects via ex-
ploiting paired images’ relative phase difference (i.e., fractions
of a wavelength) [51], [52]. Thus, the slight expansion (i.e.,
millimeters to centimeters) of the outer wall of fixed-roof oil
tanks may be detected, facilitating the inverse estimations of
storage changes.

V. CONCLUSION

This article proposes an automatic and nonexternal data-
required approach that can depict oil tanks’ 3-D geometry

and storage changes. Both phase and intensity of SAR data
in both slant-range and geocoded projections are utilized in a
three-stage workflow. First, all oil tanks are detected with the
YOLO architecture. Then, we investigate the suitability of two
coherences for identifying dynamic oil tanks. Finally, dynamic
oil tanks’ 3-D geometry and fuel volume are estimated with
scattering keypoints extracted with the proposed peak searching
scheme. The essence of our approach overcomes the limitations
of previous studies that utilize scene-wise and oil tank-wise
manner, which is time-consuming and inefficient to scan all
oil tanks in oil depots as generally only a few oil tanks are
dynamic. Moreover, to the authors’ knowledge, it is the first
study that uses an image-pair analysis scheme and explores
both intensity- and phase-based coherence for dynamic oil tank
detection.

By employing spotlight SLC images of three test sites, we
can thoroughly inspect the robustness of results and further
discuss the mechanism and strengths. First, intensity coherence
can ideally differentiate dynamic and stable oil tanks (JM dis-
tance of 1.997), while interferometric coherence cannot (JM
distance of 1.271). It is because floating roofs’ changes are
considerably large when utilizing VHR spotlight SAR images
and thus, interferometric coherence suitable for detecting trivial
changes is not applicable. Moreover, intensity coherence is less
vulnerable to repeat-pass SAR variations, such as long baselines
and atmospheric conditions. Second, by assessing dynamic oil
tanks’ estimated diameters and tank heights, a relatively higher
precision of tank heights (half a slant-range pixel, i.e., 0.23 m)
than diameters (one azimuth pixel, i.e., 0.87 m) is found. It is
because height-related scattering keypoints align in the range
direction, where strong double reflections happen. Nevertheless,
a decrease in height estimations’ precision results from multiple
scatterings of additional support structures on the oil tank outer
walls is also observed on one test site. Finally, by validation
with ground truth records of fuel volume, it is revealed that
oil tanks exhibiting floating-roof changes more significant than
half a slant-range pixel (i.e., 0.23 m) can be correctly identi-
fied as dynamic. Also, the actual storage changes are within
the uncertainty range of our estimations and demonstrate a
perfect R-squared value of 0.98. By conducting uncertainty
analysis via error propagation, the observed errors are also
found to be smaller than the expected errors. These quanti-
tative evaluations confirm the reliability and accuracy of our
approach.

Furthermore, because our approach does not require external
data (e.g., optical images) or ground truth information (e.g.,
locations and geometry), its broad applicability is expected. It
can be exemplified by the satisfactorily consistent results of three
test sites. In addition, since no manual intervention is needed,
this approach enables automatic and efficient monitoring of
hundreds of oil tanks’ storage changes and 3-D geometry on
sites. These pieces of information are valuable for investigating
local fuel consumption and filling. In conclusion, this article
provides an efficient and feasible oil tank monitoring strategy
founded on the modern spotlight SAR data, which is expected
to be valuable for the increasing number of microsatellite SAR
sensors.
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