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Hyperspectral Unmixing With Multi-Scale
Convolution Attention Network

Sheng Hu

Abstract—Hyperspectral unmixing is to decompose the mixed
pixel into the spectral signatures (endmembers) with their cor-
responding abundances. However, the ignorance of endmember
variability in hyperspectral unmixing results in low performance.
To solve this problem, a multi-scale convolution attention network
containing endmember unmixing network (EU-Net) and abun-
dance unmixing network, which was called as-the hyperspectral
unmixing with multi-scale convolution attention network (HUM-
SCAN) was proposed in this article. The EU-Net is composed of the
variational autoencoder and the multi-scale effective convolution
block attention module (MSECBAM), which is combined with the
S-VCA pretraining to adaptively extract endmembers at the pixel
and subpixel levels. The AU-Net is based on the MSECBAM frame
jointed the spectral and spatial attention features. The proposed
HUMSCAN method can simultaneously and unsupervisedly ex-
tract endmembers and their corresponding abundances, which can
improve the accuracy and efficiency of spectral unmixing. The
performance of the proposed method is evaluated both on synthetic
and real datasets. Experimental results show its superiority in
comparison with other state-of-the-art methods.

Index Terms—Endmember variability, hyperspectral unmixing
(HU), multi-scale effective convolution block attention module,
variational autoencoder (VAE).

1. INTRODUCTION

YPERSPECTRA images (HSI) are widely used in remote
H sensing [1], environmental monitoring [2], [3], agricul-
ture [4], [5], medical [6], and military purposes [7]. Due to at-
mospheric transmission and imaging device performance, mixed
pixels are inevitable in HSI. However, the existence of mixed
pixels seriously affects the accuracy of subsequent image pro-
cessing. Therefore, hyperspectral unmixing (HU) is important,
which decomposes the mixed pixel into the spectral signatures
(endmembers) with their corresponding abundances [8].

HU models are mainly divided into linear mixture model
(LMM) and nonlinear mixture model. In the LMM, pixel purity
index [9], N-FINDR [10], and vertex component analysis [11]
are classical pure pixel unmixing methods, while the minimum
volume simplex analysis [12] and SUnSAL [13] can do un-
mixing without pure pixels. The traditional spectral unmixing
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methods are under the assumption that there is only one spectral
curve for each type of ground object (endmember). Due to “same
subject with different spectra” [14], [15], the spectral signature
of a given material can not be expressed by a single signature.
So, the endmember variability is considered into the LMM.
The spectrum of each material are blindly decomposed into a
reference spectrum and a perturbation term on perturbed linear
mixing model [16]. The endmember variability is considered
into spectral variation dictionary in augmented linear mixed
model [17]. The reflectivity variability is simulated by multiply-
ing the diagonal matrix with a fixed scaling factor is in extended
linear mixing model [18]. To solve the problems of the extended
linear model, low-rank attributes of subspaces for hyperspectral
image unmixing has been proposed, such as subspace unmix-
ing with low-rank attribute embedding for hyperspectral data
analysis [19], low-rank subspace unmixing [20].

In recent years, deep autoencoder (AE) network and its vari-
ants [21], [22], [23] are developed in spectral unmixing. The
HSI is mapped to the abundance coefficient by the encoder,
with abundance nonnegative constraint (ANC) and abundance
sum to one constraint (ASC) [24]. However, the spatial are
ignored in these AE-based deep unmixing methods [25], [26],
[271, [28], [29]. So, CNN-based AE model with the spatial
information for spectral unmixing is developed, such as convo-
lutional neural network autoencoder unmixing (CNNAEU) [30],
3D-CNNAEU [31]. cycle-consistency unmixing network [32],
and endmember-guided unmixing network [33], etc. Transform-
ers play an important role in HSI processing [34], [35], [36].
AE and transformer are combined into HU using transformer
network (DeepTrans-HSU) [37] with multihead self-attention
mechanism for spectral unmixing. Attention-based residual net-
work with scattering transform [38] are based on attention
mechanism residual network and scatter transform features with
limited training samples.

To consider the impactness of endmember variability on the
unmixing performance, the deep generative unmixing algorithm
(DeepGUn) [39] is based on the deep generative model with
endmember variability, while multiple pure pixels are extracted
from the image with the variational autoencoder (VAE) [40].
However, the accuracy of spectral unmixing with DeepGUn
relies on the number and quality of extracted pure pixels, which
may lead to suboptimal solutions. Endmember variability, which
is encoded by VAE, is combined with a probabilistic gener-
ative model in the method Probabilistic generative model for
hyperspectral unmixing (PGMSU) [41]. However, this method
ignored the spatial information. Deep generative model for
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Fig. 1.

spatial-spectral unmixing (DGMSSU) [42] is a deep generative
model based on VAE with Bayesian inference methods, which
is composed of CNN, graph neural networks (GNN), and self-
attention mechanism. However, a lot of computing resources and
training data are required in DGMSSU.

In order to solve these problems, considering VAE and the
proposed multi-scale effective convolution block attention mod-
ule (MSECBAM), a method named hyperspectral unmixing
with multi-scale convolution attention network (HUMSCAN)
is proposed for HU with spectral variability.

The improvement and main contributions of this proposed
method are as follows:

1) The effective convolution block attention module (ECB-
AM) with different convolution kernel sizes is proposed
in this article, which are used to adaptively extract multi-
scale spectral-spatial attention features for the next multi-
scale feature fusion.

A multi-scale convolution attention network called the
HUMSCAN is proposed to accurately model endmem-
ber variability. MSECBAM and VAE are used to con-
struct an endmember unmixing network (EU-Net). We use
MSECBAM to construct an abundance unmixing network
(AU-Net). Through joint learning of two networks, the
proposed method can simultaneously perform endmember

2)

multiplication addition  product

Overview of the proposed HUMSCAN architecture. It is a two-stream network, including EU-Net and AU-Net.

extraction and abundance estimation, more efficient and
accurate.

The endmember extraction backbone network based on
endmember beam is proposed, which adaptively extracts
endmembers at pixel and subpixel levels under complex
scenes.

The rest of this article is organized as follows. Section II
introduces the proposed HUMSCAN framework in detail. Next,
Section III discusses the experimental situation of the model in
real HSI. Finally, Section IV concludes this article.

3)

II. PROPOSED FRAMEWORK

In this part, we mainly introduce MSECBAM, which com-
bines ECBAM and multi-scale features, and propose the HUM-
SCAN framework as shown in Fig. 1. In the encoder part of the
two-stream network, the global spatial and spectral informations
are integrated with the MSECBAM of both EU-Net and AU-Net,
respectively. AU-Net maps the input image directly to the abun-
dance map. While EU-Net maps the input image into a potential
representation of the endmember. After encoded with EU-Net
and decoded, the endmember bundle are combined S-VCA
pretraining to generate the final endmembers. So, the proposed
HUMSCAN is forming an end-to-end unmixing network.
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A. Problem Formulation

According to the LMM, the observed spectral reflectance can
be expressed as

Y =MA +Q (1)
A>0 )
1TA =17, 3)

Among Y € RE*N is the observed hyperspectral image, M €
RL*P represents the endmember matrix of P endmember cat-
egories, A = R”*N represents the corresponding abundance
matrix, Q € RLxN represents the residual matrix, it contains
additive noise and Gaussian noise, and 1,, indicates an n-
component column vector of ones, where L represents number
of spectral bands, IV represents number of pixels, P represents
number of endmembers. In addition, three physical constraints
should be satisfied in the unmixing process, namely the endmem-
ber matrix M > 0, and the abundance vector should satisfy the
constraints of ASC and ANC.

B. Efficient Convolutional Block Attention Module

As shown in Fig. 2(a), the ECBAM consists of two parts,
namely the effective channel attention module (ECAM) and
the spatial attention module (SAM). It replaces the channel
attention module (CAM) of the convolutional block attention
module (CBAM) [43] with the ECAM [44]. Through 1-D con-
volution with kernel function of k£, the dependence between
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different channels can be captured more effectively, so as to
improve the expression ability of image features. Compared
with the traditional CABM, ECBAM has smaller computational
complexity and faster calculation speed, which is suitable for
scenarios with limited computing resources. ECBAM can also
be integrated with other neural network structures to improve
network performance. Therefore, the introduction of ECBAM
makes the network give more weight to high-frequency effective
information and ignore low-frequency invalid information.

As shown in Fig. 2(b), the input feature map F = R7>*W>L of
the ECAM, where H, W, and L are width, height, and number of
bands, respectively. First, global average pooling and maximum
pooling can be used to aggregate the spatial information of fea-
ture mapping, send it to the shared network, compress the spatial
dimension of the input feature map, and sum the two to generate
a channel attention map. Then, the local cross-channel spectral
information is captured from HSI by a 1-D convolution with a
convolution kernel size of k. Therefore, the weight calculation
formula of y, is

k
w;, =0 Za{yf ,ygeﬂf 4)
J=1

where Qf represents the set of k channels adjacent to y,. For
this operation, the attention operation for each channel contains
k x L parameters. To simplify the computation complexity, the
learning parameters of all channels are the same, (4) can be
written as

k
w;, =0 Zajy'z 7y{enf. 5)

j=1

Since ECAM is usually implemented by using 1-D convolution
with kernel function size k, formula (5) can be rewritten as

where C'1D represents 1-D convolution, GAV represents global
average pooling, and MAX represents maximum pooling.

The kernel size k determines the captured interactive cover-
age, which is adaptive to channel dimension L. The mapping ¢
between kernel size k and channel dimension L is represented
as follows:

L = (k). (7

The mapping relationship from [44] shows that k and L are
nonlinearly proportional. The approximate mapping ¢ uses the
following exponential function mapping:

L = p(k) = 205670, 8)
Finally, the value of k can be adaptively determined as
1 L b
k=) = oD | b )
€ € lodd

where |v|,qq represents the odd number closest to v.

As shown in Fig. 2(c), by applying average pooling and
maximum pooling operations along the spectral dimension,
the information regions are effectively highlighted [45] and
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connected to generate an effective feature descriptor. Then, 2-D
spatial attention map is obtained by applying the 2-D convolution
of a single convolution kernel. The calculation formula of SAM

is as follows:
Hgaym = o (f" ([AVG (F) ; MAX (F)])) (10)

where o represents the sigmoid function and f"*"™ represents
the convolution operation with a filter size of n x n.

In general, for a given intermediate feature F' = R >WxL,
it can be generalized as

F = Hpeam (F) @ F
F" = Hgay (F)) @ F'.

an
12)

C. Multi-Scale Effective Convolution Block Attention Module

As shown in Fig. 3, inspired by the multi-scale feature fusion
in HSI super-resolution reconstruction [46], [47], [48], [49] and
classification [50], [51], a multi-scale convolutional block atten-
tion module is proposed. By using ECBAM with n — 1 different
convolution kernel sizes, we can capture channel attention and
spatial attention features of different sizes, and improve the
receptive field of the network, so as to better solve the problem
of HU. Then, the features obtained by the previous n — 1 layer
ECBAM and the input intermediate features are fused to retain
and extract the initial feature image as much as possible, and
enhance the reusability of the features. The fused images are
combined by a 2-D convolution with a convolution kernel size
of 1, so as to reduce dimensionality. It can not only fuse and
filter the different feature information captured by ECBAM, but
also improve the generalization ability of the model and avoid the
occurrence of overfitting. The activation function ReLU is added
after the convolution of the module to enhance the nonlinear
expression ability of each module. Its specific representation is
as follows:

F,=ReLU (W' | x [F,_1,E, Es,...E, 1] +b)
(13)
where [F,,_1, Eq, Es, ..., E, 1] represents the fusion opera-
tion of features obtained by n — 1 layer ECBAM and input inter-
mediate features, variables Wl1X1 and b’ represent the weight
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tensor and offset tensor of convolution operation in the same
layer, respectively, ReLU represents the nonlinear activation
function, F',,_; and F',, represent the input feature and the output
feature of the current module, respectively.

D. Hyperspectral Unmixing With Multi-Scale Convolution
Attention Network

VAE can model the spectral variability. Therefore, a HUM-
SCAN based on two-stream structure (EU-Net and AU-Net)
is proposed. The previously proposed MSECBAM and VAE
are combined to form EU-Net of HUMSCAN, which solves
the problem of endmember spectral variability. The S-VCA
pretraining depends on the endmember obtained by superpixel
and VCA, which is combined with the EU-Net for the generation
of endmembers. The AU-Net for abundance estimation is also
based on the MSECBAM. In this article, the inference model is
modeled by stochastic gradient variational Bayesian [40], which
gives a deterministic approximation of the posterior distribution
and is scalable for large datasets. That is, a neural network q_
parameterized by ¢, is used as an approximation of the true pos-
terior distribution of the potential vector z,, under the condition
of pixel y,,. The posterior approximate Gaussian distribution is

9. (2n | Yn) =N (1. (¥,), 22 (Y,))- (14)

Suppose the covariance matrix is
3. = diag(o?).

The decoder of the EU-Net (the generation model) maps latent
variables to endmembers. According to LMM [52], considering
the different endmembers in each pixel, we have

Yo | (M, an) NN(MnanaA)

a diagonal matrix,

s)

where n=1,2,...,N and A = (101)71 are the covariance
matrices of the observed noise. Since we introduce a potential
vector z,, through the encoder, it is a potential representation of
the endmembers of the pixel and encodes their variability. For
each pixel, we have

vec (Mn) = fo (zn)

where vec(M,,) = [m%, m%, ....m% 1" and fy() are a
nonlinear functions parameterized by 6, which connect the
endmember matrix with its representation. The physical inter-
pretation of z,, can be the quantitative value of the environmental
conditions of the current pixel position, including the factors that
cause the spectral variability such as illumination, topography,
and atmospheric effects.

The AU-Net is mainly composed of inference models (en-
coders). The abundance is estimated by a nonlinear function in
(17), as follows:

(16)

where fg () is an ¢,-parameterized nonlinear function.

The softmax layer is used as the output of the AU-Net. With
the ASC and ANC constraints, the expression of the softmax
layer is as follows:

exp (z)
> exp (x) .

softmax : x <

(18)



HU AND LI: HYPERSPECTRAL UNMIXING WITH MULTI-SCALE CONVOLUTION ATTENTION NETWORK

TABLE I
NETWORK CONFIGURATION OF HUMSCAN

EU-Net

layers neurons
Conv1-BN1-ReLU-MSECBAM1 32pP
Conv2-BN2-ReLU-MSECBAM2 16P
Conv3-BN3-ReLU-MSECBAM3 4P
Conv4 J*
Conv5 J
Conv6-BN6-ReLU 16P
Conv7-BN7-ReLU 32p
Conv8-Sigmoid LP
AU-Net

Conv9-BN9-ReLU-MSECBAM4 32P

Conv10-BN10-ReLU-MSECBAMS5  16P
Conv11-BN11-ReLU-MSECBAMG6 4P
Conv12-BN12-ReLU-MSECBAM7 4P
Conv13-Softmax P

* J represents number of dimensions of latent variable.
Conv represents the convolution layer.

BN represents the batch normalization layer.

ReLU represents the nonlinear activation function.

To normalize endmembers, the sigmoid function is added to the
output layer of the EU-Net, and its expression is

1

i d:x ¢+ —.
sigmoid : @ + - Foxp (=)

19)

In short, the modeling process of endmember spectral variability
is to infer the potential variables and abundances through (14)
and (17), and then the final endmember can be derived from
(16) based on the potential variables. Then, the parameters are
optimized by (15) and the observation pixels are reconstructed.
The network configuration is shown in Table 1.

E. Loss Function and Training Process

Recent studies [39], [41], [42], [53] have shown that the use of
VAE can better infer endmembers and abundances from mixed
materials. HUMSCAN is optimized by using the loss function
of VAE, which consists of reconstruction error and Kullback—
Leibler (KL) divergence between variational distribution and
Gaussian prior.

Lyag = Lyec + Mg Lk

L= 2
= NZF||y" — Ynll

n=1 n
1 N
+ )LKLN Z Dyr <Q¢2 (2n | Yn) HP(Z))

(20)

where g4_(2, | y,,) is the variational distribution of VAE.

In addition, some expected properties can be introduced into
HUMSCAN as regularization terms. First, the end elements of
each material are expected to exhibit a similar shape, which
is the main effect of the overall strength change. Therefore,
we constrain the spectral angular distance (SAD) between the
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endmember and its mean, which can be expressed as
L Z Z arccoe—————— m”j 21
SAD =
P (772 [ [y |

Jj=1n=1

where m; = (1/N) 2N m,,;.

Second, the minimum volume constraint [54] applied to end-
members has shown the prospect of spectral unmixing. The
endmember variance [55] is added as a simple regularization,
which is constructed by

, Nr
Lyor = NP ZZ Mpj —

» 2
3
— My,
; P < J
n=1j=1 7j=1

Finally, the objective function of HUMSCAN is
L (0, ¢pa, $-)

(22)

= Lyec + AxLLxL + AsapLsap + AvolLvol
(23)
where Akr, Asap, and Ay are hyperparameters.

In the training process, the pretraining stage is added to
accelerate the training process and stabilize the unmixing results.
Specifically, the endmember bundle extracted by superpixel
segmentation and VCA is combined with EU-Net to constrain
the generation of endmembers. The objective function before
training are as follows:

LPre (07 ¢a7 ¢Z)

where Ag.yca is hyperparameter.

Due to the small number of pure pixels in the actual HSI, there
is a large error between the endmembers captured by VCA and
the actual endmembers, which will affect the training process.
Therefore, the HSI is segmented into superpixels by SLIC [56],
and then the pseudopure endmembers are extracted by VCA,
which can enhance the unmixing effect of the network

Al’?i + Ay?j
SLICfeature = - 52 +

where Az, + Ay?; is the square of the Euclidean distance
between two pixels, S is the search size of SLIC, and m is a
hyperparameter, which balances the influence of pixel distance
and spectral similarity

= Lyec + Ak Ly + As—vcaLs.vea  (24)

- yj’|2
5 (25)

N
1
Lsvea =+ > M, — Mseal s

n=1

(26)

In summary, the learning strategy of HUMSCAN is shown in
Algorithm 1.

III. EXPERIMENTS RESULTS

This section is devoted to illustrate the capabilities of the
presented algorithm in different scenarios of HU. Several ad-
vanced HU algorithms are used, including traditional methods,
such as FCLSU + VCA [11], [24], PLMM [16]. Neural network
based models, such as DeepTrans-HSU [37], DeepGUn [39],
PGMSU [41], DGMCNN [42]. Among them, the traditional
method and DeepGUn are run on the MATLAB R2021a plat-
form, and other deep learning-based algorithms are run on
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Algorithm 1: HUMSCAN: Learning Strategy.
Input:HSLY = {y,,,n=1,2,...,N}
Hyperparameters: A1, AsAD, Avol, AS—vCA
Epochs: MaxIter
Learning rate: LR
Initialize the model parameters: ® = {0, ¢4, P}
for i=1,... MaxIter do
Training stage:
Forward propagation:
Encoder: 4y (2n | Y0 )s @n = fo, ()
Decoder: vec(M ) = fo(zn)
Po(Y,| My, an)
Calculate loss L(®), Ly, (®)
Back propagation:

. BOL(®) 0Ly (©)
Calaulate gradient =55~ or —%5&

Using the Adam optimizer update ®
End
Output: Abundance maps and Endmembers estimation:
an; mT‘L

Soil
Tree
Water

Reflectance

Bands

(a) (b)

Fig. 4. Samson dataset. (a) False-color image. (b) Endmember spectrum.

Pycharm using the Pytorch module. All comparative experi-
ments are run on the RTX3050 TT Laptop GPU.

A. Hyperspectral Image Data

1) Samson dataset:' The original image [see Fig. 4(a)], with
a size of 95x95, has 156 bands. There are three main sub-
stances, including soil, trees, water. There are many pure
pixels in the image. The endmember spectral signatures
are shown in Fig. 4(b).

2) Jasper Ridge dataset:> The original image size is
512x614, with 224 bands. After low signal-to-noise
ratio bands removed, The subimage in Fig. 5(a) with
100100 pixels and 198 bands were used in the exper-
iments, containing vegetation, water, soil, and road. The
endmember spectral signatures are shown in Fig. 5(b).

[Online]. Available: https://github.com/ma264/HUMSCAN/blob/main/
samson_dataset.mat
2[Online]. Available: https:/github.com/ma264/HUMSCAN/blob/main/

jasper_dataset.mat
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Fig.5. Jasper Ridge dataset. (a) False-color image. (b) Endmember spectrum.
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Fig. 6. Apex dataset. (a) False-color image. (b) Endmember spectrum.

3) Apex dataset:® The original image size is 111x 122, with
285 bands. After the low signal-to-noise ratio bands re-
moved, the subimage in Fig. 6(a) with 110x 110 pixels
and 285 bands were used in the experiments. Four end-
members were manually selected from the HSI, including
water, tree, road, and roof. The endmember spectral sig-
natures are shown in Fig. 6(b).

B. Experiment Setup

1) Hyperparameter Settings: The comparative experimental
model uses the optimal parameter settings given in the reference.
The structure of the HUMSCAN model is determined by experi-
ence, such as the number of layers to the neural network and the
number of neurons. During the experiment, we use the Adam
optimizer to update the network parameters, and the learning
rate of the dataset is set to Se-4. For the Samson and Jasper
Ridge dataset epoch is 1000, the epoch of Apex dataset is 2000,
and the n of MSECBAM is set to 4. In the unmixing model
based on deep learning, the results usually depend largely on
the hyperparameter settings. Choosing the appropriate value
for the hyperparameters can significantly improve the results.
The following will be discussed separately according to the
hyperparameters of the three types of datasets. Fig. 7 shows the
corresponding unmixing results of the proposed model under
different hyperparameters. The red curve represents the average

3[Online].  Available:
apex_dataset.mat

https://github.com/ma264/HUMSCAN/blob/main/
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Fig.7. HUMSCAN uses different hyperparameters and .J for quality evaluation index diagram. (a)—(e) Samson dataset. (f)—(j) Jasper Ridge dataset. (k)—(0) Apex
dataset.

RMSE of abundance (aRMSE 4), and the blue curve represents
the average spectral angle distance (SAD) of the endmember
(aSAD ). The smaller the value of SAD is, the better the result
of unmixing is. The following will be discussed further:

1) Samson Dataset: The optimal regularization parameters
)LS,VCA, )\.KL, )\.SAD, )\.Vol in Flg 7(3)—((1) should be set as
2, 1, 1, 6, respectively. The latent vector dimension .J be
set to 4 in Fig. 7(e).

Jasper Ridge Dataset: The optimal regularization param-
eters As.vca, AKL> ASAD, Aol 1 Flg 7(f)—(1) should be set
as 5,0.001, 3, 7, respectively. The latent vector dimension
J be set to 3 in Fig. 7(j).

Apex Dataset: The optimal regularization parameters
As-vcas AKL> AsADs Avol in Fig. 7(k)—(n) should be set as
5, 0.01, 5, 7, respectively. The latent vector dimension J
be set to 4 in Fig. 7(0).

So, the hyperparameter Ak, of the HUMSCAN is important.
Because it directly affects the prior assumption of the unmixing
model on the mixing ratio and the degree of regularization of the
unmixing result. With the improper hyperparameters, stability
and convergence affect the quality of the unmixing effect.

2) Image Segmentation: Because there are few or even no
pure pixels in the real HSI, the endmembers obtained by VCA are
not accurate enough, resulting in poor unmixing performance.
Therefore, the endmember extraction framework composed of
the endmember bundle obtained by superpixel segmentation and
VCA and the EU-Net can adaptively extract endmembers at the
pixel and subpixel levels [57], [58]. Superpixel segmentation
of HSI is performed by using SLIC method. The results of
superpixel segmentation with three datasets are shown in Fig.
8(a)—(c). The SAD of S-VCA and VCA in Table II represents

2)

3)

(®)

©

Fig. 8. (a) The Samson dataset is segmented into 340 superpixels. (b) The
Jasper Ridge dataset is segmented into 374 superpixels. (c) The Apex dataset is
segmented into 722 superpixels.

TABLE I
SAD OF ENDMEMBERS COMPARISON BETWEEN THE PSEUDOPURE ENDMEMBER
OBTAINED BY VCA AFTER SUPERPIXEL SEGMENTATION AND THE ENDMEMBER
OBTAINED BY VCA

Soil Tree Water
Samson VCA 0.0259 0.0957  0.1554
S-VCA  0.0141 0.0775  0.1226
Vegetation ~ Water Soil Road
Jasper Ridge  VCA 0.1481 0.0892  0.1166  0.0901
S-VCA  0.0492 0.1531  0.0179  0.0619
Road Tree Roof Water
Apex VCA 0.6914 0.2490  0.1251  0.5176
S-VCA  0.0703 0.1398  0.1626  0.1783

the similarity between the endmember spectrum obtained after
superpixel segmentation and the real endmember spectrum. It
can be found that the overall accuracy of SAD with superpixel
segmentation to all datasets has been improved, especially the
SAD in roads and waters with the Apex dataset.
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TABLE III
RMSE OF ABUNDANCE(SAMSON DATASET)

Soil Tree Water Overall
FCLSU+VCA [11], [24] | 0.1757 0.0772 0.1587 0.1372
DeepTrans [37] 0.0843 0.0554 0.0654 0.0683
PLMM [16] 0.1739 0.0794 0.1552 0.1361
DeepGUn [39] 0.0852 0.0577 0.0489*  0.0639
PGMSU [41] 0.1240 0.0977 0.0756 0.0991
DGMCNN [42] 0.0784 0.0519 0.0565 0.0622
HUMSCAN 0.0639*%  0.0493*  0.0562 0.0565*
* is the best performance result.

TABLE IV
SAD OF ENDMEMBERS(SAMSON DATASET)

Soil Tree Water Overall
FCLSU+VCA [11], [24] | 0.0259 0.0957 0.1554 0.0923
DeepTrans [37] 0.0276 0.0810 0.1181 0.0755
PLMM [16] 0.0268 0.0965 0.1647 0.0960
DeepGUn [39] 0.0755 0.0745 0.0955 0.0818
PGMSU [41] 0.0428 0.0964 0.3587 0.1659
DGMCNN [42] 0.0772 0.1044 0.1585 0.1133
HUMSCAN 0.0234*  0.0710*  0.0948*  0.0630%*

* is the best performance result.

3) Quantitative Performance Measures: In experiments, the
root mean square error (RMSE) of abundance corresponding to
different endmembers and the overall mean are often used to
evaluate the unmixing performance of the comparison model.
Defined as

1 N A
RMSEAP = N\/Zi—l Hapl — Qp; (27)
P

1
GRMSE4 = — 3 'RMSEy,

p=1

(28)

where ay,, and é\t pn are estimated abundance and actual abun-
dance, respectively.

The SAD of each endmember and the overall mean are intro-
duced to compare the similarity between the ground truth (GT)
endmember and the estimated endmember, which is defined as

N T =
1 m;, My
SADyp = — arccos | —2 —— (29)
"N ; [l | sy |
1 P
aSADy; = - > SADy, (30)
p=1

AN
where m;, and m;, represent the extracted endmember and
the real endmember, respectively.

C. Experiment With Samson Dataset

The quantitative performance comparison in terms of RMSE
of abundance and SAD of endmembers on the Samson dataset
are shown in Tables III and IV. Experiments show that the
HUMSCAN model is superior to other techniques in terms of
abundance RMSE and endmember SAD in most of the classes.
Compared with the suboptimal results, the overall abundance
RMSE and endmember SAD of the HUMSCAN were increased
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Fig. 9. Samson dataset—Visual comparison of the abundance maps obtained
by the different unmixing techniques.
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Fig. 10. Endmembers estimated by HUMSCAN for the Samson dataset.
(a) Soil. (b) Tree. (c) Water.

TABLE V
RMSE OF ABUNDANCE(JASPER RIDGE DATASET)

Vegetation ~ Water Soil Road Overall
FCLSU+VCA [I1], [24] | 0.1588 0.2044 0.1301 0.1143 0.1519
DeepTrans [37] 0.0793 0.1118 0.1110 0.1350 0.1092
PLMM [16] 0.1570 0.2022 0.1349 0.1127 0.1517
DeepGUn [39] 0.0844 0.1078 0.0929 0.0808 0.0914
PGMSU [41] 0.0927 0.0872 0.1425 0.1013 0.1059
DGMCNN [42] 0.1136 0.1187 0.0986 0.1019 0.1082
HUMSCAN 0.0577* 0.0437*  0.0793*  0.0699*  0.0626*

* is the best performance result.

by 9.16% and 16.55%, respectively. That is because the effective
spatial-spectral features are captured and fused into multiple at-
tention feature with HUMSCAN, which significantly enhanced
the accuracy of spectral unmixing. The corresponding abun-
dance maps with various methods are shown in Fig. 9. Among
these methods, the results with HUMSCAN are the most similar
to the GT. In Fig. 10, the spectral variability of Tree endmember
is more obvious than those of soil and water.

D. Experiment With Jasper Ridge Dataset

The quantitative performance comparison in terms of RMSE
of abundance and SAD of endmembers on the Jasper Ridge
dataset are shown in Tables V and VI. The endmembers with
VCA are used for endmember initialization and constraint
among these methods. The proposed HUMSCAN model demon-
strated a good performance in RMSE of abundance and SAD
of endmember, which had increased by 31.51% and 29.23%,
respectively. That is because the HUMSCAN model does not
only consider the combination of spatial information and spec-
tral information, but also uses superpixel segmentation and VCA
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TABLE VI
SAD OF ENDMEMBERS(JASPER RIDGE DATASET)
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TABLE VII
RMSE OF ABUNDANCE(APEX DATASET)

Vegetation ~ Water Soil Road Overall Road Tree Roof Water Overall

FCLSU+VCA [11], [24] | 0.1481 0.0892 0.1166 0.0901 0.1110 FCLSU+VCA [11], [24] | 0.2057 0.1451 0.1365 0.1336 0.1552
DeepTrans [37] 0.0604 0.0845 0.1438 0.0962 0.0962 DeepTrans [37] 0.1776 0.0972 0.1318 0.0943 0.1252
PLMM [16] 0.1490 0.1145 0.1189 0.0865 0.1172 PLMM [16] 0.2733 0.0727 0.1306 0.1858 0.1656
DeepGUn [39] 0.0840 0.1471 0.0721 0.0872 0.0976 DeepGUn [39] 0.2494 0.0946 0.1119 0.1249 0.1452
PGMSU [41] 0.0348* 0.1330  0.0883  0.0559  0.0780 PGMSU [41] 0.1567 0.1436 0.1087 0.1649 0.1434
DGMCNN [42] 0.0973 0.1679 0.0762 0.0476 0.0972 DGMCNN [42] 0.1692 0.1229 0.1624 0.2531 0.1769
HUMSCAN 0.0363 0.0807*  0.0589*  0.0452*  0.0552* HUMSCAN 0.1452*%  0.0905*  0.0900%  0.0454*  0.0927*

* is the best performance result. * is the best performance result.
TABLE VIII
SAD OF ENDMEMBERS(APEX DATASET)

Veeeaton Road Tree Roof Water Overall
FCLSU+VCA [11], [24] | 0.6914 0.2490 0.1251 0.5176 0.3957
DeepTrans [37] 0.1176*  0.1311*  0.1166 0.0433*  0.1171*

Vet PLMM [16] 0.3274 0.1976 0.1528 0.3508 0.2571
DeepGUn [39] 0.5441 0.1236 0.1486 0.2492 0.2663

PGMSU [41] 0.1369 0.1365 0.1033 0.5755 0.2380

Soil DGMCNN [42] 0.1550 0.1727 0.1943 0.3050 0.2068
HUMSCAN 0.1413 0.1430 0.0876*  0.1524 0.1310

Road

Fig. 11.  Jasper Ridge dataset—Visual comparison of the abundance maps
obtained by the different unmixing techniques.
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Fig. 12. Endmembers estimated by HUMSCAN for the Jasper Ridge dataset.
(a) Vegetation. (b) Water. (c) Soil. (d) Road.

to extract pseudopure endmembers for endmember constraints,
which help the results of endmember extraction and abundance
estimation significantly improved. However, there are fewer
pure pixels in the Jasper Ridge dataset, the accuracy of spectral
unmixing with VCA initialization is low. But the methods based
on deep learning had strong learning and data fitting capabilities,
and can improve the unmixing accuracy. The corresponding
abundance maps with various comparative methods in Fig. 11
reveal that Among these methods, the results with HUMSCAN
are the most similar to the GT. In Fig. 12, the endmembers’
spectrum with HUMSCAN are similar to the real endmember
with spectral variabilities. The results in both Tables and Fig. 12
reveal that, the spectral variability are in the spectral intensity and
the shape. And the deep learning unmixing model considering
spectral variability is better than the method without spectral
variability.

* is the best performance result.

Road

Tree

Roof

Water

Fig. 13. Apex dataset—Visual comparison of the abundance maps obtained
by the different unmixing techniques.

E. Experiment With Apex Dataset

The quantitative results on the Apex dataset are shown in
Tables VII and VIII. Experiments show that there is a large SAD
in the endmember road and water extracted by FCLSU + VCA,
and those method with VCA initialization. The larger SAD is, the
worse the result of spectral unmixing is. So, deep learning meth-
ods with VCA for endmember initialization have worse results.
However, the proposed network model can obtain the optimal on
the RMSE of abundance due to considering spectral variability.
Because the spectral variability are not only the variablity of
spectral intensity, but also the variability of spectral shape, which
affects the performance of SAD. However, since the RMSE of
abundance mainly considers the relative contribution degree,
even the spectral variability has a relatively small impact on
it. DeepTrans-HSU is without spectral variability, so its end-
member SAD is not affected by spectral variability. However,
DeepTrans-HSU did not consider spectral variability, even if
the optimal endmember SAD value was obtained, the RMSE
of abundance is still not optimal. Compared with the unmixing
method with spectral variability, the HUMSCAN model demon-
strates advantages superiorities in the SAD of endmembers and
the RMSE of abundance. As shown in Fig. 13, the abundance
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TABLE IX
ABLATION EXPERIMENT OF HUMSCAN, THE QUALITY EVALUATION INDEX OF DATASETS SAMSON, JASPER RIDGE AND APEX

Samson Jasper Ridge Apex

aRMSE, aSADy | aRMSE, aSADy | aRMSE, aSADy
CBAM(no S-VCA) 0.0707 0.1025 0.1186 0.0881 0.1635 0.2287
ECBAM(no S-VCA) 0.0630 0.0850 0.1013 0.0799 0.1584 0.2162
MSECBAM(no S-VCA) 0.0620 0.0640 0.0915 0.0705 0.1466 0.1976
MSECBAM(no ECAM) 0.0680 0.0633 0.0795 0.0671 0.1155 0.1527
MSECBAM(no SAM) 0.0675 0.0632 0.0738 0.0622 0.1040 0.1521
MSECBAM(ECAM kernel=1,SAM kernel={3,5,7}) 0.0618 0.0630 0.0660 0.0577 0.0987 0.1390
MSECBAM(ECAM kernel=3,SAM kernel={3,5,7}) 0.0579 0.0631 0.0676 0.0555 0.0932 0.1333
MSECBAM(ECAM kernel={3,5,7},SAM kernel=1) 0.0599 0.0631 0.0659 0.0582 0.0927* 0.1310*
MSECBAM(ECAM kernel={3,5,7},SAM kernel=3) 0.0565%* 0.0630* 0.0687 0.0557 0.0940 0.1360
MSECBAM(ECAM kernel={3,5,7},SAM kernel={3,5,7}) | 0.0577 0.0633 0.0626* 0.0552%* 0.1007 0.1336

* is the best performance result.

Reflectance

Reflectance

Fig. 14. Endmembers estimated by HUMSCAN for the Apex dataset.
(a) Road. (b) Tree. (c¢) Roof. (d) Water.

map obtained by the HUMSCAN model is closer to the real
feature abundance map. Fig. 14 is the endmember estimation
of Apex dataset. It can be seen that the estimated endmembers
are similar to the real endmembers, and demonstrate obvious
spectral variability in both the spectral intensity and the spectral
shape.

F. Ablation Experiment

Through comparative analysis of ablation experiments, the
advantages of endmember bundle constraints on EU-Net and
the importance of MSECBAM internal modules are verified,
and the unmixing effects under different scale combinations are
studied. In order to ensure the reliability of the experimental
results, all experimental parameters are set to the same value.
According to the quantitative results given in Table IX, after
combining EU-Net with S-VCA pretraining, the unmixing ac-
curacy is insignificantly improved for dataset (such as Samson
dataset) with a large number of pure pixels. However, for Jasper
Ridge and Apex datasets, the unmixing effect is significantly
improved, especially on the Apex dataset. This is due to the
large structural similarity difference between the endmembers
generated by VCA and the real endmembers in Apex dataset. As
a result, the error between the endmember spectrum generated
by VCA preconstrained EU-Net and the actual spectrum is
large, which makes the unmixing accuracy low. After adding the
proposed MSECBAM to the Samson and Jasper Ridge datasets,
the unmixing effect is still significantly improved compared with
the first two modules, but the improvement for the Apex dataset

is limited. However, endmembers generated by using superpixel
segmentation and endmember bundle constraints obtained by
VCA can solve this problem better.

In order to verify the importance of the internal module
of MSECBAM, ECAM (spectral attention feature) and SAM
(spatial attention feature) are removed, respectively. The exper-
imental results show that the spectral information and spatial
information of HSI are importantin HU. By modifying the kernel
function parameter k£ of ECAM and SAM, the experimental
results of Table IX prove the influence of MSECBAM with
different scales on the model unmixing efficiency. Therefore,
through ablation experiments, not only the optimal MSECBAM
parameter settings are selected for different dataset, but also the
effectiveness of the proposed MSECBAM and the important
role of the constraint strategy based on S-VCA pretraining in
optimizing the HU of nonpure pixel HSI data are verified.

IV. CONCLUSION

In this article, a new convolution attention network for spectral
unmixing with endmember variability (referred to as HUM-
SCAN) was proposed. The EU-Net was composed of the VAE
and the MSECBAM, which was combined with the S-VCA
pretraining to adaptively extract endmembers at the pixel and
subpixel levels in complex scenes. The AU-Net was based on
the MSECBAM frame jointed the spectral and spatial attention
features. The proposed HUMSCAN method can simultaneously
and unsupervisedly extracts endmembers and their correspond-
ing abundances, which can improve the accuracy and efficiency
of spectral unmixing. The experimental results showed that
HUMSCAN considering endmember variability can outperform
the competing methods. Future work will include developing
more expressive network models and extending to nonlinear
unmixing techniques with endmember variability.
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